1
|
McGee CC, Bandyopadhyay T, McCracken CN, Talib E, Patterson CE, Outten CE. Cysteine import via the high-affinity GSH transporter Hgt1 rescues GSH auxotrophy in yeast. J Biol Chem 2025; 301:108131. [PMID: 39716489 PMCID: PMC11786745 DOI: 10.1016/j.jbc.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron (Fe) metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of iron-sulfur (Fe-S) cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment. Consequently, in GSH-depleted growth media, deletion of the gene encoding the first enzyme in the GSH biosynthetic pathway (GSH1) is lethal in yeast. At the other extreme, GSH overaccumulation via overexpression of the high-affinity GSH transporter Hgt1 is also toxic to cells, leading to reductive stress. Here, we engineered a yeast strain that combines gsh1 deletion with HGT1 overexpression to study the cellular effects of oscillating between GSH-deplete and -replete conditions. Surprisingly, we find that constitutive expression of HGT1 in gsh1Δ cells rescues the GSH auxotrophy of this strain. We also show that addition of cysteine or cysteine derivatives to the growth media is required for this rescue. GSH limitation in yeast causes intracellular Fe overload because of disruption of an Fe-S cluster-dependent pathway that regulates the activity of the low Fe-sensing transcription factors Aft1 and Aft2. Analysis of Fe regulation and other Fe-S cluster-dependent pathways reveals that HGT1 overexpression partially alleviates the Fe starvation-like response of gsh1Δ cells. Taken together, these results suggest that HGT1 overexpression facilitates import of cysteine or cysteine derivatives that allow limited Fe-S cluster biogenesis to sustain cell growth in the absence of GSH.
Collapse
Affiliation(s)
- Crystal C McGee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Tirthankar Bandyopadhyay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Cailin N McCracken
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Evan Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Courtney E Patterson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
2
|
Liu H, Zhang J, Wang L, Liu H, Yu C, Li H. Regulation of the RCK1 gene on the oxidative tolerance of Saccharomyces cerevisiae. Free Radic Biol Med 2024; 225:15-23. [PMID: 39326682 DOI: 10.1016/j.freeradbiomed.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Our previous work indicated that the quorum sensing (QS) effect could regulate the oxidative tolerance of Saccharomyces cerevisiae, and QS may impact oxidative and antioxidative metabolisms of S. cerevisiae by regulating the RCK1 gene. Therefore, this work proposed a reasonable logic that RCK1 could play roles in regulating the oxidative and antioxidative metabolisms of yeast cells. The results presented here suggested that the overexpression of RCK1 has a regulatory effect on the reduction of ROS level and the promotion of oxidative tolerance of S. cerevisiae. The overexpression of RCK1 promoted the ROS generation through activating the MAPK pathway; on the other hand, RCK1-regulated antioxidative metabolism played a more significant role to realize lower ROS level and higher oxidative tolerance of S288c-RCK1 and ΔARO80-RCK1 strains. To improve the fermentation performance of yeast while circumventing metabolic burden, a recombinant strain with over time-controlled overexpression of the RCK1 gene (i.e., S288c'-RCK1 strain) derived from S288c strain was successfully constructed to achieve artificial regulation of yeast oxidative tolerance. Transcriptomics analysis was further performed on both S. cerevisiae wild-type and S288c'-RCK1 strains to identify differentially expressed genes and analyze their functional pathway classification. This work is instructive for artificially modulating the oxidative tolerance of strains to enhance the fermentation performance of yeast.
Collapse
Affiliation(s)
- Hui Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Jiaxuan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Huan Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hao Li
- School of Public Health, Jining Medical University, Jining, 272067, PR China.
| |
Collapse
|
3
|
Flynn MJ, Harper NW, Li R, Zhu LJ, Lee MJ, Benanti JA. Calcineurin promotes adaptation to chronic stress through two distinct mechanisms. Mol Biol Cell 2024; 35:ar123. [PMID: 39083354 PMCID: PMC11481702 DOI: 10.1091/mbc.e24-03-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms-one that requires the downstream transcription factor Crz1 and another that is Crz1 independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.
Collapse
Affiliation(s)
- Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Nicholas W. Harper
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Michael J. Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
4
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
5
|
Chen H, de Boer R, Krikken AM, Wu F, van der Klei I. Hansenula polymorpha cells lacking the ER-localized peroxins Pex23 or Pex29 show defects in mitochondrial function and morphology. Biol Open 2024; 13:bio060271. [PMID: 38682287 PMCID: PMC11139031 DOI: 10.1242/bio.060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.
Collapse
Affiliation(s)
- Haiqiong Chen
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arjen M. Krikken
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Fei Wu
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ida van der Klei
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Flynn MJ, Harper NW, Li R, Zhu LJ, Lee MJ, Benanti JA. Calcineurin promotes adaptation to chronic stress through two distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585797. [PMID: 38562881 PMCID: PMC10983906 DOI: 10.1101/2024.03.19.585797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long-term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms - one that requires the downstream transcription factor Crz1 and another that is Crz1-independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione (GSH) biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.
