1
|
Cai Y, Ying J, Ye Y, Wen S, Qian R. Green light induces Solanum lycopersicum JA synthesis and inhibits Botrytis cinerea infection cushion formation to resist grey mould disease. PHYSIOLOGIA PLANTARUM 2025; 177:e70156. [PMID: 40102179 DOI: 10.1111/ppl.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Light signals are prevalent and influence the survival strategies of both plants and the pathogenic fungi that infect them. In this study, we found that green light inhibits the infectivity of Botrytis cinerea on Solanum lycopersicum. Through transcriptome analysis and validation of S. lycopersicum leaves infected with B. cinerea, we discovered that green light enhances the synthesis of jasmonic acid and its related metabolites by upregulating the expression of OPR3 and JAR1 in S. lycopersicum. Additionally, green light boosts the activity of antioxidant enzymes like peroxidase, catalase, and ascorbic acid peroxidase in S. lycopersicum to combat tomato grey mould. Conversely, green light inhibits the expression of plant-induced colonization onset genes, mitogen-activated protein kinase genes, and the formation of infection cushions in B. cinerea. Our findings provide insights into the role of environmental green light signals in the interaction system between plants and phytopathogenic fungi.
Collapse
Affiliation(s)
- Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
2
|
Guo M, Si E, Hou J, Yao L, Wang J, Meng Y, Ma X, Li B, Wang H. Pgmiox mediates stress response and plays a critical role for pathogenicity in Pyrenophora graminea, the agent of barley leaf stripe. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112308. [PMID: 39490446 DOI: 10.1016/j.plantsci.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the Pgmiox gene in P. graminea pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the P. graminea MIOX orthologue clustered with MIOX proteins of Pyrenophora species. RNA interference successfully reduced transcript abundance of Pgmiox in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of Pgmiox had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, Pgmiox is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in P. graminea. In conclusion, our findings reveal that Pgmiox may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable P. graminea resistance through genetic modifications.
Collapse
Affiliation(s)
- Ming Guo
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingjing Hou
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Lu J, Liu Y, Song M, Xi Y, Yang H, Liu W, Li X, Norvienyeku J, Zhang Y, Miao W, Lin C. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense. Microbiol Res 2024; 284:127732. [PMID: 38677265 DOI: 10.1016/j.micres.2024.127732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.
Collapse
Affiliation(s)
- Jingwen Lu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Miao Song
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yitao Xi
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hong Yang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Wenbo Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao Li
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Justice Norvienyeku
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
5
|
Esterio M, Osorio-Navarro C, Rodríguez D, Copier C, Rubilar M, Azócar M, Estrada V, Auger J. Chilean Botrytis cinerea Isolates with Reduced Sensitivity to Fludioxonil Exhibit Low to Null Fitness Penalties. PLANT DISEASE 2024; 108:1481-1485. [PMID: 38301218 DOI: 10.1094/pdis-10-23-2015-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 μg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.
