1
|
Malhotra N, Oh S, Finin P, Medrano J, Andrews J, Goodwin M, Markowitz TE, Lack J, Boshoff HIM, Barry CE. Environmental fungi target thiol homeostasis to compete with Mycobacterium tuberculosis. PLoS Biol 2024; 22:e3002852. [PMID: 39625876 PMCID: PMC11614215 DOI: 10.1371/journal.pbio.3002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Abstract
Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified 5 fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture. Three of these fungi induced expression of patulin, one induced citrinin expression and one induced the production of nidulalin A. The biosynthetic gene clusters for patulin and citrinin have been previously described but the genes involved in nidulalin A production have not been described before. All 3 of these potent electrophiles react with thiols and treatment of Mtb cells with these agents followed by Mtb RNAseq showed that these natural products all induce profound thiol stress suggesting a rapid depletion of mycothiol. The induction of thiol-reactive mycotoxins through 3 different systems in response to exposure to Mtb suggests that fungi have identified this as a highly vulnerable target in a similar microenvironment to that of the caseous human lesion.
Collapse
Affiliation(s)
- Neha Malhotra
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Sangmi Oh
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter Finin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jessica Medrano
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jenna Andrews
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Michael Goodwin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Clifton Earl Barry
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Malhotra N, Oh S, Finin P, Medrano J, Andrews J, Goodwin M, Markowitz TE, Lack J, Boshoff HIM, Barry CE. Environmental sphagnum-associated fungi target thiol homeostasis to compete with Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614403. [PMID: 39372785 PMCID: PMC11451587 DOI: 10.1101/2024.09.23.614403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified five fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture. Three of these fungi induced expression of patulin, one induced citrinin expression and one induced the production of nidulalin A. The biosynthetic gene clusters for patulin and citrinin have been previously described but the genes involved in nidulalin A production have not been described before. All three of these potent electrophiles react with thiols and treatment of Mtb cells with these agents followed by Mtb RNAseq showed that these natural products all induce profound thiol stress suggesting a rapid depletion of mycothiol. The induction of thiol-reactive mycotoxins through three different systems in response to exposure to Mtb suggests that fungi have identified this as a highly vulnerable target in a similar microenvironment to that of the caseous human lesion.
Collapse
Affiliation(s)
- Neha Malhotra
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Center for Neural Circuits and Behavior, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sangmi Oh
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Peter Finin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Jessica Medrano
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenna Andrews
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Michael Goodwin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
3
|
Park HE, Kim KM, Shin JI, Choi JG, An WJ, Trinh MP, Kang KM, Yoo JW, Byun JH, Jung MH, Lee KH, Kang HL, Baik SC, Lee WK, Shin MK. Prominent transcriptomic changes in Mycobacterium intracellulare under acidic and oxidative stress. BMC Genomics 2024; 25:376. [PMID: 38632539 PMCID: PMC11022373 DOI: 10.1186/s12864-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Jun An
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myung Hwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kon-Ho Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Cheol Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
4
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
5
|
Mokrousov I, Slavchev I, Solovieva N, Dogonadze M, Vyazovaya A, Valcheva V, Masharsky A, Belopolskaya O, Dimitrov S, Zhuravlev V, Portugal I, Perdigão J, Dobrikov GM. Molecular Insight into Mycobacterium tuberculosis Resistance to Nitrofuranyl Amides Gained through Metagenomics-like Analysis of Spontaneous Mutants. Pharmaceuticals (Basel) 2022; 15:ph15091136. [PMID: 36145357 PMCID: PMC9504009 DOI: 10.3390/ph15091136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We performed synthesis of new nitrofuranyl amides and investigated their anti-TB activity and primary genetic response of mycobacteria through whole-genome sequencing (WGS) of spontaneous resistant mutants. The in vitro activity was assessed on reference strain Mycobacterium tuberculosis H37Rv. The most active compound 11 was used for in vitro selection of spontaneous resistant mutants. The same mutations in six genes were detected in bacterial cultures grown under increased concentrations of 11 (2×, 4×, 8× MIC). The mutant positions were presented as mixed wild type and mutant alleles while increasing the concentration of the compound led to the semi-proportional and significant increase in mutant alleles. The identified genes belong to different categories and pathways. Some of them were previously reported as mediating drug resistance or drug tolerance, and counteracting oxidative and nitrosative stress, in particular: Rv0224c, fbiC, iniA, and Rv1592c. Gene-set interaction analysis revealed a certain weak interaction for gene pairs Rv1592–Rv1639c and Rv1592–Rv0224c. To conclude, this study experimentally demonstrated a multifaceted primary genetic response of M. tuberculosis to the action of nitrofurans. All three 11-treated subcultures independently presented the same six SNPs, which suggests their non-random occurrence and likely causative relationship between compound action and possible resistance mechanism.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Correspondence: (I.M.); (G.M.D.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev Street, bl. 9, 1113 Sofia, Bulgaria
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria
| | - Aleksey Masharsky
- Resource Center “Bio-bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Olesya Belopolskaya
- Resource Center “Bio-bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Isabel Portugal
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - João Perdigão
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev Street, bl. 9, 1113 Sofia, Bulgaria
- Correspondence: (I.M.); (G.M.D.)
| |
Collapse
|
6
|
Baatjies L, Loxton AG, Williams MJ. Host and Bacterial Iron Homeostasis, an Underexplored Area in Tuberculosis Biomarker Research. Front Immunol 2021; 12:742059. [PMID: 34777355 PMCID: PMC8586213 DOI: 10.3389/fimmu.2021.742059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) "a human adapted pathogen" has found multiple ways to manipulate the host immune response during infection. The human immune response to Mtb infection is a highly complex cascade of reactions, with macrophages as preferred intracellular location. Interaction with the host through infection gives rise to expression of specific gene products for survival and multiplication within the host. The signals that the pathogens encounter during infection cause them to selectively express genes in response to signals. One strategy to identify Mtb antigens with diagnostic potential is to identify genes that are specifically induced during infection or in specific disease stages. The shortcomings of current immunodiagnostics include the failure to detect progression from latent infection to active tuberculosis disease, and the inability to monitor treatment efficacy. This highlights the need for new tuberculosis biomarkers. These biomarkers should be highly sensitive and specific diagnosing TB infection, specifically distinguishing between latent infection and active disease. The regulation of iron levels by the host plays a crucial role in the susceptibility and outcome of Mtb infection. Of interest are the siderophore biosynthetic genes, encoded by the mbt-1 and mbt-2 loci and the SUF (mobilization of sulphur) operon (sufR-sufB-sufD-sufC-csd-nifU-sufT), which encodes the primary iron-sulphur cluster biogenesis system. These genes are induced during iron limitation and intracellular growth of Mtb, pointing to their importance during infection.