Collapse
Affiliation(s)
- Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Nicholas W. Harper
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester MA 01605
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605
| | - Michael J. Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
7
|
Lu P, Wang K, Wang J, Xia C, Yang S, Ma L, Shi H. A novel zinc finger transcription factor, BcMsn2, is involved in growth, development, and virulence in Botrytis cinerea. Front Microbiol 2023; 14:1247072. [PMID: 37915851 PMCID: PMC10616473 DOI: 10.3389/fmicb.2023.1247072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Reactive oxygen species (ROS) are important for plant defense against fungal attack. As a necrotrophic fungus, Botrytis cinerea can exploit ROS that originated from both sides of the host and pathogen during interaction to facilitate its infestation. Meanwhile, B. cinerea needs to exert an efficient oxidative stress responsive system to balance the intracellular redox state when encountering deleterious ROS levels. However, the machinery applied by B. cinerea to cope with ROS remains obscure. Herein, we investigated the role of the transcription factor BcMsn2 in regulating B. cinerea redox homeostasis. Disruption of the BcMsn2 gene severely impaired vegetative growth, sclerotium formation, conidial yield, and fungal virulence. The intracellular oxidative homeostasis of the ∆bcmsn2 mutant was disrupted, leading to significantly elevated levels of ROS and reduced activities of enzymes closely associated with oxygen stress, such as catalase (CAT) and superoxide dismutase (SOD). RNA-Seq and qRT-PCR analyses showed remarkable downregulation of the expression of several genes encoding ROS scavenging factors involved in maintaining the redox homeostasis in ∆bcmsn2, suggesting that BcMsn2 functions as a transcriptional regulator of these genes. Our findings indicated that BcMsn2 plays an indispensable role in maintaining the equilibrium of the redox state in B. cinerea, and intracellular ROS serve as signaling molecules that regulate the growth, asexual reproduction, and virulence of this pathogen.
Collapse
Affiliation(s)
- Ping Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ke Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chunbo Xia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shu Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Liang Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Haojie Shi
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Akintade DD, Chaudhuri B. FK506-binding protein 2 (FKBP13) inhibit Bax-induced apoptosis in Saccharomyces cerevisiae (yeast). Cell Biol Toxicol 2023; 39:719-728. [PMID: 34342774 PMCID: PMC10406727 DOI: 10.1007/s10565-021-09633-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
FK506-binding protein 2 (FKBP13) is a part of the immunophilin protein family involved in immunoregulation. It is also believed to operate as a factor in membrane cytoskeletal framework and as an ER chaperone. FKBP2 (FKBP13) and FKBP1 (FKBP12), known as immunophilins, are binding proteins for rapamycin and FK506, which are immunosuppressive drugs. It was suggested that immunophilin-like and immunophilin proteins play significant roles in regulating intracellular calcium and protein folding/sorting, acting as molecular chaperones. Within the 15 mammalian FKBPs known, FKBP1 is merely the only one proven to form complexes with rapamycin and FK506 in the cytosol and facilitate their T cells immunosuppressive effects, FKBP2 is a luminal protein of the endoplasmic reticulum (ER) and is reported to take part in protein folding in the ER. However, little is known about FKBP2 link with apoptosis (either as a pro or anti-apoptotic protein). In this study, FKPB2 protein was co-expressed with the pro-apoptotic protein Bax after a yeast-based human hippocampal cDNA library screening. The yeast strain carrying the Bax gene was transformed with an episomal 2-micron plasmid that encodes the HA-tagged FKBP2 gene. The resultant strain would allow co-expression of Bax and FKBP2 in yeast cells. The results presented here show that a protein involved in protein folding can play a role in protecting yeast cell from Bax-induced apoptosis.
Collapse
Affiliation(s)
- Damilare D Akintade
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK.
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
9
|
Kwolek-Mirek M, Dubicka-Lisowska A, Bednarska S, Zadrag-Tecza R, Kaszycki P. Changes in a Protein Profile Can Account for the Altered Phenotype of the Yeast Saccharomyces cerevisiae Mutant Lacking the Copper-Zinc Superoxide Dismutase. Metabolites 2023; 13:metabo13030459. [PMID: 36984899 PMCID: PMC10056615 DOI: 10.3390/metabo13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Copper-zinc superoxide dismutase (SOD1) is an antioxidant enzyme that catalyzes the disproportionation of superoxide anion to hydrogen peroxide and molecular oxygen (dioxygen). The yeast Saccharomyces cerevisiae lacking SOD1 (Δsod1) is hypersensitive to the superoxide anion and displays a number of oxidative stress-related alterations in its phenotype. We compared proteomes of the wild-type strain and the Δsod1 mutant employing two-dimensional gel electrophoresis and detected eighteen spots representing differentially expressed proteins, of which fourteen were downregulated and four upregulated. Mass spectrometry-based identification enabled the division of these proteins into functional classes related to carbon metabolism, amino acid and protein biosynthesis, nucleotide biosynthesis, and metabolism, as well as antioxidant processes. Detailed analysis of the proteomic data made it possible to account for several important morphological, biochemical, and physiological changes earlier observed for the SOD1 mutation. An example may be the proposed additional explanation for methionine auxotrophy. It is concluded that protein comparative profiling of the Δsod1 yeast may serve as an efficient tool in the elucidation of the mutation-based systemic alterations in the resultant S. cerevisiae phenotype.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Aleksandra Dubicka-Lisowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Pawel Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
10
|
The choice of the objective function in flux balance analysis is crucial for predicting replicative lifespans in yeast. PLoS One 2022; 17:e0276112. [PMID: 36227951 PMCID: PMC9560524 DOI: 10.1371/journal.pone.0276112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Flux balance analysis (FBA) is a powerful tool to study genome-scale models of the cellular metabolism, based on finding the optimal flux distributions over the network. While the objective function is crucial for the outcome, its choice, even though motivated by evolutionary arguments, has not been directly connected to related measures. Here, we used an available multi-scale mathematical model of yeast replicative ageing, integrating cellular metabolism, nutrient sensing and damage accumulation, to systematically test the effect of commonly used objective functions on features of replicative ageing in budding yeast, such as the number of cell divisions and the corresponding time between divisions. The simulations confirmed that assuming maximal growth is essential for reaching realistic lifespans. The usage of the parsimonious solution or the additional maximisation of a growth-independent energy cost can improve lifespan predictions, explained by either increased respiratory activity using resources otherwise allocated to cellular growth or by enhancing antioxidative activity, specifically in early life. Our work provides a new perspective on choosing the objective function in FBA by connecting it to replicative ageing.
