1
|
Bowman B. Distribution and dynamics of hyphal organelles. Fungal Genet Biol 2025; 178:103982. [PMID: 40154940 DOI: 10.1016/j.fgb.2025.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Filamentous fungi have been very useful organisms for the investigation of organelles in eukaryotic cells. The structure and function of fungal organelles is generally very similar to that observed in animal cells. However, the nature of a "cell" in many filamentous fungi is unusual, because in many of these organisms the filaments are structured as a large syncytium. In the Ascomycota hyphae are typically a very long tube divided into different compartments by an incomplete cell wall called the septum. The pore in the middle of the septum is large enough to allow virtually all organelles to move from one hyphal compartment to another. In this review, I will look at the dynamics of this movement of organelles and describe what we know about how the structure and distribution of organelles varies from one hyphal compartment to another.
Collapse
Affiliation(s)
- Barry Bowman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States..
| |
Collapse
|
2
|
Iwama R. Phospholipid dynamics in Aspergillus species: relations between biological membrane composition and cellular morphology. Biosci Biotechnol Biochem 2025; 89:515-522. [PMID: 39533818 DOI: 10.1093/bbb/zbae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Biological membranes, primarily composed of phospholipid bilayers, are essential structures that compartmentalize the cell from the extracellular environment. The biosynthesis and regulation of membrane lipids have been extensively studied in model organisms such as Saccharomyces cerevisiae and mammalian cells. However, our understanding of biological membrane regulation in filamentous fungi, some of which are significant in medicine, pharmacy, and agriculture, remains limited. This minireview provides a comprehensive overview of the latest knowledge, focusing on filamentous fungi of Aspergillus species. Recent progress in understanding dynamic changes in membrane lipid profiles, driven by improvements in analytical techniques for lipidomics, is also presented. Furthermore, known that the cell morphology of filamentous fungi is closely linked to its harmful and beneficial characteristics, the influence of membrane composition on cell morphology is discussed. The integration of these findings will further enhance our understanding of the biological functions of membranes in filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Iwama R, Okahashi N, Suzawa T, Yang C, Matsuda F, Horiuchi H. Comprehensive analysis of the composition of the major phospholipids during the asexual life cycle of the filamentous fungus Aspergillus nidulans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159379. [PMID: 37659899 DOI: 10.1016/j.bbalip.2023.159379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chuner Yang
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
4
|
Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. Hyphal Growth in Trichosporon asahii Is Accelerated by the Addition of Magnesium. Microbiol Spectr 2023; 11:e0424222. [PMID: 37102973 PMCID: PMC10269644 DOI: 10.1128/spectrum.04242-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
5
|
Indarti E, Muliani S, Yunita D. Characteristics of Biofoam Cups Made from Sugarcane Bagasse with Rhizopus oligosporus as Binding Agent. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/8257317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups (
) and the SF1.5 biofoam cups (
). Both B-SF1 and B-SF1.5 had lower porosity (
and
, respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength (
kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength (
MPa) and the DB-SF1.5 exhibited the slowest degradation rate (
) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.
Collapse
Affiliation(s)
- Eti Indarti
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Master Program of Agriculture Industrial Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sri Muliani
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Dewi Yunita
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
6
|
Evaluation of the Ability of Seven Active Ingredients of Fungicides to Suppress Phytophthora cactorum at Diverse Life Stages, and Variability in Resistance Found among Isolates. J Fungi (Basel) 2022; 8:jof8101039. [PMID: 36294604 PMCID: PMC9605621 DOI: 10.3390/jof8101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phytophthora cactorum is considered an important plant pathogen which is causing major damage to strawberry plants worldwide. In the current study, the ability of the active ingredients of seven different fungicides, azoxystrobin, cymoxanil, dimethomorph, fenamidone, fluopicolide, metalaxyl and propamocarb, to suppress the mycelial growth, sporangial formation and zoospore release of P. cactorum isolates, was tested. The variation in resistance against various fungicides was found among the isolates. The active ingredients are also unequally efficient against different life stages of P. cactorum, which is probably associated with their different modes of action. A significant level of resistance was recorded against metalaxyl and dimethomorph; however, these were totally inefficient against the zoospore release, while azoxystrobin did not inhibit mycelial growth. The only fungicide efficient against all three P. cactorum life stages tested was fluopicolide, although the calculated resistance factor gives evidence of the rise of resistance in the majority of isolates even against this fungicide. Significant differences were found between responses to fungicides of isolates from strawberry and from other host species. Based on the Mahalanobis distances calculated in the discriminant analysis comprising all of the assays performed, the similarities among isolates were estimated.