Collapse
Affiliation(s)
- Marcela Esterio
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
- Plant Molecular Biology Centre, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Rodríguez
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Charleen Copier
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Mauricio Rubilar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Madelaine Azócar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Verónica Estrada
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Jaime Auger
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Copier C, Osorio-Navarro C, Maldonado JE, Auger J, Silva H, Esterio M. A Conservative Mutant Version of the Mrr1 Transcription Factor Correlates with Reduced Sensitivity to Fludioxonil in Botrytis cinerea. Pathogens 2024; 13:374. [PMID: 38787226 PMCID: PMC11124108 DOI: 10.3390/pathogens13050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/25/2024] Open
Abstract
Fludioxonil is a highly effective phenylpyrrole fungicide for controlling Botrytis cinerea. Although the field efficacy of fludioxonil remains high, Botrytis cinerea isolates with reduced sensitivity have been reported globally. The molecular target of fludioxonil still remains unknown; however, a mechanism of reduced sensitivity to fludioxonil underlies the overexpression of the ATP binding cassette (ABC) transporter AtrB in a dependent pathway of the Mrr1 transcription factor. Fludioxonil is a key player in controlling B. cinerea infection in table grapes in Chile. However, some isolates with a reduced sensitivity to fludioxonil were detected. This study observed endogenous atrB overexpression in Chilean isolates with reduced sensitivity to fludioxonil (n = 22) compared to the sensitive isolates (n = 10). All isolates increased the expression of atrB in a growth medium supplemented with fludioxonil (0.05 μg/mL). However, sensitive isolates showed lower atrB expression than those with reduced fludioxonil sensitivity. Remarkably, a mutant version of the transcription factor Mrr1 carrying 21 amino acid modifications was identified in all isolates with reduced sensitivity to fludioxonil. These changes alter the protein's transcription factor domain and the C-terminal portion of the protein but not the Zn (2)-C6 fungal-type DNA-binding domain. These results suggest a direct relationship between the conserved and divergent mutant version of mrr1 and sensitivity to fludioxonil. This study provides a new target for developing molecular diagnostic strategies to monitor B. cinerea's sensitivity to fludioxonil in the field.
Collapse
Affiliation(s)
- Charleen Copier
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile; (C.C.); (C.O.-N.); (J.A.)
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile;
| | - Claudio Osorio-Navarro
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile; (C.C.); (C.O.-N.); (J.A.)
- Plant Molecular Biology Centre, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago 7800003, Chile
| | - Jonathan E. Maldonado
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile;
| | - Jaime Auger
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile; (C.C.); (C.O.-N.); (J.A.)
| | - Herman Silva
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile;
| | - Marcela Esterio
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Santiago 8820808, Chile; (C.C.); (C.O.-N.); (J.A.)
| |
Collapse
|
7
|
Yin X, Li P, Wang Z, Wang J, Fang A, Tian B, Yang Y, Yu Y, Bi C. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Botrytis cinerea to Fludioxonil and Iprodione. PHYTOPATHOLOGY 2024; 114:770-779. [PMID: 38598410 DOI: 10.1094/phyto-07-23-0241-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 μg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.
Collapse
Affiliation(s)
- Xueru Yin
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Pengfei Li
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Zongwei Wang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
8
|
Wu Z, Yu C, Bi Q, Zhang J, Hao J, Liu P, Liu X. Procymidone Application Contributes to Multidrug Resistance of Botrytis cinerea. J Fungi (Basel) 2024; 10:261. [PMID: 38667931 PMCID: PMC11050779 DOI: 10.3390/jof10040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The necrotrophic pathogen Botrytis cinerea infects a broad range of plant hosts and causes substantial economic losses to many crops. Although resistance to procymidone has been observed in the field, it remains uncertain why procymidone is usually involved in multidrug resistance (MDR) together with other fungicides. Nine mutants derived from the B. cinerea strain B05.10 through procymidone domestication exhibited high resistance factors (RFs) against both procymidone and fludioxonil. However, the fitness of the mutants was reduced compared to their parental strain, showing non-sporulation and moderate virulence. Furthermore, the RFs of these mutants to other fungicides, such as azoxystrobin, fluazinam, difenoconazole, and pyrimethanil, ranged from 10 to 151, indicating the occurrence of MDR. Transcriptive expression analysis using the quantitative polymerase chain reaction (qPCR) revealed that the mutants overexpressed ABC transporter genes, ranging from 2 to 93.7-fold. These mutants carried single-point mutations W647X, R96X, and Q751X within BcBos1 by DNA sequencing. These alterations in BcBos1 conferred resistance to procymidone and other fungicides in the mutants. Molecular docking analysis suggested distinct interactions between procymidone and Bos1 in the B. cinerea standard strain B05.10 or the resistant mutants, suggesting a higher affinity of the former towards binding with the fungicide. This study provides a comprehensive understanding of the biological characteristics of the resistant mutants and conducts an initial investigation into its fungicide resistance traits, providing a reference for understanding the causes of multidrug resistance of B. cinerea in the field.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (Z.W.); (C.Y.); (J.Z.); (X.L.)
| | - Chuxian Yu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (Z.W.); (C.Y.); (J.Z.); (X.L.)
| | - Qiuyan Bi
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Ministry of Agriculture, Baoding 071000, China;
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (Z.W.); (C.Y.); (J.Z.); (X.L.)