Collapse
Affiliation(s)
- Lucinda Baatjies
- Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Monique J. Williams
- Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Direct Interaction of Polar Scaffolding Protein Wag31 with Nucleoid-Associated Protein Rv3852 Regulates Its Polar Localization. Cells 2021; 10:cells10061558. [PMID: 34203111 PMCID: PMC8233713 DOI: 10.3390/cells10061558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Rv3852 is a unique nucleoid-associated protein (NAP) found exclusively in Mycobacterium tuberculosis (Mtb) and closely related species. Although annotated as H-NS, we showed previously that it is very different from H-NS in its properties and is distinct from other NAPs, anchoring to cell membrane by virtue of possessing a C-terminal transmembrane helix. Here, we investigated the role of Rv3852 in Mtb in organizing architecture or synthesis machinery of cell wall by protein–protein interaction approach. We demonstrated a direct physical interaction of Rv3852 with Wag31, an important cell shape and cell wall integrity determinant essential in Mtb. Wag31 localizes to the cell poles and possibly acts as a scaffold for cell wall synthesis proteins, resulting in polar cell growth in Mtb. Ectopic expression of Rv3852 in M. smegmatis resulted in its interaction with Wag31 orthologue DivIVAMsm. Binding of the NAP to Wag31 appears to be necessary for fine-tuning Wag31 localization to the cell poles, enabling complex cell wall synthesis in Mtb. In Rv3852 knockout background, Wag31 is mislocalized resulting in disturbed nascent peptidoglycan synthesis, suggesting that the NAP acts as a driver for localization of Wag31 to the cell poles. While this novel association between these two proteins presents one of the mechanisms to structure the elaborate multi-layered cell envelope of Mtb, it also exemplifies a new function for a NAP in mycobacteria.
Collapse
|
8
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Yang D, Klebl DP, Zeng S, Sobott F, Prévost M, Soumillion P, Vandenbussche G, Fontaine V. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020; 12:1267-1277. [DOI: 10.1039/d0mt00101e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chaperone GroEL1 enhances copper tolerance during Mycobacterium bovis BCG biofilm formation. The binding of copper ions to the GroEL1 histidine-rich region protects the chaperone from destabilization and increases its ATPase activity.
Collapse
Affiliation(s)
- Dong Yang
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - David P. Klebl
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Biomedical Sciences
| | - Sheng Zeng
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Frank Sobott
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Martine Prévost
- Laboratory for the Structure and Function of Biological Membranes
- Faculty of Sciences
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Patrice Soumillion
- Biochemistry and Genetics of Microorganisms
- Louvain Institute of Biomolecular Science and Technology
- Université Catholique de Louvain (UCL)
- Louvain-la-Neuve
- Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes
- Faculty of Sciences
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| |
Collapse
|
10
|
Mechanism of HrcA function in heat shock regulation in Mycobacterium tuberculosis. Biochimie 2019; 168:285-296. [PMID: 31765672 DOI: 10.1016/j.biochi.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023]
Abstract
Molecular chaperones are a conserved family of proteins that are over-expressed in response to heat and other stresses. The regulation of expression of chaperone proteins plays a vital role in pathogenesis of various bacterial pathogens. In M. tuberculosis, HrcA and HspR negatively regulate heat shock protein operons by binding to their cognate DNA elements, CIRCE and HAIR respectively. In this study, we show that M. tuberculosis HrcA is able to bind to its cognate CIRCE DNA element present in the upstream regions of groES and groEL2 operons only with the help of other protein(s). It is also demonstrated that M. tuberculosis HrcA binds to a CIRCE like DNA element present in the upstream region of hrcA gene suggesting its auto-regulatory nature. In addition, we report the presence of a putative HAIR element in the upstream region of groES operon and demonstrate the binding of HspR to it. In vitro, HrcA inhibited the DNA binding activity of HspR in a dose-dependent manner. The current study demonstrates that M. tuberculosis HrcA requires other protein(s) to function, and the heat shock protein expression in M. tuberculosis is negatively regulated jointly by HrcA and HspR.
Collapse
|
11
|
Cortés A, Muñoz-Antolí C, Álvarez-Izquierdo M, Sotillo J, Esteban JG, Toledo R. Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitol Res 2018; 117:947-957. [PMID: 29435719 DOI: 10.1007/s00436-018-5758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - María Álvarez-Izquierdo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Building E4, James Cook University, McGregor Rd., Smithfield, Townsville, QLD, 4878, Australia
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
12
|
Pathakumari B, Devasundaram S, Maddineni P, Raja A. Rv2204c, Rv0753c and Rv0009 antigens specific T cell responses in latent and active TB – a flow cytometry-based analysis. Int J Med Microbiol 2018; 308:297-305. [DOI: 10.1016/j.ijmm.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
|
13
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Pathakumari B, Devasundaram S, Raja A. Altered expression of antigen-specific memory and regulatory T-cell subsets differentiate latent and active tuberculosis. Immunology 2017; 153:325-336. [PMID: 28881482 DOI: 10.1111/imm.12833] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 01/20/2023] Open
Abstract
Although one-third of the world population is infected with Mycobacterium tuberculosis, only 5-10% of the infected individuals will develop active tuberculosis (TB) disease and the rest will remain infected with no symptoms, known as latent TB infection (LTBI). Identifying biomarkers that differentiate latent and active TB disease enables effective TB control, as early detection, treatment of active TB and preventive treatment of individuals with LTBI are crucial steps involved in TB control. Here, we have evaluated the frequency of antigen-specific memory and regulatory T (Treg) cells in 15 healthy household contacts (HHC) and 15 pulmonary TB patients (PTB) to identify biomarkers for differential diagnosis of LTBI and active TB. Among all the antigens tested in the present study, early secretory antigenic target-6 (ESAT-6) -specific CD4+ and CD8+ central memory (Tcm) cells showed 93% positivity in HHC and 20% positivity in PTB. The novel test antigens Rv0753c and Rv0009 both displayed 80% and 20% positivity in HHC and PTB, respectively. In contrast to Tcm cells, effector memory T (Tem) cells showed a higher response in PTB than HHC; both ESAT-6 and Rv0009 showed similar positivity of 80% in PTB and 33% in HHC. PTB patients have a higher proportion of circulating antigen-reactive Treg cells (CD4+ CD25+ FoxP3+ ) than LTBI. Rv2204c-specific Treg cells showed maximum positivity of 73% in PTB and 20% in HHC. Collectively, our data conclude that ESAT-6-specific Tcm cells and Rv2204c-specific Treg cells might be useful biomarkers to discriminate LTBI from active TB.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
15
|
Verma R, Pinto SM, Patil AH, Advani J, Subba P, Kumar M, Sharma J, Dey G, Ravikumar R, Buggi S, Satishchandra P, Sharma K, Suar M, Tripathy SP, Chauhan DS, Gowda H, Pandey A, Gandotra S, Prasad TSK. Quantitative Proteomic and Phosphoproteomic Analysis of H37Ra and H37Rv Strains of Mycobacterium tuberculosis. J Proteome Res 2017; 16:1632-1645. [DOI: 10.1021/acs.jproteome.6b00983] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renu Verma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sneha Maria Pinto
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Arun Hanumana Patil
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Pratigya Subba