Collapse
|
7
|
Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. Synthesis and applications of fungal mycelium-based advanced functional materials. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Knorre DA. Intracellular quality control of mitochondrial DNA: evidence and limitations. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190176. [PMID: 31787047 DOI: 10.1098/rstb.2019.0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells can harbour mitochondria with markedly different transmembrane potentials. Intracellular mitochondrial quality-control mechanisms (e.g. mitophagy) rely on this intracellular variation to distinguish functional and damaged (depolarized) mitochondria. Given that intracellular mitochondrial DNA (mtDNA) genetic variation can induce mitochondrial heterogeneity, mitophagy could remove deleterious mtDNA variants in cells. However, the reliance of mitophagy on the mitochondrial transmembrane potential suggests that mtDNAs with deleterious mutations in ATP synthase can evade the control. This evasion is possible because inhibition of ATP synthase can increase the mitochondrial transmembrane potential. Moreover, the linkage of the mtDNA genotype to individual mitochondrial performance is expected to be weak owing to intracellular mitochondrial intercomplementation. Nonetheless, I reason that intracellular mtDNA quality control is possible and crucial at the zygote stage of the life cycle. Indeed, species with biparental mtDNA inheritance or frequent 'leakage' of paternal mtDNA can be vulnerable to invasion of selfish mtDNAs at the stage of gamete fusion. Here, I critically review recent findings on intracellular mtDNA quality control by mitophagy and discuss other mechanisms by which the nuclear genome can affect the competition of mtDNA variants in the cell. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Dmitry A Knorre
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| |
Collapse
|
9
|
Yasuda M, Takeshita N, Shigeto S. Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution–Alternating Least Squares. Anal Chem 2019; 91:12501-12508. [DOI: 10.1021/acs.analchem.9b03261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mitsuru Yasuda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
10
|
Koch B, Traven A. Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Curr Top Microbiol Immunol 2019; 425:277-296. [PMID: 31807895 DOI: 10.1007/82_2019_183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
11
|
A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion 2017; 38:48-57. [PMID: 28801230 DOI: 10.1016/j.mito.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022]
Abstract
Proteomic analyses were carried out on isolated mitochondrial samples of C. albicans from gene-deleted mutants (nuo1Δ, nuo2Δ and goa1Δ) as well as the parental strain in order to better understand the contribution of these three fungal-specific mitochondrial ETC complex I (CI) subunits to cellular activities. Herein, we identify 2333 putative proteins from four strains, in which a total of 663 proteins (28.5%) are putatively located in mitochondria. Comparison of protein abundances between mutants and the parental strain reveal 146 differentially-expressed proteins, of which 78 are decreased and 68 are increased in at least one mutant. The common changes across the three mutants include the down-regulation of nuclear-encoded CI subunit proteins as well as phospholipid, ergosterol and cell wall mannan synthesis, and up-regulated proteins in CIV and the alternative oxidase (AOX2). As for gene-specific functions, we find that NUO1 participates in nucleotide synthesis and ribosomal biogenesis; NUO2 is involved in vesicle trafficking; and GOA1 appears to regulate membrane transporter proteins, ROS removal, and substrates trafficking between peroxisomes and mitochondria. The proteomic view of general as well as mutant-specific proteins further extends our understanding of the functional roles of non-mammalian CI-specific subunit proteins in cell processes. Particularly intriguing is the confirmation of a regulatory role for GOA1 on ETC function, a protein found almost exclusively in Candida species. SIGNIFICANCE Fungal mitochondria are critical for fungal pathogenesis. The absence of any of the three fungal specific CI subunits in mitochondria causes an avirulence phenotype of C. albicans in a murine model of invasive disease. As model yeast (Saccharomyces cerevisiae) lacks a CI and is rarely a pathogen of humans, C. albicans is a better choice for establishing a link between mitochondrial CI and pathogenesis. Apart from the general