1
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
2
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
3
|
Tsakiri M, Naziris N, Demetzos C. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic. Int J Pharm 2021; 610:121212. [PMID: 34687816 PMCID: PMC8527590 DOI: 10.1016/j.ijpharm.2021.121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
4
|
Alexyuk PG, Bogoyavlenskiy AP, Alexyuk MS, Turmagambetova AS, Zaitseva IA, Omirtaeva ES, Berezin VE. Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Arch Virol 2019; 164:1793-1803. [PMID: 31079211 DOI: 10.1007/s00705-019-04273-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023]
Abstract
Numerous studies have shown that immunostimulatory complexes containing Quil-A saponin and various antigens are effective in stimulating the immune response and can be used as vaccine preparations for animals and humans. However, Quil-A saponin possesses toxicity and haemolytic activity. In the present work, a saponin-containing preparation named "Glabilox" was isolated from the roots of a Glycyrrhiza glabra L. plant by high-performance liquid chromatography (HPLC). The results showed that Glabilox has no toxicity or haemolytic activity and can form stable immunostimulatory complexes. Subcutaneous immunization of mice with an immunostimulating complex containing Glabilox and H7N1 influenza virus antigens stimulated high levels of humoral and cellular immunity. Vaccination of chickens with the same immunostimulating complex protected 100% of the animals after experimental infection with a homologous virus. Comparative studies showed that the immunogenic and protective activity of immunostimulatory complexes containing Quil-A and immunostimulatory complexes containing Glabilox are comparable to each other. The results of these studies indicated that Glycyrrhiza glabra saponins show great promise as safe and effective adjuvants.
Collapse
Affiliation(s)
- P G Alexyuk
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan.
| | - A P Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - M S Alexyuk
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - A S Turmagambetova
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - I A Zaitseva
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - E S Omirtaeva
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - V E Berezin
- Research and Production Center for Microbiology and Virology, 105, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| |
Collapse
|
5
|
Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019; 24:E171. [PMID: 30621160 PMCID: PMC6337100 DOI: 10.3390/molecules24010171] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Collapse
Affiliation(s)
- Juliane Deise Fleck
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Francini Pereira da Silva
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Eduardo Artur Troian
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Cristina Olivaro
- Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay.
| | - Fernando Ferreira
- Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay.
| | - Simone Gasparin Verza
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| |
Collapse
|
6
|
Dehghan S, Tafaghodi M, Bolourieh T, Mazaheri V, Torabi A, Abnous K, Tavassoti Kheiri M. Rabbit nasal immunization against influenza by dry-powder form of chitosan nanospheres encapsulated with influenza whole virus and adjuvants. Int J Pharm 2014; 475:1-8. [PMID: 25148732 DOI: 10.1016/j.ijpharm.2014.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
Influenza virus is one of the main causes of respiratory diseases in human. Although different vaccines have been produced during past decades, there is still a huge demand for a safe influenza vaccine with the ability to induce mucosal immune responses and sufficient protection, especially in elderly patients. In this study, chitosan nanospheres were employed as the drug delivery system. Influenza virus, CpG oligodeoxynucleotide (CpG ODN) and Quillaja saponins (QS) were incorporated in this nanospheric system. Three doses of dry powder nanosphere vaccine were nasally administered to rabbits on days 0, 45 and 60, followed by a final booster injection on day 75. Both humoral and cellular immune responses were investigated. Hemagglutination inhibition (HI) antibody titer was elevated in all groups compared to the control group at the end of vaccination in rabbits receiving nanospheres loaded with virus and CpG, CH(WV+CpG) (P<0.001). Rabbit serum IgG raised significantly in all the vaccinated groups, with the highest responses in CH(WV+CpG) group. CH(WV+CpG) and CH(WV) induced significant sIgA titers (P<0.001). CpG adjuvant also showed a prominent role in the stimulation and secretion of of IL-2 and IFN-γ cytokines (3 and 3.5 fold increase, respectively). Finally, as CH(WV+CpG) depicted to be effective in induction of humoral and cellular immune responses after nasal administration, this nanoparticulate adjuvant could be identified as an efficient adjuvant/delivery system for mucosal immunization against influenza virus.