Collapse
|
11
|
Huang CW, Deed RC, Parish-Virtue K, Pilkington LI, Walker ME, Jiranek V, Fedrizzi B. Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium. Food Microbiol 2022; 109:104124. [DOI: 10.1016/j.fm.2022.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
12
|
Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:28. [PMID: 35292082 PMCID: PMC8922928 DOI: 10.1186/s13068-022-02127-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
Bioconversion of lignocellulosic biomass to biofuels such as bioethanol and high value-added products has attracted great interest in recent decades due to the carbon neutral nature of biomass feedstock. However, there are still many key technical difficulties for the industrial application of biomass bioconversion processes. One of the challenges associated with the microorganism Saccharomyces cerevisiae that is usually used for bioethanol production refers to the inhibition of the yeast by various stress factors. These inhibitive effects seriously restrict the growth and fermentation performance of the strains, resulting in reduced bioethanol production efficiency. Therefore, improving the stress response ability of the strains is of great significance for industrial production of bioethanol. In this article, the response mechanisms of S. cerevisiae to various hydrolysate-derived stress factors including organic acids, furan aldehydes, and phenolic compounds have been reviewed. Organic acids mainly stimulate cells to induce intracellular acidification, furan aldehydes mainly break the intracellular redox balance, and phenolic compounds have a greater effect on membrane homeostasis. These damages lead to inadequate intracellular energy supply and dysregulation of transcription and translation processes, and then activate a series of stress responses. The regulation mechanisms of S. cerevisiae in response to these stress factors are discussed with regard to the cell wall/membrane, energy, amino acids, transcriptional and translational, and redox regulation. The reported key target genes and transcription factors that contribute to the improvement of the strain performance are summarized. Furthermore, the genetic engineering strategies of constructing multilevel defense and eliminating stress effects are discussed in order to provide technical strategies for robust strain construction. It is recommended that robust S. cerevisiae can be constructed with the intervention of metabolic regulation based on the specific stress responses. Rational design with multilevel gene control and intensification of key enzymes can provide good strategies for construction of robust strains.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China. .,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
14
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
15
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
17
|
Ellis LJA, Kissane S, Hoffman E, Valsami-Jones E, Brown JB, Colbourne JK, Lynch I. Multigenerational Exposure to Nano‐TiO
2
Induces Ageing as a Stress Response Mitigated by Environmental Interactions. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - Stephen Kissane
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Elijah Hoffman
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| | - James B. Brown
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
- Genome Dynamics Department Life Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - John K. Colbourne
- Environmental Transcriptomics Facility School of Biosciences University of Birmingham Birmingham B15 2TT UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
18
|
Sinha A, Pick E. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift. Methods Mol Biol 2021; 2202:81-91. [PMID: 32857348 DOI: 10.1007/978-1-0716-0896-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The budding yeast Saccharomyces cerevisiae is a facultative organism that is able to utilize both anaerobic and aerobic metabolism, depending on the composition of carbon source in the growth medium. When glucose is abundant, yeast catabolizes it to ethanol and other by-products by anaerobic fermentation through the glycolysis pathway. Following glucose exhaustion, cells switch to oxygenic respiration (a.k.a. "diauxic shift"), which allows catabolizing ethanol and the other carbon compounds via the TCA cycle and oxidative phosphorylation in the mitochondria. The diauxic shift is accompanied by elevated reactive oxygen species (ROS) levels and is characterized by activation of ROS defense mechanisms. Traditional measurement of the diauxic shift is done through measuring optical density of cultures grown in a batch at intermediate time points and generating a typical growth curve or by estimating the reduction of glucose and accumulation of ethanol in growth media over time. In this manuscript, we describe a method for determining changes in ROS levels upon yeast growth, using carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA). H2-DCFDA is a widely used fluorescent dye for measuring intracellular ROS levels. H2-DCFDA enables a direct measurement of ROS in yeast cells at intermediate time points. The outcome of H2-DCFDA fluorescent readout measurements correlates with the growth curve information, hence providing a clear understanding of the diauxic shift.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel
- Department of Microbiology, Swami Vivekand University, Sagar, Madhya Pradesh, India
| | - Elah Pick
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel.