effects of CI mutants on respiration, previous phenotyping of these mutants were quite similar to each other or to CI conservative subunit. By comparison to transcriptional data, the proteomic data obtained in this study indicate that biosynthetic events in each mutant such as cell wall and cell membrane phospholipids and ergosterol are generally decreased in both transcriptomal and translational levels. However, in the case of mitochondrial function, glycolysis/gluconeogenesis, and ROS scavengers, often gene changes are opposite that of proteomic data in mutants. We hypothesize that the loss of energy production in mutants is compensated by increases in protein levels of glycolysis, gluconeogenesis, and anti-ROS scavengers that at least extend mutant survival.
Collapse
|
12
|
Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? MYCORRHIZA 2017; 27:577-585. [PMID: 28569349 DOI: 10.1007/s00572-017-0777-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/15/2017] [Indexed: 05/14/2023]
Abstract
Root colonization by arbuscular mycorrhizal fungi (AMF) can be quantified by different approaches. We compared two approaches that enable discrimination of specific AMF taxa and are therefore emerging as alternative to most commonly performed microscopic quantification of AMF in roots: quantitative real-time PCR (qPCR) using markers in nuclear ribosomal DNA (nrDNA) and mitochondrial ribosomal DNA (mtDNA). In a greenhouse experiment, Medicago truncatula was inoculated with four isolates belonging to different AMF species (Rhizophagus irregularis, Claroideoglomus claroideum, Gigaspora margarita and Funneliformis mosseae). The AMF were quantified in the root samples by qPCR targeted to both markers, microscopy and contents of AMF-specific phospholipid fatty acids (PLFA). Copy numbers of nrDNA and mtDNA were closely related within all isolates; however, the slopes and intercepts of the linear relationships significantly differed among the isolates. Across all isolates, a large proportion of variance in nrDNA copy numbers was explained by root colonization intensity or contents of AMF-specific PLFA, while variance in mtDNA copy numbers was mainly explained by differences among AMF isolates. We propose that the encountered inter-isolate differences in the ratios of mtDNA and nrDNA copy numbers reflect different physiological states of the isolates. Our results suggest that nrDNA is a more suitable marker region than mtDNA for the quantification of multiple AMF taxa as its copy numbers are better related to fungal biomass across taxa than are copy numbers of mtDNA.
Collapse
Affiliation(s)
- Alena Voříšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic.
| | - Jan Jansa
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - David Püschel
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Manuela Krüger
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, Prague, 165 02, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague, 128 01, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic
| | - Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
13
|
An B, Li B, Li H, Zhang Z, Qin G, Tian S. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. THE NEW PHYTOLOGIST 2016; 209:1668-80. [PMID: 26527167 DOI: 10.1111/nph.13721] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 05/15/2023]
Abstract
Aquaporins (AQPs) are ubiquitous in nearly all organisms, mediating selective and rapid flux of water across biological membranes. The role of AQPs in phytopathogenic fungi is poorly understood. Orthologs of AQP genes in Botrytis cinerea were identified and knocked out. The effects of AQPs on hyphal growth and conidiation, formation of infection structures and virulence on plant hosts were examined. The role of AQP8 in reactive oxygen species (ROS) production, distribution and transport were further determined. Among eight AQPs, only AQP8 was essential for the ability of B. cinerea to infect plants. AQP8 was demonstrated to be an intrinsic plasma membrane protein, which may function as a channel and mediate hydrogen peroxide uptake. Deletion of AQP8 in B. cinerea completely inhibited the development of conidia and infection structures, and significantly affected noxR expression. Further observations revealed that both AQP8 and noxR impacted ROS distribution in the hyphal tips of B. cinerea. Moreover, AQP8 affected the expression of a mitochondrial protein, NQO1. A knockout mutant of NQO1 was observed to display reduced virulence. These data lead to a better understanding of the important role of AQP8 in the development and pathogenesis of plant pathogens.