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA;
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (Z.W.); (C.Y.); (J.Z.); (X.L.)
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (Z.W.); (C.Y.); (J.Z.); (X.L.)
| |
Collapse
|
9
|
Ma J, Park SW, Kim G, Kim CS, Chang HX, Chilvers MI, Sang H. Characterization of SsHog1 and Shk1 Using Efficient Gene Knockout Systems through Repeated Protoplasting and CRISPR/Cas9 Ribonucleoprotein Approaches in Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4237-4245. [PMID: 38374637 DOI: 10.1021/acs.jafc.3c08093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Jihyeon Ma
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Geonwoo Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
11
|
Chen L, Sun B, Zhao Y, Xiang P, Miao Z. Comparison of the Biological Characteristics and Molecular Mechanisms of Fludioxonil-Resistant Isolates of Botrytis cinerea from Tomato in Liaoning Province of China. PLANT DISEASE 2022; 106:1959-1970. [PMID: 35678566 DOI: 10.1094/pdis-07-21-1446-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botrytis cinerea is a common filamentous phytopathogen that causes serious pre- and postharvest losses worldwide. The phenylpyrrole fungicide fludioxonil has been reported to have high activity against B. cinerea and has been applied to control gray mold in tomato. A total of 206 B. cinerea isolates were collected from tomato greenhouses in Liaoning Province, China, in 2016 and 2017, and sensitivity to fludioxonil was demonstrated by discriminatory concentrations. One highly fludioxonil-resistant isolate, 5 medium-fludioxonil-resistance isolates, and 23 low-fludioxonil-resistance isolates were detected in the field. The fludioxonil-resistant isolates were less fit than the sensitive isolates and presented reduced sporulation, pathogenicity, and mycelial growth and hypersensitivity to osmotic stress, even though sclerotium production had no connection with resistance. Positive cross-resistance was observed between fludioxonil and the dicarboximide fungicides procymidone and iprodione but not between fludioxonil and the fungicides boscalid, fluopyram, fluazinam, and pyrimethanil. Sequence alignment of the BcOS1 gene indicated that the observed sensitivity was identical to that of B05.10 and the low-resistance mutant had two types of mutations, F127S+I365N and A1259T. The medium-resistance mutants had only one type of mutation linked with the 3-aa mutant Q369P+N373S+A1259T, and the highly resistant mutant had a 3-aa mutation with I365S+N373S+A1259T. Molecular docking illustrated that all the resistant isolates showed less affinity than the sensitive isolates with fludioxonil.
Collapse
Affiliation(s)
- Le Chen
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, People's Republic of China
| | - Baixin Sun
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, People's Republic of China
| | - Yang Zhao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, People's Republic of China
| | - Peng Xiang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe 164399, People's Republic of China
| | - Zeyan Miao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, People's Republic of China
| |
Collapse
|
12
|
Oiki S, Yaguchi T, Urayama SI, Hagiwara D. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PLoS One 2022; 17:e0262521. [PMID: 35100282 PMCID: PMC8803201 DOI: 10.1371/journal.pone.0262521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Fludioxonil and iprodione are effective fungicides widely used for crop protection and are essential for controlling plant pathogenic fungi. The emergence of fungicide-resistant strains of targeted pathogens is regularly monitored, and several cases have been reported. Non-targeted fungi may also be exposed to the fungicide residues in agricultural fields. However, there are no comprehensive reports on fungicide-resistant strains of non-targeted fungi. Here, we surveyed 99 strains, representing 12 Penicillium species, that were isolated from a variety of environments, including foods, dead bodies, and clinical samples. Among the Penicillium strains, including non-pathogenic P. chrysogenum and P. camembertii, as well as postharvest pathogens P. expansum and P. digitatum, 14 and 20 showed resistance to fludioxonil and iprodione, respectively, and 6 showed multi-drug resistance to the fungicides. Sequence analyses revealed that some strains of P. chrysogenum and Penicillium oxalicum had mutations in NikA, a group III histidine kinase of the high-osmolarity glycerol pathway, which is the mode of action for fludioxonil and iprodione. The single nucleotide polymorphisms of G693D and T1318P in P. chrysogenum and T960S in P. oxalicum were only present in the fludioxonil- or iprodione-resistant strains. These strains also exhibited resistance to pyrrolnitrin, which is the lead compound in fludioxonil and is naturally produced by some Pseudomonas species. This study demonstrated that non-targeted Penicillium strains distributed throughout the environment possess fungicide resistance.