| |
Collapse
|
19
|
Zhang J, Hao H, Wu X, Wang Q, Chen M, Feng Z, Chen H. The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2020; 104:10555-10570. [PMID: 33175244 DOI: 10.1007/s00253-020-10981-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xuelan Wu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
20
|
Factors affecting yeast ethanol tolerance and fermentation efficiency. World J Microbiol Biotechnol 2020; 36:114. [DOI: 10.1007/s11274-020-02881-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023]
|
21
|
Mat Nanyan NSB, Takagi H. Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020; 11:438. [PMID: 32411186 PMCID: PMC7198862 DOI: 10.3389/fgene.2020.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
Collapse
Affiliation(s)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
22
|
Kamrad S, Grossbach J, Rodríguez‐López M, Mülleder M, Townsend S, Cappelletti V, Stojanovski G, Correia‐Melo C, Picotti P, Beyer A, Ralser M, Bähler J. Pyruvate kinase variant of fission yeast tunes carbon metabolism, cell regulation, growth and stress resistance. Mol Syst Biol 2020; 16:e9270. [PMID: 32319721 PMCID: PMC7175467 DOI: 10.15252/msb.20199270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cells balance glycolysis with respiration to support their metabolic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis or fermentation. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance. The laboratory and a few other strains depended more on respiration. This trait was associated with a single nucleotide polymorphism in a conserved region of Pyk1, the sole pyruvate kinase in fission yeast. This variant reduced Pyk1 activity and glycolytic flux. Replacing the "low-activity" pyk1 allele in the laboratory strain with the "high-activity" allele was sufficient to increase fermentation and decrease respiration. This metabolic rebalancing triggered systems-level adjustments in the transcriptome and proteome and in cellular traits, including increased growth and chronological lifespan but decreased resistance to oxidative stress. Thus, low Pyk1 activity does not lead to a growth advantage but to stress tolerance. The genetic tuning of glycolytic flux may reflect an adaptive trade-off in a species lacking pyruvate kinase isoforms.
Collapse
Affiliation(s)
- Stephan Kamrad
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Jan Grossbach
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
| | - Maria Rodríguez‐López
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Michael Mülleder
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - StJohn Townsend
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Valentina Cappelletti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Gorjan Stojanovski
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Clara Correia‐Melo
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Andreas Beyer
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
- Center for Molecular Medicine CologneCologneGermany
| | - Markus Ralser
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - Jürg Bähler
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| |
Collapse
|
23
|
Evaluation of the Oxidative Stress Response of Aging Yeast Cells in Response to Internalization of Fluorescent Nanodiamond Biosensors. NANOMATERIALS 2020; 10:nano10020372. [PMID: 32093318 PMCID: PMC7075316 DOI: 10.3390/nano10020372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research.
Collapse
|
24
|
Keerthiraju E, Du C, Tucker G, Greetham D. A Role for COX20 in Tolerance to Oxidative Stress and Programmed Cell Death in Saccharomyces cerevisiae. Microorganisms 2019; 7:microorganisms7110575. [PMID: 31752220 PMCID: PMC6920987 DOI: 10.3390/microorganisms7110575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
Industrial production of bioethanol from lignocellulosic materials (LCM′s) is reliant on a microorganism being tolerant to the stresses inherent to fermentation. Previous work has highlighted the importance of a cytochrome oxidase chaperone gene (COX20) in improving yeast tolerance to acetic acid, a common inhibitory compound produced during pre-treatment of LCM’s. The presence of acetic acid has been shown to induce oxidative stress and programmed cell death, so the role of COX20 in oxidative stress was determined. Analysis using flow cytometry revealed that COX20 expression was associated with reduced levels of reactive oxygen species (ROS) in hydrogen peroxide and metal-induced stress, and there was a reduction in apoptotic and necrotic cells when compared with a strain without COX20. Results on the functionality of COX20 have revealed that overexpression of COX20 induced respiratory growth in Δimp1 and Δcox18, two genes whose presence is essential for yeast respiratory growth. COX20 also has a role in protecting the yeast cell against programmed cell death.
Collapse
Affiliation(s)
- Ethiraju Keerthiraju
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Gregory Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Darren Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
- Correspondence: ; Tel.: +44-1484-472378
| |
Collapse
|
25
|
Leupold S, Hubmann G, Litsios A, Meinema AC, Takhaveev V, Papagiannakis A, Niebel B, Janssens G, Siegel D, Heinemann M. Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan. eLife 2019; 8:e41046. [PMID: 30963997 PMCID: PMC6467564 DOI: 10.7554/elife.41046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
A comprehensive description of the phenotypic changes during cellular aging is key towards unraveling its causal forces. Previously, we mapped age-related changes in the proteome and transcriptome (Janssens et al., 2015). Here, employing the same experimental procedure and model-based inference, we generate a comprehensive account of metabolic changes during the replicative life of Saccharomyces cerevisiae. With age, we found decreasing metabolite levels, decreasing growth and substrate uptake rates accompanied by a switch from aerobic fermentation to respiration, with glycerol and acetate production. The identified metabolic fluxes revealed an increase in redox cofactor turnover, likely to combat increased production of reactive oxygen species. The metabolic changes are possibly a result of the age-associated decrease in surface area per cell volume. With metabolism being an important factor of the cellular phenotype, this work complements our recent mapping of the transcriptomic and proteomic changes towards a holistic description of the cellular phenotype during aging.