Collapse
Affiliation(s)
- Bang An
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
15
|
Lew RR, Giblon RE, Lorenti MSH. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 2015. [PMID: 26212074 DOI: 10.1016/j.fgb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension.
Collapse
Affiliation(s)
- Roger R Lew
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rachel E Giblon
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Miranda S H Lorenti
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
16
|
Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genet Biol 2015; 75:46-55. [DOI: 10.1016/j.fgb.2015.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/22/2014] [Accepted: 01/08/2015] [Indexed: 01/07/2023]
|
17
|
Ali SE, Thoen E, Evensen Ø, Wiik-Nielsen J, Gamil AAA, Skaar I. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia. PLoS One 2014; 9:e110343. [PMID: 25354209 PMCID: PMC4212911 DOI: 10.1371/journal.pone.0110343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/20/2014] [Indexed: 12/23/2022] Open
Abstract
There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4-24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.
Collapse
Affiliation(s)
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | | | | | | | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
18
|
Potapova TV. Structural and functional organization of growing tips of Neurospora crassa Hyphae. BIOCHEMISTRY (MOSCOW) 2014; 79:593-607. [PMID: 25108323 DOI: 10.1134/s0006297914070025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.
Collapse
Affiliation(s)
- T V Potapova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Rak M, Salome M, Kaminskyj SGW, Gough KM. X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveals biochemical changes due to gene deletions. Anal Bioanal Chem 2014; 406:2809-16. [DOI: 10.1007/s00216-014-7726-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
20
|
Abadeh A, Lew RR. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport. MICROBIOLOGY-SGM 2013; 159:2386-2394. [PMID: 23970568 DOI: 10.1099/mic.0.071191-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
Collapse
Affiliation(s)
- Aryan Abadeh
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
21
|
Starovoytova AN, Sorokin MI, Sokolov SS, Severin FF, Knorre DA. Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol. FEMS Yeast Res 2013; 13:367-74. [PMID: 23448552 DOI: 10.1111/1567-1364.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/22/2013] [Accepted: 02/24/2013] [Indexed: 12/18/2022] Open
Abstract
Yeasts growing limited for nitrogen source or treated with fusel alcohols form elongated cells--pseudohyphae. Absence of mitochondrial DNA or anaerobic conditions inhibits this process, but the precise role of mitochondria is not clear. We found that a significant percentage of pseudohyphal cells contained mitochondria with different levels of membrane potential within one cell. An uncoupler carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), but not the ATP-synthase inhibitor oligomycin D, prevented pseudohyphal growth. Interestingly, repression of the MIH1 gene encoding phosphatase activator of the G2/M transition partially restores the ability of yeast to form pseudohyphal cells in the presence of FCCP or in the absence of mitochondrial DNA. At the same time, retrograde signaling (the one triggered by dysfunctional mitochondria) appeared to be a positive regulator of butanol-induced pseudohyphae formation: the deletion of any of the retrograde signaling genes (RTG1, RTG2, or RTG3) partially suppressed pseudohyphal growth. Together, our data suggest that two subpopulations of mitochondria are required for filamentous growth: one with high and another with low transmembrane potential. These mitochondria-activated signaling pathways appear to converge at Mih1p level.
Collapse
Affiliation(s)
- Anna N Starovoytova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Krak K, Janoušková M, Caklová P, Vosátka M, Štorchová H. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Appl Environ Microbiol 2012; 78:3630-7. [PMID: 22407684 PMCID: PMC3346362 DOI: 10.1128/aem.00035-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022] Open
Abstract
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.