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | | | - Shashidhar Buggi
- Intermediate
Reference Laboratory, State Tuberculosis Training and Demonstration Centre, Someshwaranagar, SDSTRC and RGICD Campus, Bangalore 560029, India
- Department
of Cardio Thoracic Surgery, Super Specialty State Referral Hospital for Chest Diseases, Someshwaranagar First Main Road, Dharmaram College
Post, Bangalore 560029, India
| | | | - Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Mrutyunjay Suar
- School
of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Srikanth Prasad Tripathy
- National Institute
for Research in Tuberculosis (Indian Council of Medical Research), Chennai 600031, India
| | - Devendra Singh Chauhan
- Department of Microbiology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (Indian Council of Medical Research), Agra 282004, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sheetal Gandotra
- CSIR-Institute of Genomics & Integrative Biology, SukhdevVihar, New Delhi 110020, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- YU-IOB
Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575020, India
| |
Collapse
|
16
|
Veatch AV, Niu T, Caskey J, McGillivray A, Gautam US, Subramanian R, Kousoulas KG, Mehra S, Kaushal D. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis (Edinb) 2016; 101S:S9-S17. [PMID: 27729257 DOI: 10.1016/j.tube.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes ∼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability. Thus, Mtb induces a transition in its transcriptome in response to environmental changes. Global transcriptome profiling has been key to our understanding of how Mtb responds to the different stress conditions it faces during its life cycle. While this was initially achieved using microarray technology, RNAseq is now widely employed. It is important to understand the correlation between the large amount of microarray based transcriptome data, which continues to shape our understanding of Mtb stress networks, and newer data being generated using RNAseq. We assessed how well the two platforms correlate using three well-defined stress conditions: diamide, hypoxia, and re-aeration. The data used here was generated by different individuals over time using distinct samples, providing a stringent test of platform correlation. While correlation between microarrays and sequencing was high upon diamide treatment, which causes a rapid reprogramming of the transcriptome, RNAseq allowed a better definition of the hypoxic response, characterized by subtle changes in the magnitude of gene-expression. RNAseq also allows for the best cross-platform reproducibility.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tianhua Niu
- Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans LA, USA
| | - John Caskey
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Amanda McGillivray
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Uma Shankar Gautam
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Ramesh Subramanian
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - K Gus Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Smriti Mehra
- Divisions of Microbiology, Tulane National Primate Research Center, Covington LA, USA; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
18
|
Sharma A, Rustad T, Mahajan G, Kumar A, Rao KVS, Banerjee S, Sherman DR, Mande SC. Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2015; 97:137-46. [PMID: 26822628 DOI: 10.1016/j.tube.2015.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
The 60 kDa heat shock proteins, also known as Cpn60s (GroELs) are components of the essential protein folding machinery of the cell, but are also dominant antigens in many infectious diseases. Although generally essential for cellular survival, in some organisms such as Mycobacterium tuberculosis, one or more paralogous Cpn60s are known to be dispensable. In M. tuberculosis, Cpn60.2 (GroEL2) is essential for cell survival, but the biological role of the non-essential Cpn60.1 (GroEL1) is still elusive. To understand the relevance of Cpn60.1 (GroEL1) in M. tuberculosis physiology, detailed transcriptomic analyses for the wild type H37Rv and cpn60.1 knockout (groEL1-KO) were performed under in vitro stress conditions: stationary phase, cold shock, low aeration, mild cold shock and low pH. Additionally, the survival of the groEL1-KO was assessed in macrophages at multiplicity of infection (MOI) of 1:1 and 1:5. We observed that survival under low aeration was significantly compromised in the groEL1-KO. Further, the gene expression analyses under low aeration showed change in expression of several key virulence factors like two component system PhoP/R and MprA/B, sigma factors SigM and C and adversely affected known hypoxia response regulators Rv0081, Rv0023 and DosR. Our work is therefore suggestive of an important role of Cpn60.1 (GroEL1) for survival under low aeration by affecting the expression of genes known for hypoxia response.
Collapse
Affiliation(s)
- Aditi Sharma
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India; Graduate Studies, Manipal University, Manipal 576104, India; National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Tige Rustad
- Center for Infectious Diseases Research (formerly known as Seattle Biomedical Research Institute), Seattle, WA, USA
| | - Gaurang Mahajan
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Arun Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kanury V S Rao
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - David R Sherman
- Center for Infectious Diseases Research (formerly known as Seattle Biomedical Research Institute), Seattle, WA, USA; University of Washington Department of Global Health, Seattle, WA, USA
| | - Shekhar C Mande
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India; National Centre for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
19
|
Kim JN, Jeong Y, Yoo JS, Roe JH, Cho BK, Kim BG. Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. BMC Genomics 2015; 16:116. [PMID: 25766138 PMCID: PMC4340878 DOI: 10.1186/s12864-015-1311-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NdgR is an IclR-type transcription factor that regulates leucine biosynthesis and other metabolic pathways in Streptomyces coelicolor. Recent study revealed that NdgR is one of the regulatory targets of SigR, an oxidative stress response sigma factor, suggesting that the NdgR plays an important physiological role in response to environmental stresses. Although the regulatory functions of NdgR were partly characterized, determination of its regulon is required for better understanding of the transcriptional regulatory network related with the oxidative stress response. RESULTS We determined genome-wide binding loci of NdgR by using chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and explored its physiological roles. The ChIP-seq profiles revealed 19 direct binding loci with a 15-bp imperfect palindromic motif, including 34 genes in their transcription units. Most genes in branched-chain amino acid and cysteine biosynthesis pathways were involved in the NdgR regulon. We proved that ndgR is induced by SigR under the thiol oxidation, and that an ndgR mutant strain is sensitive to the thiol oxidizing agent, diamide. Through the expression test of NdgR and the target genes for NdgR under diamide treatment, regulatory motifs were suggested. Interestingly, NdgR constitutes two regulatory motifs, coherent and incoherent feed-forward loops (FFL), in order to control its regulon under the diamide treatment. Using the regulatory motifs, NdgR regulates cysteine biosynthesis in response to thiol oxidative stress, enabling cells to maintain sulfur assimilation with homeostasis under stress conditions. CONCLUSIONS Our analysis revealed that NdgR is a global transcriptional regulator involved in the regulation of branched-chain amino acids biosynthesis and sulphur assimilation. The identification of the NdgR regulon broadens our knowledge regarding complex regulatory networks governing amino acid biosynthesis in the context of stress responses in S. coelicolor.