Collapse
Affiliation(s)
- Sayoko Oiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
13
|
Li T, Xiu Q, Wang Q, Wang J, Duan Y, Zhou M. Functional dissection of individual domains in group III histidine kinase Sshk1p from the phytopathogenic fungus Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104914. [PMID: 34446190 DOI: 10.1016/j.pestbp.2021.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A conserved kinase domain and phosphoryl group receiver domain at the C-terminus and poly-HAMP domains at the N-terminus comprise the structural components of the group III HK which was considered as a potential antifungal target. However, the roles of individual domains in the function of group III HKs have rarely been dissected in fungi. In this study, we dissected the roles of individual domains to better understand the function of Sshk1p, a group III HK from Sclerotinia sclerotiorum. The results suggest that individual domains play different roles in the functionality of Sshk1p and are implicated in the regulation of mycelial growth, sclerotia formation, pathogenicity. And the mutants of each domain in Sshk1 showed significantly increased sensitivity to hyperosmotic stress. However, the mutants of each domain in Sshk1 showed high resistance to fludioxonil and dimethachlon which suggested that all nine domains of Sshk1p were indispensable for susceptibility to fludioxonil and dimethachlon. Moreover, deletion of each individual domain in Sshk1 cancelled intracellular glycerol accumulation and increased SsHog1p phosphorylation level triggered by NaCl and fludioxonil, suggesting that all the domains of Sshk1 were essential for Sshk1-mediated SsHog1p phosphorylation and subsequent polyol accumulation in response to fludioxonil and hyperosmotic stress.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Escobar-Niño A, Morano Bermejo IM, Carrasco Reinado R, Fernandez-Acero FJ. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of B. cinerea during Tomato Cell Wall Degradation. Microorganisms 2021; 9:microorganisms9091837. [PMID: 34576732 PMCID: PMC8466851 DOI: 10.3390/microorganisms9091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ascomycete Botrytis cinerea is one of the most relevant plant pathogenic fungi, affecting fruits, flowers, and greenhouse-grown crops. The infection strategy used by the fungus comprises a magnificent set of tools to penetrate and overcome plant defenses. In this context, the plant-pathogen communication through membrane receptors and signal transduction cascades is essential to trigger specific routes and the final success of the infection. In previous reports, proteomics approaches to B. cinerea signal transduction cascades changes in response to different carbon source and plant-based elicitors have been performed. Analyzing the secretome, membranome, phosphoproteome, and the phosphomembranome. Moreover, phenotypic changes in fungal biology was analyzed, specifically toxin production. To obtain the whole picture of the process and reveal the network from a system biology approach, this proteomic information has been merged with the phenotypic characterization, to be analyzed using several bioinformatics algorithms (GO, STRING, MCODE) in order to unravel key points in the signal transduction regulation crucial to overcome plant defenses, as well as new virulence/pathogenicity factors that could be used as therapeutic targets in the control of the gray mold rot disease. A total of 1721 and 663 exclusive or overexpressed proteins were identified under glucose (GLU) and deproteinized tomato cell walls (TCW), summarizing all of the protein identifications under phenotypic characterized stages. Under GO analysis, there are more biological process and molecular functions described in GLU, highlighting the increase in signaling related categories. These results agree with the high number of total identified proteins in GLU, probably indicating a more varied and active metabolism of the fungus. When analyzing only GO annotations related with signal transduction, it was revealed that there were proteins related to TOR signaling, the phosphorelay signal transduction system, and inositol lipid-mediated signaling, only under GLU conditions. On the contrary, calcium-mediated signaling GO annotation is only present between the proteins identified under TCW conditions. To establish a potential relationship between expressed proteins, cluster analyses showed 41 and 14 clusters under GLU and TCW conditions, confirming an increase in biological activity in GLU, where we identified a larger number of clusters related to transcription, translation, and cell division, between others. From these analyses, clusters related to signal transduction and clusters related to mycotoxin production were found, which correlated with the phenotypic characterization. The identification of the proteins encompassed in each condition and signal transduction cascade would provide the research community with new information about the B. cinerea infection process and potential candidates of pathogenicity/virulence factors, overcoming plant defenses, and new therapeutic targets.