Collapse
Affiliation(s)
- Simeon Leupold
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Georg Hubmann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Anne C Meinema
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Bastian Niebel
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Georges Janssens
- European Research Institute for the Biology of AgeingUniversity of Groningen, University Medical Centre GroningenGroningenNetherlands
| | - David Siegel
- Analytical Biochemistry, Groningen Research Institute of PharmacyUniversity of GroningenGroningenNetherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| |
Collapse
|
26
|
Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast. J Ind Microbiol Biotechnol 2019; 46:925-936. [PMID: 30963327 DOI: 10.1007/s10295-019-02175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe-S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe-S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15-20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe-S clusters dependent proteins.
Collapse
|
27
|
Li K, Xia J, Mehmood MA, Zhao XQ, Liu CG, Bai FW. Extracellular redox potential regulation improves yeast tolerance to furfural. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Pilkington LI, Deed RC, Parish-Virtue K, Huang CW, Walker ME, Jiranek V, Barker D, Fedrizzi B. Iterative synthetic strategies and gene deletant experiments enable the first identification of polysulfides in Saccharomyces cerevisiae. Chem Commun (Camb) 2019; 55:8868-8871. [DOI: 10.1039/c9cc03020d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysulfides, potential signalling molecules, were synthesised and then found and explored for the first time in yeast.
Collapse
Affiliation(s)
- Lisa I. Pilkington
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Rebecca C. Deed
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- School of Biological Sciences
| | - Katie Parish-Virtue
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Chien-Wei Huang
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Michelle E. Walker
- Department of Wine and Food Science
- The University of Adelaide
- Wine Innovation Central
- Adelaide
- Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science
- The University of Adelaide
- Wine Innovation Central
- Adelaide
- Australia
| | - David Barker
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| |
Collapse
|
29
|
Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genet 2018; 14:e1007335. [PMID: 29649251 PMCID: PMC5978988 DOI: 10.1371/journal.pgen.1007335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/24/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of “hotspot” loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype—ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes. A major goal in genetics is to understand how individuals with different genetic makeups respond to their environment. Understanding these “gene-environment interactions” is important for the development of personalized medicine. For example, gene-environment interactions can explain why some people are more sensitive to certain drugs or are more likely to get certain cancers. While the underlying causes of gene-environment interactions are unclear, one possibility is that differences in gene expression across individuals are responsible. In this study, we examined that possibility using baker’s yeast as a model. We were interested in a phenomenon called acquired stress resistance, where cells exposed to a mild dose of one stress can become resistant to an otherwise lethal dose of severe stress. This response is observed in diverse organisms ranging from bacteria to humans, though the specific mechanisms governing acquisition of higher stress resistance are poorly understood. To understand the differences between yeast strains with and without the ability to acquire further stress resistance, we employed genetic mapping. We found that part of the variation in acquired stress resistance was due to sequence differences in a key regulatory protein, thus providing new insight into how different individuals respond to acute environmental change.
Collapse
|
30
|
Hameed A, Hussain SA, Yang J, Ijaz MU, Liu Q, Suleria HAR, Song Y. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides). Nutrients 2017; 9:E1101. [PMID: 28991177 PMCID: PMC5691717 DOI: 10.3390/nu9101101] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
Three important strains of Mucorcircinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h) under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly (p ≤ 0.05). Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected (p ≤ 0.05) the antioxidant production and the resulting antioxidant properties. The (ethanolic) extracts of all the strains from late exponential growth phase (120 h) showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher (p ≤ 0.05) amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Syed Ammar Hussain
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture University, Nanjing 210095, China.
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Hafiz Ansar Rasul Suleria
- UQ School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Food, Nutrition, Dietetics & Health, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
31
|
Involvement of mitochondrial aerobic respiratory activity in efflux-mediated resistance of C. albicans to fluconazole. J Mycol Med 2017; 27:339-344. [PMID: 28483448 DOI: 10.1016/j.mycmed.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 11/21/2022]
Abstract
Reduced intracellular accumulation of drugs mediated by efflux pump is one of the most critical mechanisms governing fluconazole (FLC) resistance in Candida albicans (C. albicans). Besides, mitochondrial aerobic respiration plays a major role in C. albicans metabolism. However, it is unclear whether mitochondrial aerobic respiration is involved with efflux-mediated resistance of C. albicans to azole. We measured key parameters of energy conversion, including the activity of respiratory chain complexes I, III and V (CI, CIII and CV), and reactive oxygen species (ROS) in two C. albicans strains (FLC-susceptible strain CA-1S and FLC-resistant strain CA-16R) obtained from a single parental source. Additionally, we quantified intracellular ATP levels and mitochondrial membrane potential (ΔΨm), which has critical effect on energy transport. Our analyses revealed a higher ATP level and ΔΨm in CA-16R compared with CA-1S (P<0.05), and a higher ATP level and ΔΨm in Sc5314S (FLC-susceptible strain) compared with Sc5314R (FLC-resistant strain). CI and CV activity increased in CA-16R, activity of CI, CIII and CV increased in Sc5314R. Additionally, ROS decreased in CA-16R and Sc5314R compared with their respective susceptible counterparts. Our data suggest that mitochondrial aerobic respiratory metabolism might be directly associated with the efflux-mediated resistance of C. albicans to azole. C. albicans strains might enhance the activity of efflux pumps and therefore decrease sensitivity to FLC through alteration of mitochondrial aerobic respiratory metabolism, by increased ATP production and decreased ROS generation.