Collapse
Affiliation(s)
- Karol Krak
- Institute of Botany, Academy of Sciences of the Czech Republic, Prùhonice, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Hamam A, Lew RR. Electrical phenotypes of calcium transport mutant strains of a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2012; 11:694-702. [PMID: 22408225 PMCID: PMC3346425 DOI: 10.1128/ec.05329-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/28/2012] [Indexed: 12/27/2022]
Abstract
We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.
Collapse
Affiliation(s)
- Ahmed Hamam
- Biology Department, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells. EUKARYOTIC CELL 2012; 11:353-67. [PMID: 22267774 DOI: 10.1128/ec.05257-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.
Collapse
|
25
|
Arkowitz RA, Bassilana M. Polarized growth in fungi: symmetry breaking and hyphal formation. Semin Cell Dev Biol 2011; 22:806-15. [PMID: 21906692 DOI: 10.1016/j.semcdb.2011.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023]
Abstract
Cell shape is a critical determinant for function. The baker's yeast Saccharomyces cerevisiae changes shape in response to its environment, growing by budding in rich nutrients, forming invasive pseudohyphal filaments in nutrient poor conditions and pear shaped shmoos for growth towards a partner during mating. The human opportunistic pathogen Candida albicans can switch from budding to hyphal growth, in response to numerous environmental stimuli to colonize and invade its host. Hyphal growth, typical of filamentous fungi, is not observed in S. cerevisiae. A number of internal cues regulate when and where yeast cells break symmetry leading to polarized growth and ultimately distinct cell shapes. This review discusses how cells break symmetry using the yeast S. cerevisiae paradigm and how polarized growth is initiated and maintained to result in dramatic morphological changes during C. albicans hyphal growth.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Centre National de la Recherche Scientifique and Université de Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer, CNRS-UMR6543 Faculté des Sciences, Nice, France.
| | | |
Collapse
|
26
|
Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 2011; 9:509-18. [DOI: 10.1038/nrmicro2591] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
28
|
Potapova TV, Boitzova LY, Golyshev SA. Problem of interactions between intracellular structures during the Neurospora crassa tip growth. DOKL BIOCHEM BIOPHYS 2011; 436:44-8. [PMID: 21369903 DOI: 10.1134/s1607672911010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Indexed: 11/23/2022]
Affiliation(s)
- T V Potapova
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | |
Collapse
|
29
|
Feofilova EP. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
García I, Castellano JM, Vioque B, Solano R, Gotor C, Romero LC. Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3268-79. [PMID: 20935247 PMCID: PMC2990132 DOI: 10.1105/tpc.110.076828] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/08/2010] [Accepted: 09/22/2010] [Indexed: 05/19/2023]
Abstract
Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development.