Collapse
Affiliation(s)
- Ji-Nu Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul, Korea.
| | - Yujin Jeong
- Department of Biological Sciences and KAIST institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - Ji Sun Yoo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, Korea.
| | - Jung-Hye Roe
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
20
|
Lee HN, Lee NO, Han SJ, Ko IJ, Oh JI. Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS One 2014; 9:e111680. [PMID: 25365321 PMCID: PMC4218801 DOI: 10.1371/journal.pone.0111680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/29/2014] [Indexed: 12/04/2022] Open
Abstract
The ahpC (MSMEG_4891) gene encodes alkyl hydroperoxide reductase C in Mycobacterium smegmatis mc2155 and its expression is induced under oxidative stress conditions. Two well-defined inverted repeat sequences (IR1 and IR2) were identified in the upstream region of ahpC. Using a crp (cAMP receptor protein: MSMEG_6189) mutant and in vitro DNA-binding assay, it was demonstrated that the IR1 sequence serves as a Crp-binding site and that Crp functions as an activator in the regulation of ahpC expression. The expression level of ahpC was shown to be proportional to intracellular cAMP levels. Intracellular levels of cAMP were increased in M. smegmatis, when it was treated with oxidative stress inducers. The IR2 sequence is very similar to the known consensus sequence of FurA-binding sites and involved in the negative regulation of ahpC expression. Taken together, these results suggest that the induction of ahpC expression under oxidative stress conditions probably results from a combinatory effect of both inactivation of FurA by oxidative stress and activation of Crp in response to increased levels of cAMP.
Collapse
Affiliation(s)
- Ha-Na Lee
- Department of Microbiology, Pusan National University, Busan, Korea
| | - Na-On Lee
- Department of Microbiology, Pusan National University, Busan, Korea
| | - Seung J. Han
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University, Seoul, Korea
| | - In-Jeong Ko
- Korea Science Academy of KAIST, Busan, Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, Korea
- * E-mail:
| |
Collapse
|
21
|
Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J. Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 2014; 10:e1004132. [PMID: 24830429 PMCID: PMC4022732 DOI: 10.1371/journal.ppat.1004132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/03/2014] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.
Collapse
Affiliation(s)
- Jacqueline L. Naffin-Olivos
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Maria Georgieva
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Nathan Goldfarb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Ranjna Madan-Lala
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Lauren Dong
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Erica Bizzell
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Ethan Valinetz
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Gabriel S. Brandt
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - Sarah Yu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Daniil E. Shabashvili
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Dagmar Ringe
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Gregory A. Petsko
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
22
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
23
|
Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD mutant as a vaccine candidate against challenge in a caprine model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:572-81. [PMID: 23408524 DOI: 10.1128/cvi.00653-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Johne's disease (JD) is prevalent worldwide and has a significant impact on the global agricultural economy. In the present study, we evaluated the protective efficacy of a leuD (Δleud) mutant and gained insight into differential immune responses after challenge with virulent M. avium subsp. paratuberculosis in a caprine colonization model. The immune response and protective efficacy were compared with those of the killed vaccine Mycopar. In vitro stimulation of peripheral blood mononuclear cells with johnin purified protein derivative showed that Mycopar and ΔleuD generated similar levels of gamma interferon (IFN-γ) but significantly higher levels than unvaccinated and challenged phosphate-buffered saline controls. However, only with ΔleuD was the IFN-γ response maintained. Flow cytometric analysis showed that the increase in IFN-γ correlated with proliferation and activation (increased expression of CD25) of CD4, CD8, and γδT cells, but this response was significantly higher in ΔleuD-vaccinated animals at some time points after challenge. Both Mycopar and ΔleuD vaccines upregulated Th1/proinflammatory and Th17 cytokines and downregulated Th2/anti-inflammatory and regulatory cytokines at similar levels at almost all time points. However, significantly higher levels of IFN-γ (at weeks 26 and 30), interleukin-2 (IL-2; week 18), IL-1b (weeks 14 and 22), IL-17 (weeks 18 and 22), and IL-23 (week 18) and a significantly lower level of IL-10 (weeks 14 and 18) and transforming growth factor β (week 18) were detected in the ΔleuD-vaccinated group. Most importantly, ΔleuD elicited an immune response that significantly limited colonization of tissues compared to Mycopar upon challenge with wild-type M. avium subsp. paratuberculosis. In conclusion, the ΔleuD mutant is a promising vaccine candidate for development of a live attenuated vaccine for JD in ruminants.
Collapse
|
24
|
Weigoldt M, Meens J, Bange FC, Pich A, Gerlach GF, Goethe R. Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment. Microbiology (Reading) 2013; 159:380-391. [DOI: 10.1099/mic.0.062737-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mathias Weigoldt
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franz-Christoph Bange
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Pich
- Institute for Toxicology, Medical School Hannover, Hannover, Germany
| | - Gerald F. Gerlach
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
25
|
Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress. PLoS One 2012; 7:e37884. [PMID: 22675497 PMCID: PMC3366959 DOI: 10.1371/journal.pone.0037884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of severe gastroenteritis in cattle. To gain a better understanding of MAP virulence, we investigated the role of leuD gene in MAP metabolism and stress response. For this, we have constructed an auxotrophic strain of MAP by deleting the leuD gene using allelic exchange. The wildtype and mutant strains were then compared for metabolic phenotypic changes using Biolog phenotype microarrays. The responses of both strains to physiologically relevant stress conditions were assessed using DNA microarrays. Transcriptomic data was then analyzed in the context of cellular metabolic pathways and gene networks. Our results showed that deletion of leuD gene has a global effect on both MAP phenotypic and transcriptome response. At the metabolic level, the mutant strain lost the ability to utilize most of the carbon, nitrogen, sulphur, phosphorus and nutrient supplements as energy source. At the transcriptome level, more than 100 genes were differentially expressed in each of the stress condition tested. Systems level network analysis revealed that the differentially expressed genes were distributed throughout the gene network, thus explaining the global impact of leuD deletion in metabolic phenotype. Further, we find that leuD deletion impacted metabolic pathways associated with fatty acids. We verified this by experimentally estimating the total fatty acid content of both mutant and wildtype. The mutant strain had 30% less fatty acid content when compared to wildtype, thus supporting the results from transcriptional and computational analyses. Our results therefore reveal the intricate connection between the metabolism and virulence in MAP.