Collapse
Affiliation(s)
- Solmaz Dehghan
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tina Bolourieh
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Vahideh Mazaheri
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Ali Torabi
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Khalil Abnous
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Tavassoti Kheiri
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran.
| |
Collapse
|
7
|
Hägglund S, Hu K, Blodörn K, Makabi-Panzu B, Gaillard AL, Ellencrona K, Chevret D, Hellman L, Bengtsson KL, Riffault S, Taylor G, Valarcher JF, Eléouët JF. Characterization of an experimental vaccine for bovine respiratory syncytial virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:997-1004. [PMID: 24828093 PMCID: PMC4097437 DOI: 10.1128/cvi.00162-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and human respiratory syncytial virus (HRSV) are major causes of respiratory disease in calves and children, respectively, and are priorities for vaccine development. We previously demonstrated that an experimental vaccine, BRSV-immunostimulating complex (ISCOM), is effective in calves with maternal antibodies. The present study focuses on the antigenic characterization of this vaccine for the design of new-generation subunit vaccines. The results of our study confirmed the presence of membrane glycoprotein (G), fusion glycoprotein (F), and nucleoprotein (N) proteins in the ISCOMs, and this knowledge was extended by the identification of matrix (M), M2-1, phosphoprotein (P), small hydrophobic protein (SH) and of cellular membrane proteins, such as the integrins αVβ1, αVβ3, and α3β1. The quantity of the major protein F was 4- to 5-fold greater than that of N (∼77 μg versus ∼17 μg/calf dose), whereas G, M, M2-1, P, and SH were likely present in smaller amounts. The polymerase (L), M2-2, nonstructural 1 (NS1), and NS2 proteins were not detected, suggesting that they are not essential for protection. Sera from the BRSV-ISCOM-immunized calves contained high titers of IgG antibody specific for F, G, N, and SH. Antibody responses against M and P were not detected; however, this does not exclude their role in protective T-cell responses. The absence of immunopathological effects of the cellular proteins, such as integrins, needs to be further confirmed, and their possible contribution to adjuvant functions requires elucidation. This work suggests that a combination of several surface and internal proteins should be included in subunit RSV vaccines and identifies absent proteins as potential candidates for differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Kefei Hu
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | | | - Karin Ellencrona
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Didier Chevret
- INRA, UMR1319 Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Lars Hellman
- Uppsala University, Department of Cell and Molecular Biology, Chemical Biology, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden National Veterinary Institute, Department of Virology, Immunobiology and Parasitology, Uppsala, Sweden
| | | |
Collapse
|
8
|
Hägglund S, Hu K, Vargmar K, Poré L, Olofson AS, Blodörn K, Anderson J, Ahooghalandari P, Pringle J, Taylor G, Valarcher JF. Bovine respiratory syncytial virus ISCOMs-Immunity, protection and safety in young conventional calves. Vaccine 2011; 29:8719-30. [PMID: 21864616 PMCID: PMC7115641 DOI: 10.1016/j.vaccine.2011.07.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 01/18/2023]
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of bronchiolitis and pneumonia in cattle and causes yearly outbreaks with high morbidity in Europe. Commercial vaccines against this virus needs improvement of efficacy, especially in calves with BRSV-specific maternally derived antibodies (MDA). We previously reported that an experimental BRSV-ISCOM vaccine, but not a commercial vaccine, induced strong clinical and virological protection in calves with MDA, immunized at 7–15 weeks of age. The aim of the present study was to characterize the immune responses, as well as to investigate the efficacy and safety in younger animals, representing the target population for vaccination. Four groups of five 3–8 week old calves with variable levels of BRSV-specific MDA were immunized s.c. twice at a 3 weeks interval with (i) BRSV immunostimulating complexes (BRSV-ISCOMs), (ii) BRSV-protein, (iii) adjuvant, or (iv) PBS. All calves were challenged with virulent BRSV by aerosol 2 weeks later and euthanized on day 6 after infection. The cellular and humoral responses were monitored as well as the clinical signs, the viral excretion and the pathology following challenge. Despite presence of MDA at the time of the immunization, only a minimum of clinical signs were observed in the BRSV-ISCOM group after challenge. In contrast, in all control groups, clinical signs of disease were observed in most of the animals (respiratory rates up to 76 min−1 and rectal temperatures up to 41 °C). The clinical protection was associated to a highly significant reduction of virus replication in the upper and lower respiratory tract of calves, rapid systemic and local antibody responses and T helper cell responses dominated by IFNγ production. Animals that did not shed virus detectable by PCR or cell culture following challenge possessed particularly high levels of pulmonary IgA. The protective immunological responses to BRSV proteins and the ability to overcome the inhibiting effect of MDA were dependent on ISCOM borne antigen presentation.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bankefors J, Nord LI, Kenne L. Multidimensional profiling of components in complex mixtures of natural products for metabolic analysis, proof of concept: Application to Quillaja saponins. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:471-6. [DOI: 10.1016/j.jchromb.2009.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