Collapse
|
32
|
Narayanan V, Schelin J, Gorwa-Grauslund M, van Niel EWJ, Carlquist M. Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:114. [PMID: 28484514 PMCID: PMC5418707 DOI: 10.1186/s13068-017-0794-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Production of second-generation bioethanol and other bulk chemicals by yeast fermentation requires cells that tolerate inhibitory lignocellulosic compounds at low pH. Saccharomyces cerevisiae displays high plasticity with regard to inhibitor tolerance, and adaptation of cell populations to process conditions is essential for reaching efficient and robust fermentations. RESULTS In this study, we assessed responses of isogenic yeast cell populations in different physiological states to combinations of acetic acid, vanillin and furfural at low pH. We found that cells in early stationary phase (ESP) exhibited significantly increased tolerance compared to cells in logarithmic phase, and had a similar ability to initiate growth in the presence of inhibitors as pre-adapted cells. The ESP cultures consisted of subpopulations with different buoyant cell densities which were isolated with flotation and analysed separately. These so-called quiescent (Q) and non-quiescent (NQ) cells were found to possess similar abilities to initiate growth in the presence of lignocellulosic inhibitors at pH 3.7, and had similar viabilities under static conditions. Therefore, differentiation into Q-cells was not the cause for increased tolerance of ESP cultures. Flow cytometry analysis of cell viability, intracellular pH and reactive oxygen species levels revealed that tolerant cell populations had a characteristic response upon inhibitor perturbations. Growth in the presence of a combination of inhibitors at low pH correlated with pre-cultures having a high frequency of cells with low pHi and low ROS levels. Furthermore, only a subpopulation of ESP cultures was able to tolerate lignocellulosic inhibitors at low pH, while pre-adapted cell populations displayed an almost uniform high tolerance to the adverse condition. This was in stark contrast to cell populations growing exponentially in non-inhibitory medium that were uniformly sensitive to the inhibitors at low pH. CONCLUSIONS ESP cultures of S. cerevisiae were found to have high tolerance to lignocellulosic inhibitors at low pH, and were able to initiate growth to the same degree as cells that were pre-adapted to inhibitors at a slightly acidic pH. Carbon starvation may thus be a potential strategy to prepare cell populations for adjacent stressful environments which may be beneficial from a process perspective for fermentation of non-detoxified lignocellulosic substrates at low pH. Furthermore, flow cytometry analysis of pHi and ROS level distributions in ESP cultures revealed responses that were characteristic for populations with high tolerance to lignocellulosic inhibitors. Measurement of population distribution responses as described herein may be applied to predict the outcome of environmental perturbations and thus can function as feedback for process control of yeast fitness during lignocellulosic fermentation.
Collapse
Affiliation(s)
- Venkatachalam Narayanan
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Marie Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Ed WJ van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| |
Collapse
|
33
|
Microbial production of glutathione. World J Microbiol Biotechnol 2017; 33:106. [DOI: 10.1007/s11274-017-2277-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022]
|
34
|
Schmacht M, Lorenz E, Stahl U, Senz M. Medium optimization based on yeast's elemental composition for glutathione production in Saccharomyces cerevisiae. J Biosci Bioeng 2017; 123:555-561. [DOI: 10.1016/j.jbiosc.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023]
|
35
|
Orlandi I, Stamerra G, Strippoli M, Vai M. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol 2017; 12:745-754. [PMID: 28412652 PMCID: PMC5397018 DOI: 10.1016/j.redox.2017.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a naturally occurring polyphenolic compound endowed with interesting biological properties/functions amongst which are its activity as an antioxidant and as Sirtuin activating compound towards SIRT1 in mammals. Sirtuins comprise a family of NAD+-dependent protein deacetylases that are involved in many physiological and pathological processes including aging and age-related diseases. These enzymes are conserved across species and SIRT1 is the closest mammalian orthologue of Sir2 of Saccharomyces cerevisiae. In the field of aging researches, it is well known that Sir2 is a positive regulator of replicative lifespan and, in this context, the RSV effects have been already examined. Here, we analyzed RSV effects during chronological aging, in which Sir2 acts as a negative regulator of chronological lifespan (CLS). Chronological aging refers to quiescent cells in stationary phase; these cells display a survival-based metabolism characterized by an increase in oxidative stress. We found that RSV supplementation at the onset of chronological aging, namely at the diauxic shift, increases oxidative stress and significantly reduces CLS. CLS reduction is dependent on Sir2 presence both in expired medium and in extreme Calorie Restriction. In addition, all data point to an enhancement of Sir2 activity, in particular Sir2-mediated deacetylation of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (Pck1). This leads to a reduction in the amount of the acetylated active form of Pck1, whose enzymatic activity is essential for gluconeogenesis and CLS extension.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Maurizio Strippoli
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
36
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
37
|
Peláez-Soto A, Fernández-Espinar MT, Roig P, Gil JV. Evaluation of the Ability of Polyphenol Extracts of Cocoa and Red Grape to Promote the Antioxidant Response in Yeast Using a Rapid Multiwell Assay. J Food Sci 2017; 82:324-332. [PMID: 28103406 DOI: 10.1111/1750-3841.13602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 12/19/2022]
Abstract
Saccharomyces cerevisiae has been used as a model organism to study the capacity of cocoa and red grape extracts to trigger an antioxidant response. A methodology adapted to microtiter plates has been developed to monitor yeast growth after culture preincubation with food ingredients and exposure to oxidative stress by hydrogen peroxide and menadione. This methodology proved effective in measuring the ability of cocoa and red grape extracts to promote an antioxidant response in yeast, and also the prospect of conducting dose-response studies. Additionally, the method has proven useful to perform studies with mutant strains lacking genes that may be related to the mechanism of action underlying the antioxidant properties. Thus, in a single assay, it is possible to elucidate the sensitivity of strains to oxidative stress, the ability of an ingredient to promote an antioxidant response, and the possible implication of certain genes. Results of assays using strain hst3Δ showed that the antioxidant protection provided by exposure to cocoa and red grape extracts was not present in the strain lacking gene HST3 when H2 O2 and menadione were used as oxidizing agents. This effect was previously reported for cocoa extract only, with H2 O2 as stressor. Moreover, the results showed that the mutant strain hst3Δ is more resistant to menadione and H2 O2 in the absence of preincubation with cocoa and red grape extract, hinting at the possible implication of sirtuin Hst3 in the antioxidant cellular response.