Collapse
|
26
|
Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation. J Bacteriol 2012; 194:3904-12. [PMID: 22609922 DOI: 10.1128/jb.00347-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Pseudomonas aeruginosa PAO1 thiol peroxidase homolog (Tpx) belongs to a family of enzymes implicated in the removal of toxic peroxides. We have shown the expression of tpx to be highly inducible with redox cycling/superoxide generators and diamide and weakly inducible with organic hydroperoxides and hydrogen peroxide (H(2)O(2)). The PAO1 tpx pattern is unlike the patterns for other peroxide-scavenging genes in P. aeruginosa. Analysis of the tpx promoter reveals the presence of a putative IscR binding site located near the promoter. The tpx expression profiles in PAO1 and the iscR mutant, together with results from gel mobility shift assays showing that purified IscR specifically binds the tpx promoter, support the role of IscR as a transcriptional repressor of tpx that also regulates the oxidant-inducible expression of the gene. Recombinant Tpx has been purified and biochemically characterized. The enzyme catalyzes thioredoxin-dependent peroxidation and can utilize organic hydroperoxides and H(2)O(2) as substrates. The Δtpx mutant demonstrates differential sensitivity to H(2)O(2) only at moderate concentrations (0.5 mM) and not at high (20 mM) concentrations, suggesting a novel protective role of tpx against H(2)O(2) in P. aeruginosa. Altogether, P. aeruginosa tpx is a novel member of the IscR regulon and plays a primary role in protecting the bacteria from submillimolar concentrations of H(2)O(2).
Collapse
|
27
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
28
|
Holsclaw CM, Muse WB, Carroll KS, Leary JA. Mass Spectrometric Analysis of Mycothiol levels in Wild-Type and Mycothiol Disulfide Reductase Mutant Mycobacterium smegmatis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 305:151-156. [PMID: 21857792 PMCID: PMC3156591 DOI: 10.1016/j.ijms.2010.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mycothiol (MSH), the primary low-molecular weight thiol produced in mycobacteria, acts to protect the cell from oxidative stress and to maintain redox homeostasis, notably in the pathogenic Mycobacterium tuberculosis in the course of human infection. The mycothiol disulfide reductase (Mtr) enzyme reduces the oxidized form of mycothiol, mycothione (MSSM), back to MSH, however its role in bacterial viability is not clear. In this study, we sought to determine the MSH levels of wild-type (WT) and Mtr mutant mycobacteria during oxidative stress. We describe a rapid method for the relative quantification of MSH using high-sensitivity mass spectrometry (MS) with selected ion monitoring (SIM). This method uses only minimal sample cleanup, and does not require advanced chromatographic equipment or fluorescent compounds. MSH levels decreased in the Mtr mutant only upon treatment with peroxide, and the results were consistent between our method and previously-described thiol quantification methods. Our results indicate that our MS-based method is a useful, high-throughput alternative tool for the quantification of MSH from mycobacteria.
Collapse
Affiliation(s)
- Cynthia M. Holsclaw
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Wilson B. Muse
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kate S. Carroll
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julie A. Leary
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
29
|
Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 2011; 24:434-50. [PMID: 21391663 DOI: 10.1021/tx100413v] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein thiol reactivity generally involves the nucleophilic attack of the thiolate on an electrophile. A low pK(a) means higher availability of the thiolate at neutral pH but often a lower nucleophilicity. Protein structural factors contribute to increasing the reactivity of the thiol in very specific reactions, but these factors do not provide an indiscriminate augmentation in general reactivity. Notably, reduction of hydroperoxides by the catalytic cysteine of peroxiredoxins can achieve extraordinary reaction rates relative to free cysteine. The discussion of this catalytic efficiency has centered in the stabilization of the thiolate as a way to increase nucleophilicity. Such stabilization originates from electrostatic and polar interactions of the catalytic cysteine with the protein environment. We propose that the set of interactions is better described as a means of stabilizing the anionic transition state of the reaction. The enhanced acidity of the critical cysteine is concurrent but not the cause of catalytic efficiency. Protein stabilization of the transition state is achieved by (a) a relatively static charge distribution around the cysteine that includes a conserved arginine and the N-terminus of an α-helix providing a cationic environment that stabilizes the reacting thiolate, the transition state, and also the anionic leaving group; (b) a dynamic set of polar interactions that stabilize the thiolate in the resting enzyme and contribute to restraining its reactivity in the absence of substrate; but upon peroxide binding these active/binding site groups switch interactions from thiolate to peroxide oxygens, simultaneously increasing the nucleophilicity of the attacking sulfur and facilitating the correct positioning of the substrate. The switching of polar interaction provides further acceleration and, importantly, confers specificity to the thiol reactivity. The extraordinary thiol reactivity and specificity toward H(2)O(2) combined with their ubiquity and abundance place peroxiredoxins, along with glutathione peroxidases, as obligate hydroperoxide cellular sensors.
Collapse
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
30
|
Sielaff B, Lee KS, Tsai FT. Structural and functional conservation of Mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 Is a chaperonin. J Mol Biol 2011; 405:831-9. [PMID: 21094166 PMCID: PMC3017675 DOI: 10.1016/j.jmb.2010.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
GroEL is a group I chaperonin that facilitates protein folding and prevents protein aggregation in the bacterial cytosol. Mycobacteria are unusual in encoding two or more copies of GroEL in their genome. While GroEL2 is essential for viability and likely functions as the general housekeeping chaperonin, GroEL1 is dispensable, but its structure and function remain unclear. Here, we present the 2.2-Å resolution crystal structure of a 23-kDa fragment of Mycobacterium tuberculosis GroEL1 consisting of an extended apical domain. Our X-ray structure of the GroEL1 apical domain closely resembles those of Escherichia coli GroEL and M. tuberculosis GroEL2, thus highlighting the remarkable structural conservation of bacterial chaperonins. Notably, in our structure, the proposed substrate-binding site of GroEL1 interacts with the N-terminal region of a symmetry-related neighboring GroEL1 molecule. The latter is consistent with the known GroEL apical domain function in substrate binding and is supported by results obtained from using peptide array technology. Taken together, these data show that the apical domains of M. tuberculosis GroEL paralogs are conserved in three-dimensional structure, suggesting that GroEL1, like GroEL2, is a chaperonin.