10
|
Daines AM, Greatrex BW, Hayman CM, Hook SM, McBurney WT, Rades T, Rendle PM, Sims IM. Mannosylated saponins based on oleanolic and glycyrrhizic acids. Towards synthetic colloidal antigen delivery systems. Bioorg Med Chem 2009; 17:5207-18. [DOI: 10.1016/j.bmc.2009.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/13/2009] [Accepted: 05/17/2009] [Indexed: 11/17/2022]
|
11
|
Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009; 27:4388-401. [PMID: 19450632 DOI: 10.1016/j.vaccine.2009.05.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/22/2009] [Accepted: 05/09/2009] [Indexed: 10/25/2022]
Abstract
Immunostimulatory complexes (ISCOMs) are particulate antigen delivery systems composed of antigen, cholesterol, phospholipid and saponin, while ISCOMATRIX is a particulate adjuvant comprising cholesterol, phospholipid and saponin but without antigen. The combination of an antigen with ISCOMATRIX is called an ISCOMATRIX vaccine. ISCOMs and ISCOMATRIX combine the advantages of a particulate carrier system with the presence of an in-built adjuvant (Quil A) and consequently have been found to be more immunogenic, while removing its haemolytic activity of the saponin, producing less toxicity. ISCOMs and ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite origin or tumor in a number of animal species including non-human primates and humans. These vaccines produced by well controlled and reproducible processes have also been evaluated in human clinical trials. In this review, we summarize the recent progress of ISCOMs and ISCOMATRIX, including preparation technology as well as their application in humans and veterinary vaccine designs with particular emphasis on the current understanding of the properties and features of ISCOMs and ISCOMATRIX vaccines to induce immune responses. The mechanisms of adjuvanticity are also discussed in the light of recent findings.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, Zhejiang, China.
| | | | | |
Collapse
|
12
|
Murine host responses to respiratory syncytial virus (RSV) following intranasal administration of a Protollin-adjuvanted, epitope-enhanced recombinant G protein vaccine. J Clin Virol 2009; 44:287-91. [PMID: 19233722 DOI: 10.1016/j.jcv.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immunization of mice with the G protein of respiratory syncytial virus (RSV) characteristically induces an immune response that is partially protective, but which can prime for pulmonary eosinophilia. We have shown previously that the N191A mutation in a recombinant RSV G protein fragment is associated with reduced pulmonary eosinophilic infiltration when administered with alum subcutaneously in BALB/c mice followed by RSV challenge. We hypothesize that the performance of this "epitope enhanced" recombinant G protein fragment may be further improved by combining with the newly developed adjuvant, Protollin, coupled with intranasal delivery. OBJECTIVES To investigate efficacy of an intranasally delivered, Protollin-adjuvanted, epitope-enhanced recombinant G protein vaccine in BALB/c mice. STUDY DESIGN Recombinant protein, designated Trx-G128-229, consisted of a bacterially expressed central fragment (amino acids 128-229) of the RSV Long strain G protein fused to a fragment of thioredoxin (Trx). BALB/c mice were chosen to evaluate the effectiveness of wild type and epitope-enhanced Trx-G128-229 as a nasal vaccine with the adjuvant Protollin. RESULTS The intranasal administration of Trx-G128-229 with Protollin conferred similar protection against RSV challenge as subcutaneously administered Trx-G128-229 with alum, but with markedly reduced eosinophilia and the Th2 cytokine IL-13. CONCLUSIONS These results support the concept of an RSV vaccine optimized by combined strategies, including epitope enhancement and judicious selection of adjuvants.
Collapse
|
13
|
Bueno SM, González PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR, Riedel CA, Kalergis AM. Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 2008; 105:20822-7. [PMID: 19075247 PMCID: PMC2634951 DOI: 10.1073/pnas.0806244105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, because of an inefficient immunological memory, RSV infection provides limited immune protection against reinfection. Furthermore, RSV can induce an inadequate Th2-type immune response that causes severe respiratory tract inflammation and obstruction. It is thought that effective RSV clearance requires the induction of balanced Th1-type immunity, involving the activation of IFN-gamma-secreting cytotoxic T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for decades in several countries as a tuberculosis vaccine. Here, we show that immunization with recombinant BCG strains expressing RSV antigens promotes protective Th1-type immunity against RSV in mice. Activation of RSV-specific T cells producing IFN-gamma and IL-2 was efficiently obtained after immunization with recombinant BCG. This type of T cell immunity was protective against RSV challenge and caused a significant reduction of inflammatory cell infiltration in the airways. Furthermore, mice immunized with recombinant BCG showed no weight loss and reduced lung viral loads. These data strongly support recombinant BCG as an efficient vaccine against RSV because of its capacity to promote protective Th1 immunity.