Collapse
|
15
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 2021; 296:1135-1145. [PMID: 34196769 DOI: 10.1007/s00438-021-01809-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on-off switch, regulates the histidine kinase activity by transition through multiple conformational states.
Collapse
|
17
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil. Sci Rep 2021; 11:5317. [PMID: 33674651 PMCID: PMC7935864 DOI: 10.1038/s41598-021-84740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Aspergillus fumigatus is an important fungal pathogen that represents a major threat for severely immunocompromised patients. Cases of invasive aspergillosis are associated with a high mortality rate, which reflects the limited treatment options that are currently available. The development of novel therapeutic approaches is therefore an urgent task. An interesting compound is fludioxonil, a derivative of the bacterial secondary metabolite pyrrolnitrin. Both agents possess potent antimicrobial activity against A. fumigatus and trigger a lethal activation of the group III hybrid histidine kinase TcsC, the major sensor kinase of the High Osmolarity Glycerol (HOG) pathway in A. fumigatus. In the current study, we have characterized proteins that operate downstream of TcsC and analyzed their roles in the antifungal activity of fludioxonil and in other stress situations. We found that the SskA-SakA axis of the HOG pathway and Skn7 can independently induce an increase of the internal glycerol concentration, but each of these individual responses amounts for only half of the level found in the wild type. The lethal fludioxonil-induced ballooning occurs in the sskA and the sakA mutant, but not in the skn7-deficient strain, although all three strains show comparable glycerol responses. This indicates that an elevated osmotic pressure is necessary, but not sufficient and that a second, decisive and Skn7-dependent mechanism mediates the antifungal activity. We assume that fludioxonil triggers a reorganization in the fungal cell wall that reduces its rigidity, which in combination with the elevated osmotic pressure executes the lethal expansion of the fungal cells. Two findings link Skn7 to the cell wall of A. fumigatus: (1) the fludioxonil-induced massive increase in the chitin content depends on Skn7 and (2) the skn7 mutant is more resistant to the cell wall stressor Calcofluor white. In conclusion, our data suggest that the antifungal activity of fludioxonil in A. fumigatus relies on two distinct and synergistic processes: A high internal osmotic pressure and a weakened cell wall. The involvement of Skn7 in both processes most likely accounts for its particular importance in the antifungal activity of fludioxonil.