Collapse
Affiliation(s)
- Ana Peláez-Soto
- Área de Tecnología de Alimentos, Facultat de Farmàcia, Univ. de València, Avda. Vicent Andrés Estellés s/n., 46100, Burjassot, Valencia, Spain.,Depto. de Biotecnología de Alimentos, Insto. de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980, Paterna, Valencia, Spain
| | - María Teresa Fernández-Espinar
- Depto. de Biotecnología de Alimentos, Insto. de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980, Paterna, Valencia, Spain
| | - Patricia Roig
- Área de Tecnología de Alimentos, Facultat de Farmàcia, Univ. de València, Avda. Vicent Andrés Estellés s/n., 46100, Burjassot, Valencia, Spain.,Depto. de Biotecnología de Alimentos, Insto. de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980, Paterna, Valencia, Spain
| | - José Vicente Gil
- Área de Tecnología de Alimentos, Facultat de Farmàcia, Univ. de València, Avda. Vicent Andrés Estellés s/n., 46100, Burjassot, Valencia, Spain.,Depto. de Biotecnología de Alimentos, Insto. de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
38
|
Lorenz E, Schmacht M, Senz M. Evaluation of cysteine ethyl ester as efficient inducer for glutathione overproduction in Saccharomyces spp. Enzyme Microb Technol 2016; 93-94:122-131. [DOI: 10.1016/j.enzmictec.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023]
|
39
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
40
|
Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 100:5907-17. [DOI: 10.1007/s00253-016-7420-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
|
41
|
Lorenz E, Schmacht M, Stahl U, Senz M. Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae. J Biotechnol 2015; 216:131-9. [DOI: 10.1016/j.jbiotec.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
|
42
|
Tillmann AT, Strijbis K, Cameron G, Radmaneshfar E, Thiel M, Munro CA, MacCallum DM, Distel B, Gow NAR, Brown AJP. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS One 2015; 10:e0126940. [PMID: 26039593 PMCID: PMC4454436 DOI: 10.1371/journal.pone.0126940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.
Collapse
Affiliation(s)
- Anna T. Tillmann
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Karin Strijbis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gary Cameron
- Division of Applied Medicine, Mass Spectrometry Section, University of Aberdeen, Aberdeen, United Kingdom
| | - Elahe Radmaneshfar
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Marco Thiel
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
43
|
Chanaj-Kaczmarek J, Wysocki M, Karachitos A, Wojcińska M, Bartosz G, Matławska I, Kmita H. Effects of plant extract antioxidative phenolic compounds on energetic status and viability of Saccharomyces cerevisiae cells undergoing oxidative stress. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Park HS, Um Y, Sim SJ, Lee SY, Woo HM. Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Nussbaum I, Weindling E, Jubran R, Cohen A, Bar-Nun S. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively. PLoS One 2014; 9:e111505. [PMID: 25356557 PMCID: PMC4214751 DOI: 10.1371/journal.pone.0111505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.
Collapse
Affiliation(s)
- Inbal Nussbaum
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Esther Weindling
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ritta Jubran
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Liang X, Dickman MB, Becker DF. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae. J Biol Chem 2014; 289:27794-806. [PMID: 25112878 PMCID: PMC4183814 DOI: 10.1074/jbc.m114.562827] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.
Collapse
Affiliation(s)
- Xinwen Liang
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Martin B Dickman
- the Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Donald F Becker
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588 and
| |
Collapse
|
47
|
Holland LM, Schröder MS, Turner SA, Taff H, Andes D, Grózer Z, Gácser A, Ames L, Haynes K, Higgins DG, Butler G. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 2014; 10:e1004365. [PMID: 25233198 PMCID: PMC4169492 DOI: 10.1371/journal.ppat.1004365] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. Candida species are among the most common causes of fungal infection worldwide. Infections can be both community-based and hospital-acquired, and are particularly associated with immunocompromised individuals. Candida albicans is the most commonly isolated species and is the best studied. However, other species are becoming of increasing concern. Candida parapsilosis causes outbreaks of infection in neonatal wards, and is one of the few Candida species that is transferred from the hands of healthcare workers. C. parapsilosis, like C. albicans, grows as biofilms (cell communities) on the surfaces of indwelling medical devices like feeding tubes. We describe here the construction of a set of tools that allow us to characterize the virulence properties of C. parapsilosis, and in particular its ability to grow as biofilms. We find that some of the regulatory mechanisms are shared with C. albicans, but others are unique to each species. Our tools, based on selectively deleting regulatory genes, will provide a major resource to the fungal research community.