Collapse
Affiliation(s)
| | | | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Wang XM, Lu C, Soetaert K, S'Heeren C, Peirs P, Lanéelle MA, Lefèvre P, Bifani P, Content J, Daffé M, Huygen K, De Bruyn J, Wattiez R. Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. MICROBIOLOGY-SGM 2010; 157:1205-1219. [PMID: 21127129 DOI: 10.1099/mic.0.045120-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mycobacteria possess two homologous chaperones encoded by cpn60.1 and cpn60.2. Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the Mycobacterium bovis BCG cpn60.1 (Mb3451c) gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (Δcpn60.1) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the Δcpn60.1 mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the Δcpn60.1 mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, Δcpn60.1 bacteria are more sensitive to stress induced by H(2)O(2) but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the Δcpn60.1 mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the Δcpn60.1 mutant. In mice, the Δcpn60.1 mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against Mycobacterium tuberculosis H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the cpn60.1 gene in M. bovis BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to H(2)O(2)-induced stress but is not essential for its vaccine potential.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Changlong Lu
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Karine Soetaert
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Catherine S'Heeren
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| | - Priska Peirs
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Marie-Antoinette Lanéelle
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Philippe Lefèvre
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Pablo Bifani
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jean Content
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Mamadou Daffé
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Kris Huygen
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jacqueline De Bruyn
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
32
|
Molle V, Leiba J, Zanella-Cléon I, Becchi M, Kremer L. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates. Proteomics 2010; 10:3910-5. [DOI: 10.1002/pmic.201000316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L. Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 2010; 27:1709-19. [PMID: 20922218 DOI: 10.1039/c0np00008f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elizabeth Jane Ashforth
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptomic responses of Salmonella enterica serovars Enteritidis and Typhimurium to chlorine-based oxidative stress. Appl Environ Microbiol 2010; 76:5013-24. [PMID: 20562293 DOI: 10.1128/aem.00823-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovars Enteritidis and Typhimurium are the leading causative agents of salmonellosis in the United States. S. Enteritidis is predominantly associated with contamination of shell eggs and egg products, whereas S. Typhimurium is frequently linked to tainted poultry meats, fresh produce, and recently, peanut-based products. Chlorine is an oxidative disinfectant commonly used in the food industry to sanitize the surfaces of foods and food processing facilities (e.g., shell eggs and poultry meats). However, chlorine disinfection is not always effective, as some S. enterica strains may resist and survive the disinfection process. To date, little is known about the underlying mechanisms of how S. enterica responds to chlorine-based oxidative stress. In this study, we designed a custom bigenome microarray that consists of 385,000 60-mer oligonucleotide probes and targets 4,793 unique gene features in the genomes of S. Enteritidis strain PT4 and S. Typhimurium strain LT2. We explored the transcriptomic responses of both strains to two different chlorine treatments (130 ppm of chlorine for 30 min and 390 ppm of chlorine for 10 min) in brain heart infusion broth. We identified 209 S. enterica core genes associated with Fe-S cluster assembly, cysteine biosynthesis, stress response, ribosome formation, biofilm formation, and energy metabolism that were differentially expressed (>1.5-fold; P < 0.05). In addition, we found that serovars Enteriditis and Typhimurium differed in the responses of 33 stress-related genes and 19 virulence-associated genes to the chlorine stress. Findings from this study suggest that the oxidative-stress response may render S. enterica resistant or susceptible to certain types of environmental stresses, which in turn promotes the development of more effective hurdle interventions to reduce the risk of S. enterica contamination in the food supply.
Collapse
|
35
|
Sielaff B, Lee KS, Tsai FTF. Crystallization and preliminary X-ray crystallographic analysis of a GroEL1 fragment from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:418-20. [PMID: 20383012 PMCID: PMC2852334 DOI: 10.1107/s1744309110004409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/03/2010] [Indexed: 12/31/2022]
Abstract
Full-length GroEL1 from Mycobacterium tuberculosis H37Rv was cloned, overexpressed and purified. Crystals were obtained by the hanging-drop vapor-diffusion method and contained a 23 kDa GroEL1 fragment. A complete native data set was collected from a single frozen crystal that belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 75.47, b = 78.67, c = 34.89 A, alpha = beta = gamma = 90 degrees , and diffracted to 2.2 A resolution on a home X-ray source.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Departments of Biochemistry and Molecular Biology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| | - Ki Seog Lee
- Departments of Biochemistry and Molecular Biology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| | - Francis T. F. Tsai
- Departments of Biochemistry and Molecular Biology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
36
|
Deenadayalan A, Heaslip D, Rajendiran AA, Velayudham BV, Frederick S, Yang HL, Dobos K, Belisle JT, Raja A. Immunoproteomic identification of human T cell antigens of Mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients. Mol Cell Proteomics 2009; 9:538-49. [PMID: 20031926 DOI: 10.1074/mcp.m900299-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identification of Mycobacterium tuberculosis antigens inducing cellular immune responses is required to improve the diagnosis of and vaccine development against tuberculosis. To identify the antigens of M. tuberculosis that differentiated between tuberculosis (TB) patients and healthy contacts based on T cell reactivity, the culture filtrate of in vitro grown M. tuberculosis was fractionated by two-dimensional liquid phase electrophoresis and tested for the ability to stimulate T cells in a whole blood assay. This approach separated the culture filtrate into 350 fractions with sufficient protein quantity (at least 200 microg of protein) for mass spectrometry and immunological analyses. High levels of interferon-gamma (IFN-gamma) secretion were induced by 105 fractions in healthy contacts compared with TB patients (p < 0.05). Most interesting was the identification of 10 fractions that specifically induced strong IFN-gamma production in the healthy contact population but not in TB patients. Other immunological measurements showed 42 fractions that induced significant lymphocyte proliferative responses in the healthy contact group compared with the TB patients. The tumor necrosis factor-alpha response for most of the fractions did not significantly differ in the tested groups, and the interleukin-4 response was below the detectable range for all fractions and both study groups. Proteomic characterization of the 105 fractions that induced a significant IFN-gamma response in the healthy contacts compared with the TB patients led to the identification of 59 proteins of which 24 represented potentially novel T cell antigens. Likewise, the protein identification in the 10 healthy "contact-specific fractions" revealed 16 proteins that are key candidates as vaccine or diagnostic targets.