Collapse
|
19
|
Dowling M, Gelain J, May De Mio LL, Schnabel G. Characterization of High Fludioxonil Resistance in Botrytis cinerea Isolates from Calibrachoa Flowers. PHYTOPATHOLOGY 2021; 111:478-484. [PMID: 33044131 DOI: 10.1094/phyto-07-20-0268-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungicide fludioxonil is one of the most effective single-site fungicides available for managing flower blight caused by Botrytis cinerea on fruit and ornamental crops. Although low and moderate levels of resistance to fludioxonil have been reported in the pathogen across the United States and Europe, high resistance has been reported only from greenhouses in China. In this study, two B. cinerea isolates with high resistance (half maximal effective concentration >100 µg/ml) to fludioxonil were detected on ornamental calibrachoa flowers grown in a greenhouse. These isolates exhibited stable resistance for >20 generations, produced symptoms on calibrachoa flowers sprayed with label rates of fludioxonil, and displayed in vitro fitness penalties with decreased mycelial growth (P < 0.0001) and sporulation (P < 0.0001) compared with sensitive isolates. Highly resistant isolates were identified as MDR1h, containing the ΔL/V497 deletion in mrr1. However, resistance levels and in vitro fitness parameter characteristics were not consistent with this phenotype. One isolate contained the mutation L267V between HAMP domains 1 and 2 of the Bos-1 gene, and both isolates exhibited high osmotic sensitivity and reduced glycerol accumulation in the presence of fludioxonil, indicating that high resistance of these isolates may be associated with the high-osmolarity glycerol mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Madeline Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Jhulia Gelain
- Department of Plant Sciences, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
20
|
N’Guyen GQ, Raulo R, Porquier A, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Hamon B, Kwasiborski A, Colou J, Benamar A, Hudhomme P, Macherel D, Simoneau P, Guillemette T. Responses of the Necrotrophic Fungus Alternaria brassisicola to the Indolic Phytoalexin Brassinin. FRONTIERS IN PLANT SCIENCE 2021; 11:611643. [PMID: 33552104 PMCID: PMC7860980 DOI: 10.3389/fpls.2020.611643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.
Collapse
Affiliation(s)
| | - Roxane Raulo
- Institut Charles Viollette – EA 7394, Université de Lille, INRA, ISA, Université d’Artois, Université du Littoral Côte d’Opale, Lille, France
| | | | | | - Sandra Pelletier
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Jean-Pierre Renou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Claire Campion
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Bruno Hamon
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Justine Colou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Abdelilah Benamar
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - David Macherel
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Philippe Simoneau
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Thomas Guillemette
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| |
Collapse
|
21
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Ma Z, Chen Z, Wang W, Wang K, Zhu T. Exocyst subunit BcSec3 regulates growth, development and pathogenicity in Botrytis cinerea. J Biosci 2020. [DOI: 10.1007/s12038-020-00097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Leisen T, Bietz F, Werner J, Wegner A, Schaffrath U, Scheuring D, Willmund F, Mosbach A, Scalliet G, Hahn M. CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLoS Pathog 2020; 16:e1008326. [PMID: 32804988 PMCID: PMC7451986 DOI: 10.1371/journal.ppat.1008326] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/27/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse organisms, enabling targeted genetic changes to be performed with unprecedented efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the important necrotrophic plant pathogen Botrytis cinerea based on the introduction of optimized Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields were further improved by development of a novel strategy that combines RNP delivery with cotransformation of transiently stable vectors containing telomeres, which allowed temporary selection and convenient screening for marker-free editing events. We demonstrate that this approach provides superior editing rates compared to existing CRISPR/Cas-based methods in filamentous fungi, including the model plant pathogen Magnaporthe oryzae. Genome sequencing of edited strains revealed very few additional mutations and no evidence for RNP-mediated off-targeting. The high performance of telomere vector-mediated editing was demonstrated by random mutagenesis of codon 272 of the sdhB gene, a major determinant of resistance to succinate dehydrogenase inhibitor (SDHI) fungicides by in bulk replacement of the codon 272 with codons encoding all 20 amino acids. All exchanges were found at similar frequencies in the absence of selection but SDHI selection allowed the identification of novel amino acid substitutions which conferred differential resistance levels towards different SDHI fungicides. The increased efficiency and easy handling of RNP-based cotransformation is expected to accelerate molecular research in B. cinerea and other fungi. In this study, we describe the establishment of the CRISPR/Cas technology for genome editing in the gray mold fungus Botrytis cinerea, one of the economically most important plant pathogens worldwide. We report the development of a strategy which combines the introduction of an optimized nuclear-targeted Cas9-single guide RNA ribonucleoprotein complex (RNP) and a repair template together with unstable telomere vectors for transient selection into fungal protoplasts. A high proportion of the transformants contains the desired genetic changes, and the telomere vector is lost subsequently when selection is stopped. This system allowed introduction of changes into the genome without the requirement of selection markers. It shows superior editing efficiencies compared to existing CRISPR/Cas protocols for filamentous fungi, and leads to a very low number of additional off-target mutations. To demonstrate the performance of our protocol, we conducted for the first time a site-directed, random mutagenesis in a gene encoding an important fungicide target. This approach allows new applications such as in vivo structure-function analysis of proteins and rational fungicide resistance studies. As demonstrated with the rice blast pathogen Magnaporthe oryzae, the RNP-based CRISPR/Cas toolset with telomere vectors can be transferred to other fungi and is expected to boost their genetic manipulation.