Collapse
Affiliation(s)
- Linda M. Holland
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Markus S. Schröder
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Siobhán A. Turner
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Heather Taff
- Departments of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - David Andes
- Departments of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Zsuzsanna Grózer
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Lauren Ames
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Ken Haynes
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Desmond G. Higgins
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
48
|
Guo H, Xie SM, Li SX, Song YJ, Lv XL, Zhang H. Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway. J Med Microbiol 2014; 63:988-996. [PMID: 24790082 DOI: 10.1099/jmm.0.073890-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We found that tetrandrine (TET) can reverse the resistance of Candida albicans to fluconazole (FLC) and that this interaction is associated with the inhibition of drug efflux pumps. Mitochondrial aerobic respiration, which plays a major role in C. albicans metabolism, is the primary source of ATP for cellular processes, including the activation of efflux pumps. However, it was unclear if TET exerts its synergistic action against C. albicans via its impact on the mitochondrial aerobic respiratory metabolism. To investigate this mechanism, we examined the impact of FLC in the presence or absence of TET on two C. albicans strains obtained from a single parental source (FLC-sensitive strain CA-1 and FLC-resistant strain CA-16). We analysed key measures of energy generation and conversion, including the activity of respiration chain complexes I and III (CI and CIII), ATP synthase (CV) activity, and the generation of reactive oxygen species (ROS), and studied intracellular ATP levels and the mitochondrial membrane potential (ΔΨm), which has a critical impact on energy transport. Mitochondrial morphology was observed by confocal microscopy. Our functional analyses revealed that, compared with strains treated only with FLC, TET+FLC increased the ATP levels and decreased ΔΨm in CA-1, but decreased ATP levels and increased ΔΨm in CA-16 (P<0.05). Additionally, CI, CIII and CV activity decreased by 23-48%. The production of ROS increased by two- to threefold and mitochondrial morphology was altered in both strains. Our data suggested that TET impacted mitochondrial aerobic respiratory metabolism by influencing the generation and transport of ATP, reducing the utilization of ATP, and resulting in the inhibition of drug efflux pump activity. This activity contributed to the synergistic action of TET on FLC against C. albicans.
Collapse
Affiliation(s)
- Hui Guo
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Guangdong, PR China.,Clinical Medicine Postdoctoral Mobile Station, Jinan University, Guangdong, PR China.,First Affiliated Hospital and Institute of Mycology, Jinan University, Guangdong, PR China
| | - Si Ming Xie
- Scholl of Medicine, Jinan University, Guangdong, PR China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Guangdong, PR China
| | - Shui Xiu Li
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangdong, PR China
| | - Yan Jun Song
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangdong, PR China
| | - Xia Lin Lv
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangdong, PR China
| | - Hong Zhang
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangdong, PR China
| |
Collapse
|
49
|
Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes 2014; 7:151. [PMID: 24636079 PMCID: PMC4004043 DOI: 10.1186/1756-0500-7-151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/11/2014] [Indexed: 11/27/2022] Open
Abstract
Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Darren Greetham
- School of Biosciences, University of Nottingham, Loughborough, Leics LE12 5RD, UK.
| |
Collapse
|
50
|
Gómez-Pastor R, Garre E, Pérez-Torrado R, Matallana E. Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions. PLoS One 2013; 8:e85404. [PMID: 24376879 PMCID: PMC3871606 DOI: 10.1371/journal.pone.0085404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/04/2013] [Indexed: 01/27/2023] Open
Abstract
The whole genome analysis has demonstrated that wine yeasts undergo changes in promoter regions and variations in gene copy number, which make them different to lab strains and help them better adapt to stressful conditions during winemaking, where oxidative stress plays a critical role. Since cytoplasmic thioredoxin II, a small protein with thiol-disulphide oxidoreductase activity, has been seen to perform important functions under biomass propagation conditions of wine yeasts, we studied the involvement of Trx2p in the molecular regulation of the oxidative stress transcriptional response on these strains. In this study, we analyzed the expression levels of several oxidative stress-related genes regulated by either Yap1p or the co-operation between Yap1p and Skn7p. The results revealed a lowered expression for all the tested Skn7p dependent genes in a Trx2p-deficient strain and that Trx2p is essential for the oxidative stress response during respiratory metabolism in wine yeast. Additionally, activity of Yap1p and Skn7p dependent promoters by β-galactosidase assays clearly demonstrated that Skn7p-dependent promoter activation is affected by TRX2 gene deficiency. Finally we showed that deleting the TRX2 gene causes Skn7p hyperphosphorylation under oxidative stress conditions. We propose Trx2p to be a new positive efector in the regulation of the Skn7p transcription factor that controls phosphorylation events and, therefore, modulates the oxidative stress response in yeast.
Collapse
Affiliation(s)
- Rocío Gómez-Pastor
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Elena Garre
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 7 Paterna, Valencia, Spain
| | - Emilia Matallana
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 7 Paterna, Valencia, Spain
- * E-mail:
| |
Collapse
|