Collapse
Affiliation(s)
- Anbarasu Deenadayalan
- Tuberculosis Research Centre, Indian Council of Medical Research, Mayor V. R. Ramanathan Road, Chetput, Chennai 600 031, India
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Global transcriptome analysis of the Mycobacterium bovis BCG response to sodium hypochlorite. Appl Microbiol Biotechnol 2009; 85:127-40. [PMID: 19756581 DOI: 10.1007/s00253-009-2208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
Abstract
Tuberculosis is a common and often deadly infectious disease caused by mycobacteria, mainly Mycobacterium tuberculosis and infrequently by other subspecies of the M. tuberculosis complex, such as M. bovis. Sodium hypochlorite (bleach) is routinely used in hospitals and health care facilities for surface sterilization; however, the modes of action of bleach on M. bovis BCG and how this organism develops resistance to sodium hypochlorite have not been elucidated. In this study, we performed a global toxicogenomic analysis of the M. bovis response to 2.5 mM sodium hypochlorite after 10 and 20 min. M. bovis BCG growth was monitored by measuring the quantity of ATP in picomoles produced over a short exposure time (10-60 min) to sodium hypochlorite. This study revealed significant regulation of oxidative stress response genes of M. bovis BCG, such as oxidoreductase, peroxidase, heat shock proteins and lipid transport, and metabolism genes. We interpreted this response as a potentially more lethal interplay between fatty acid metabolism, sulfur metabolism, and oxidative stress. Our results also suggest that sodium hypochlorite repressed transcription of genes involved in cell wall synthesis of M. bovis. This study shows that the treatment of M. bovis BCG with bleach inhibits the biosynthesis of outer cell wall mycolic acids and also induces oxidative damage.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Department of Biochemistry, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:9465-9472. [PMID: 19924887 DOI: 10.1021/es902255q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mycobacterium bovis BCG strain Pasteur 1173P2 responds with adaptive and protective strategies against oxidative stress. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. This study was therefore carried out to investigate the genome-wide response of M. bovis BCG to hydrogen peroxide after 10 and 60 min of treatment. ATP measurements were carried out in order to monitor the changes in M. bovis BCG growth over a 1 h period. The furA gene in Mycobacterium bovis, a pleiotropic regulator that couples iron metabolism to the oxidative stress response was involved in the response to hydrogen peroxide stress. There were also increased levels of catalase/ peroxidase (KatG) and the biosynthesis operon of mycobactin. This study revealed significant upregulation of the oxidative response group of M. bovis, amino acid transport and metabolism, defense mechanisms, DNA replication, recombination and repair, and downregulation of cell cycle control, mitosis, and meiosis, lipid transport and metabolism, and cell wall/membrane biogenesis. This study shows that the treatment of M. bovis BCG with hydrogen peroxide induces iron acquisition related genes and oxidative stress response genes within one hour of treatment.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Department of Biochemistry, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Hu Y, Coates ARM. Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TpX. PLoS One 2009; 4:e5150. [PMID: 19340292 PMCID: PMC2659749 DOI: 10.1371/journal.pone.0005150] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/09/2009] [Indexed: 12/03/2022] Open
Abstract
The macrophage is the natural niche of Mycobacterium tuberculosis infection. In order to combat oxidative and nitrosative stresses and persist in macrophages successfully, M. tuberculosis is endowed with a very efficient antioxidant complex. Amongst these antioxidant enzymes, TpX is the only one in M. tuberculosis with sequence homology to thiol peroxidase. Previous reports have demonstrated that the M. tuberculosis TpX protein functions as a peroxidase in vitro. It is the dominant antioxidant which protects M. tuberculosis against oxidative and nitrosative stresses. The level of the protein increases in oxidative stress. To determine the roles of tpx gene in M. tuberculosis survival and virulence in vivo, we constructed an M. tuberculosis strain lacking the gene. The characteristics of the mutant were examined in an in vitro stationary phase model, in response to stresses; in murine bone marrow derived macrophages and in an acute and an immune resistant model of murine tuberculosis. The tpx mutant became sensitive to H2O2 and NO compared to the wild type strain. Enzymatic analysis using bacterial extracts from the WT and the tpx mutant demonstrated that the mutant contains reduced peroxidase activity. As a result of this, the mutant failed to grow and survive in macrophages. The growth deficiency in macrophages became more pronounced after interferon-γ activation. In contrast, its growth was significantly restored in the macrophages of inducible nitric oxide synthase (iNOS or NOS2) knockout mice. Moreover, the tpx mutant was impaired in its ability to initiate an acute infection and to maintain a persistent infection. Its virulence was attenuated. Our results demonstrated that tpx is required for M. tuberculosis to deal with oxidative and nitrosative stresses, to survive in macrophages and to establish acute and persistent infections in animal tuberculosis models.
Collapse
Affiliation(s)
- Yanmin Hu
- Centre of Infection, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
| | - Anthony R. M. Coates
- Centre of Infection, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
The Mycobacterium tuberculosis GroEL1 chaperone is a substrate of Ser/Thr protein kinases. J Bacteriol 2009; 191:2876-83. [PMID: 19201798 DOI: 10.1128/jb.01569-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that Mycobacterium tuberculosis GroEL1 is phosphorylated by PknF at two positions, Thr25 and Thr54. Unexpectedly, Mycobacterium smegmatis GroEL1 is not a substrate of its cognate PknF. This study shows that the phosphorylation profiles of conserved proteins are species dependent and provide insights that may explain the numerous biological functions of these important proteins.
Collapse
|
41
|
Gumber S, Taylor DL, Marsh IB, Whittington RJ. Growth pattern and partial proteome of Mycobacterium avium subsp. paratuberculosis during the stress response to hypoxia and nutrient starvation. Vet Microbiol 2009; 133:344-57. [DOI: 10.1016/j.vetmic.2008.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
|
42
|
Jothivasan VK, Hamilton CJ. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 2008; 25:1091-117. [PMID: 19030604 DOI: 10.1039/b616489g] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Actinomycetes produce mycothiol as their major low molecular weight thiol, which parallels the functions of glutathione found in prokaryotes and most Gram-negative bacteria. This review covers progress that has so far been made in terms of its distribution, biosynthesis and metabolic functions, as well as chemical syntheses of mycothiol and alternative substrates and inhibitors of mycothiol biosynthesis and mycothiol-dependent enzymes. 152 references are cited.