Collapse
Affiliation(s)
- Thomas Leisen
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Fabian Bietz
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Janina Werner
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Alex Wegner
- RWTH Aachen University, Department of Plant Physiology, Aachen, Germany
| | - Ulrich Schaffrath
- RWTH Aachen University, Department of Plant Physiology, Aachen, Germany
| | - David Scheuring
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Felix Willmund
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | | | | | - Matthias Hahn
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
24
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
25
|
Yang Q, Song L, Miao Z, Su M, Liang W, He Y. Acetylation of BcHpt Lysine 161 Regulates Botrytis cinerea Sensitivity to Fungicides, Multistress Adaptation and Virulence. Front Microbiol 2020; 10:2965. [PMID: 31969871 PMCID: PMC6960119 DOI: 10.3389/fmicb.2019.02965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/09/2019] [Indexed: 12/02/2022] Open
Abstract
BcHpt is a core element of the high-osmolarity glycerol (HOG) transduction pathway in Botrytis cinerea. In contrast to other elements of the pathway, which have been characterized and proven to play important roles in vegetative differentiation, fungicide resistance, the multistress response, and virulence in B. cinerea, BcHpt (Histidine-containing phosphotransfer) is essential but uncharacterized in B. cinerea. Our previous study reported the first lysine acetylation site (Lys161) in BcHpt. In this study, the functions of this lysine acetylation site in BcHpt were characterized using site-directed mutagenesis. To mimic Lys161 acetylation, we generated the mutant strain ΔBcHPt + BcHptK161Q-GFP, which exhibited a slower growth rate; lower pathogenicity; higher sensitivity to multiple stresses, including osmotic and oxidative stresses, dicarboximides, and demethylation inhibitors (DMIs); and lower BcSak1 phosphorylation levels than wild-type B. cinerea. Constitutive acetylation of BcHpt Ly161 apparently inhibits hyphal growth, the multistress response, and sensitivity to fungicides in B. cinerea. Moreover, the lysine acetylation site affected phosphorylation of the MAPK BcSak1.