Collapse
Affiliation(s)
- Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla 41092, Spain
| | - José María Castellano
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla 41012, Spain
| | - Blanca Vioque
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla 41012, Spain
| | - Roberto Solano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla 41092, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla 41092, Spain
- Address correspondence to
| |
Collapse
|
31
|
Wang Y, Zhu Y, Ling Y, Zhang H, Liu P, Baluška F, Šamaj J, Lin J, Wang Q. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs. BMC PLANT BIOLOGY 2010; 10:53. [PMID: 20334630 PMCID: PMC2923527 DOI: 10.1186/1471-2229-10-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 03/24/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs. RESULTS In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs. CONCLUSIONS Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+]c. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingfang Zhu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ling
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Peng Liu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Department of Plant Cell Biology, Kirschallee 1, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301 Olomouc, Czech Republic
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
32
|
Walter A, Erdmann S, Bocklitz T, Jung EM, Vogler N, Akimov D, Dietzek B, Rösch P, Kothe E, Popp J. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 2010; 135:908-17. [DOI: 10.1039/b921101b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Matrosova EV, Masheyka IS, Kudryavtseva OA, Kamzolkina OV. Mitochondrial morphogenesis and ultrastructure of basidiomycetes from genera Agaricus and Pleurotus. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09040099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Elleuche S, Pöggeler S. Beta-carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora. PLoS One 2009; 4:e5177. [PMID: 19365544 PMCID: PMC2664464 DOI: 10.1371/journal.pone.0005177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/12/2009] [Indexed: 11/18/2022] Open
Abstract
Carbon dioxide (CO(2)) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO(3) (-)) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into alpha-, beta-, gamma-, delta- and zeta-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of beta-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding beta-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Deltacas1, Deltacas2, and Deltacas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Deltacas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Deltacas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO(2) levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
35
|
Lew RR, Abbas Z, Anderca MI, Free SJ. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2008; 7:647-55. [PMID: 18296620 PMCID: PMC2292622 DOI: 10.1128/ec.00411-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/12/2008] [Indexed: 12/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
36
|
Maroto R, Hamill OP. MscCa Regulation of Tumor Cell Migration and Metastasis. CURRENT TOPICS IN MEMBRANES 2007; 59:485-509. [PMID: 25168147 DOI: 10.1016/s1063-5823(06)59019-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The acquisition of cell motility is a required step in order for a cancer cell to migrate from the primary tumor and spread to secondary sites (metastasize). For this reason, blocking tumor cell migration is considered a promising approach for preventing the spread of cancer. However, cancer cells just as normal cells can migrate by several different modes referred to as "amoeboid," "mesenchymal," and "collective cell." Under appropriate conditions, a single cell can switch between modes. A consequence of this plasticity is that a tumor cell may be able to avoid the effects of an agent that targets only one mode by switching modes. Therefore, a preferred strategy would be to target mechanisms that are shared by all modes. This chapter reviews the evidence that Ca(2+) influx via the mechanosensitive Ca(2+)-permeable channel (MscCa) is a critical regulator of all modes of cell migration and therefore represents a very good therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Rosario Maroto
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Owen P Hamill
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
37
|
MS Channels in Tip‐Growing Systems. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
38
|
Ditte P, Lakatos B, Varecka L, Simkovic M. H+-mediated coupling of transmembrane Ca2+ fluxes in vegetative Trichoderma viride mycelia suggested by the study of ageing and adaptation to extreme Ca2+ concentrations. Biochim Biophys Acta Gen Subj 2007; 1770:99-105. [PMID: 16938400 DOI: 10.1016/j.bbagen.2006.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
The adaptation to extreme concentrations of Ca(2+) and its consequence on the properties of the (45)Ca(2+) transport were studied in submerged mycelia of Trichoderma viride. The adaptation to low [Ca(2+)](o) did not cause changes in kinetic parameters of the (45)Ca(2+) influx but the adaptation to high [Ca(2+)](o) increased the K(M(Ca2+)). The V(max) of the (45)Ca(2+) influx decreased with the age of (non-adapted) mycelia with concomitant decrease of the K(M(Ca2+)) these changes were prevented in mycelia adapted to high Ca(2+). High [Ca(2+)](o) decreased the stimulation by the uncoupler, 3, 3', 4', 5-tetrachloro salicylanilide (TCS) (30 muM), as compared to the control, whereas the Ca(2+) chelator, EGTA, stimulated it. In the aged mycelia, the stimulation by TCS of the (45)Ca(2+) influx faded away, in parallel with the activity of the H(+)-ATPase. The (45)Ca(2+) efflux from mycelia was affected by TCS in a similar way as the (45)Ca(2+) influx. The results demonstrate the adaptive responses of transport processes participating in the mycelial Ca(2+) homeostasis and ageing are in agreement with a notion that both Ca(2+)-influx and-efflux are coupled by the H(+)-homeostasis at the plasma membrane.
Collapse
Affiliation(s)
- Peter Ditte
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | | | | | | |
Collapse
|