Collapse
|
43
|
PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol 2008; 190:7508-22. [PMID: 18790868 DOI: 10.1128/jb.00553-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.
Collapse
|
44
|
Abstract
Peroxiredoxins constitute an important component of the bacterial defense against toxic peroxides. These enzymes use reactive cysteine thiols to reduce peroxides with electrons ultimately derived from reduced pyridine dinucleotides. Studies examining the regulation and physiological roles of AhpC, Tpx, Ohr and OsmC reveal the multilayered nature of bacterial peroxide defense. AhpC is localized in the cytoplasm and has a wide substrate range that includes H2O2, organic peroxides and peroxynitrite. This enzyme functions in both the control of endogenous peroxides, as well as in the inducible defense response to exogenous peroxides or general stresses. Ohr, OsmC and Tpx are organic peroxide specific. Tpx is localized to the periplasm and can be involved in either constitutive peroxide defense or participate in oxidative stress inducible responses depending on the organism. Ohr is an organic peroxide specific defense system that is under the control of the organic peroxide sensing repressor OhrR. In some organisms Ohr homologs are regulated in response to general stress. Clear evidence indicates that AhpC, Tpx and Ohr are involved in virulence. The role of OsmC is less clear. Regulation of OsmC expression is not oxidative stress inducible, but is controlled by multiple general stress responsive regulators.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
45
|
den Hengst CD, Buttner MJ. Redox control in actinobacteria. Biochim Biophys Acta Gen Subj 2008; 1780:1201-16. [PMID: 18252205 DOI: 10.1016/j.bbagen.2008.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
As most actinobacteria are obligate aerobes, they have to cope with endogenously generated reactive oxygen species, and actinobacterial pathogens have to resist oxidative attack by phagocytes. Actinobacteria also have to survive long periods under low oxygen tension; for example, Mycobacterium tuberculosis can persist in the host for years under apparently hypoxic conditions in a latent, non-replicative state. Here we focus on the regulatory switches that control actinobacterial responses to peroxide stress, disulfide stress and low oxygen tension. Other unique aspects of their redox biology will be highlighted, including the use of the pseudodisaccharide mycothiol as their major low-molecular-weight thiol buffer, and the [4Fe-4S]-containing WhiB-like proteins, which play diverse, important roles in actinobacterial biology, but whose biochemical role is still controversial.
Collapse
Affiliation(s)
- Chris D den Hengst
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
46
|
Miller CC, Rawat M, Johnson T, Av-Gay Y. Innate protection of Mycobacterium smegmatis against the antimicrobial activity of nitric oxide is provided by mycothiol. Antimicrob Agents Chemother 2007; 51:3364-6. [PMID: 17638697 PMCID: PMC2043170 DOI: 10.1128/aac.00347-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is an efficient antimicrobial agent. A role for mycothiol in protecting mycobacteria from nitrosative damage was revealed by showing that a Mycobacterium smegmatis mutant is sensitive to NO. A direct correlation between NO and mycothiol levels confirmed that mycothiol is important for protecting mycobacteria from NO attack.
Collapse
Affiliation(s)
- Christopher C Miller
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, 2733 Heather St., Vancouver, BC, Canada V5Z 3J5
| | | | | | | |
Collapse
|
47
|
Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 2007; 189:2720-33. [PMID: 17259312 PMCID: PMC1855810 DOI: 10.1128/jb.01876-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator Cg1486 of Corynebacterium glutamicum ATCC 13032 is a member of the IclR protein family and belongs to the conserved set of regulatory proteins in corynebacteria. A defined deletion in the cg1486 gene, now designated ltbR (leucine and tryptophan biosynthesis regulator), led to the mutant strain C. glutamicum IB1486. According to whole-genome expression analysis by DNA microarray hybridizations, transcription of the leuB and leuCD genes encoding enzymes of the leucine biosynthesis pathway was enhanced in C. glutamicum IB1486 compared with the wild-type strain. Moreover, the genes of the trpEGDCFBA operon involved in tryptophan biosynthesis of C. glutamicum showed an enhanced expression in the cg1486 mutant strain. Bioinformatics pattern searches in the upstream regions of the differentially expressed genes revealed the common 12-bp motif CA(T/C)ATAGTG(A/G)GA that is located downstream of the -10 region of the mapped promoter sequences. DNA band shift assays with a streptavidin-tagged LtbR protein demonstrated the specific binding of the purified protein to 40-mers containing the 12-bp motif localized in front of leuB, leuC, and trpE, thereby confirming the direct regulatory role of LtbR in the expression of the leucine and tryptophan biosynthesis pathway genes of C. glutamicum. Genes homologous with ltbR were detected upstream of the leuCD genes in almost all sequenced genomes of bacteria belonging to the taxonomic class Actinobacteria. The ltbR-like genes of Corynebacterium diphtheriae, Corynebacterium jeikeium, Mycobacterium bovis, and Bifidobacterium longum were cloned and shown to complement the deregulation of leuB, leuCD, and trpE gene expression in C. glutamicum IB1486.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ung KSE, Av-Gay Y. Mycothiol-dependent mycobacterial response to oxidative stress. FEBS Lett 2006; 580:2712-6. [PMID: 16643903 DOI: 10.1016/j.febslet.2006.04.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/27/2022]
Abstract
The effect of exogenous oxidative stress on mycothiol (MSH) levels and redox balance was investigated in mycobacteria. Both the thiol-specific oxidant diamide and hydrogen peroxide induced up to 75% depletion of MSH to form the disulfide form, mycothione (MSSM), in Mycobacterium bovis BCG. In comparison, Mycobacterium smegmatis, a saprophytic mycobacterium, displays a greater tolerance towards these oxidants, reflected by the lack of fluxes in MSH levels and redox ratios upon oxidative stress treatments. The basal ratio of MSH to MSSM was established to be 50:1 in M. bovis BCG and 200:1 in M. smegmatis.
Collapse
Affiliation(s)
- Korine S E Ung
- Division of Infectious Diseases, Department of Medicine, The University of British Columbia, D-452 Heather Pavilion East, 2733 Heather Street, Vancouver, BC, Canada V5Z 3J5
| | | |
Collapse
|
49
|
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Hatfull GF. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2006; 123:861-73. [PMID: 16325580 DOI: 10.1016/j.cell.2005.09.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 07/27/2005] [Accepted: 09/07/2005] [Indexed: 11/20/2022]
Abstract
Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.
Collapse
Affiliation(s)
- Anil Ojha
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|