Collapse
Affiliation(s)
- Susan M. Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Pablo A. González
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Kelly M. Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Jorge E. Mora
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Eduardo D. Leiva
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Hugo E. Tobar
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Glenn J. Fennelly
- The Lewis M. Fraad Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461
- Departments of Pediatrics and
| | | | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Laboratorio de Biologia Celular y Farmacologia, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alexis M. Kalergis
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
14
|
Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine research and development. Comp Immunol Microbiol Infect Dis 2007; 31:191-225. [PMID: 17720245 DOI: 10.1016/j.cimid.2007.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/23/2022]
Abstract
Human (HRSV) and bovine (BRSV) respiratory syncytial viruses (RSV) are two closely related viruses, which are the most important causative agents of respiratory tract infections of young children and calves, respectively. BRSV vaccines have been available for nearly 2 decades. They probably have reduced the prevalence of RSV infection but their efficacy needs improvement. In contrast, despite decades of research, there is no currently licensed vaccine for the prevention of HRSV disease. Development of a HRSV vaccine for infants has been hindered by the lack of a relevant animal model that develops disease, the need to immunize immunologically immature young infants, the difficulty for live vaccines to find the right balance between attenuation and immunogenicity, and the risk of vaccine-associated disease. During the past 15 years, intensive research into a HRSV vaccine has yielded vaccine candidates, which have been evaluated in animal models and, for some of them, in clinical trials in humans. Recent formulations have focused on subunit vaccines with specific CD4+ Th-1 immune response-activating adjuvants and on genetically engineered live attenuated vaccines. It is likely that different HRSV vaccines and/or combinations of vaccines used sequentially will be needed for the various populations at risk. This review discusses the recent advances in RSV vaccine development.
Collapse
Affiliation(s)
- Gilles Meyer
- INRA-ENVT, UMR1225 IHAP, Interactions Hôtes-Virus et Vaccinologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, BP 87614, 31076 Toulouse Cedex, France.
| | | | | |
Collapse
|
15
|
Fleck JD, Kauffmann C, Spilki F, Lencina CL, Roehe PM, Gosmann G. Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine 2006; 24:7129-34. [PMID: 16887242 DOI: 10.1016/j.vaccine.2006.06.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Accepted: 06/26/2006] [Indexed: 11/25/2022]
Abstract
The chemical characterization of aqueous extracts (AE) of barks, leaves and branches and the saponin fraction denominated QB-90 obtained from Quillaja brasiliensis, a native species from Southern Brazil, show remarkable similarities to Quillaja saponaria saponins which are known as adjuvants in vaccine formulations. In vivo toxicity assays of AE and QB-90 showed not to be lethal for mice in doses ranging from 50 to 1600 microg and 50-400 microg, respectively. Experimental vaccines prepared with bovine herpesvirus type 1 (BHV-1) antigen and either AE (barks 100 microg, leaves 400 microg, branches 400 microg) or QB-90 (100 microg) were able to enhance the immune responses of mice in a comparable manner to saponins from Q. saponaria (QuilA, 100 microg). BHV-1 specific IgG, IgG1 and IgG2a antibody levels in serum were also significantly enhanced by AE, QB-90 and QuilA compared to control group (p<0.05). These results showed that AE and QB-90 from Q. brasiliensis are potential candidates as adjuvants in vaccines.
Collapse
Affiliation(s)
- Juliane D Fleck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical use. Methods 2006; 40:53-9. [PMID: 16997713 DOI: 10.1016/j.ymeth.2006.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/05/2006] [Indexed: 11/20/2022] Open
Abstract
Saponins are well recognised as potent immune stimulators, but their applicability as vaccine adjuvants have been limited due to associated toxicity. Formulation of saponin adjuvant with cholesterol and phospholipid produces the particulate ISCOMATRIX adjuvant, and when antigen is also contained within the particle, an ISCOM vaccine is produced. These particulate vaccines retain the adjuvant activity of the saponin component but without toxicity. Saponin-adjuvanted particulate vaccines have significant potential as a novel strategy in vaccine development. This review discusses (i) recent methodologies which have attempted to increase the flexibility and applicability of this technology by modifying either the vaccine composition or the mode of formulation; (ii) recent evaluations of these technologies for inducing protection against infectious diseases and as cancer immunotherapeutics.
Collapse
Affiliation(s)
- Caroline D Skene
- Centre for Animal Biotechnology, University of Melbourne, Melbourne, Vic. 3010, Australia
| | | |
Collapse
|