Collapse
Affiliation(s)
- Qianqian Yang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhengang Miao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiling Su
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yawen He
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Kilani J, Davanture M, Simon A, Zivy M, Fillinger S. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca 2+ signalling pathways. J Proteomics 2019; 212:103580. [PMID: 31733416 DOI: 10.1016/j.jprot.2019.103580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/21/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
Signal transduction (ST) is essential for rapid adaptive responses to changing environmental conditions. It acts through rapid post-translational modifications of signalling proteins and downstream effectors that regulate the activity and/or subcellular localisation of target proteins, or the expression of downstream genes. We have performed a quantitative, comparative proteomics study of ST mutants in the phytopathogenic fungus Botrytis cinerea during axenic growth under non-stressed conditions to decipher the roles of two kinases of the hyper-osmolarity pathway in B. cinerea physiology. We studied the mutants of the sensor histidine kinase Bos1 and of the MAP kinase Sak1. Label-free shotgun proteomics detected 2425 proteins, 628 differentially abundant between mutants and wild-type, 270 common to both mutants, indicating independent and shared regulatory functions for both kinases. Gene ontology analysis showed significant changes in functional categories that may explain in vitro growth and virulence defects of both mutants (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress). The proteome data also highlight a new link between Sak1 MAPK, cAMP and Ca2+ signalling. This study reveals the potential of proteomic analyses of signal transduction mutants to decipher their biological functions. TEXT-VULGARISATION: The fungus Botrytis cinerea is responsible for grey mold disease of hundreds of plant species. During infection, the fungus has to face important changes of its environment. Adaptation to these changing environmental conditions involves proteins of such called signal transduction pathways that regulate the production, activity or localisation of cellular components, mainly proteins. While the components of such signal transduction pathways are well known, their role globally understood, the precise impact on protein production remains unknown. In this study we have analysed and compared the global protein content of two Botrytis cinerea signal transduction mutants - both avirulent - to the pathogenic parental strain. The data of 628 differential proteins between mutants and wild-type, showed significant changes in proteins related to plant infection (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress) that may explain the virulence defects of both mutants. Moreover, we observed intracellular accumulation of secreted proteins in one of the mutants suggesting a potential secretion defect.
Collapse
Affiliation(s)
- Jaafar Kilani
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France; Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marlène Davanture
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France
| | - Michel Zivy
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sabine Fillinger
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France.
| |
Collapse
|
27
|
Tong SM, Wang DY, Gao BJ, Ying SH, Feng MG. The DUF1996 and WSC domain-containing protein Wsc1I acts as a novel sensor of multiple stress cues in Beauveria bassiana. Cell Microbiol 2019; 21:e13100. [PMID: 31418513 DOI: 10.1111/cmi.13100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A & F University, Lin'an, China.,MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ding-Yi Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Guan W, Feng J, Wang R, Ma Z, Wang W, Wang K, Zhu T. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Curr Genet 2019; 66:85-95. [PMID: 31183512 DOI: 10.1007/s00294-019-01002-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023]
Abstract
Botrytis cinerea is one of the most important saprophytic plant pathogenic fungi. The exocyst complex and exocytosis was demonstrated to be involved in fungal development and plant infection. Here, we investigated the function of an exocyst subunit gene Bcexo70 in B. cinerea. The results show that knockout of the Bcexo70 gene significantly reduced the fungal growth and hindered the production of conidia and sclerotia. The Bcexo70 deletion strains showed a severe decrease in virulence toward tomato leaves and reduced secretion of cell wall-degrading enzyme. Confocal and electronic microscopic observation showed that the vesicles in the Bcexo70 mutants were enlarged and scattered in the cytoplasm compared to the regular distribution in the hyphal tip in wild-type strain. This study showed that the exocyst gene Bcexo70 is crucial for fungal growth, conidiation and pathogenicity in B. cinerea.
Collapse
Affiliation(s)
- Wenqing Guan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Juan Feng
- Taizhou Vocational College of Science and Technology, Taizhou, Zhejiang, China
| | - Rongxia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhiwei Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weixia Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China.
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep 2019; 9:5047. [PMID: 30911085 PMCID: PMC6433957 DOI: 10.1038/s41598-019-41564-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 01/03/2023] Open
Abstract
Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil’s target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death.
Collapse
|
30
|
Li J, Zhu F, Li J. Expression of the Histidine Kinase Gene Sshk Correlates with Dimethachlone Resistance in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2019; 109:395-401. [PMID: 30070619 DOI: 10.1094/phyto-05-18-0156-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Histidine kinases (HK) are implicated in virulence, vegetative mycelial growth, and osmotic and oxidative responses in pathogenic fungi. Our previous work showed that transcriptional levels of the group III HK gene Sshk are higher in field dimethachlone-resistant isolates of Sclerotinia sclerotiorum compared with sensitive isolates. However, it is not clear whether the overexpression of Sshk is the major mechanism for resistance to dimethachlone. In this study, we constructed Sshk silencing and overexpression vectors and assessed dimethachlone resistance levels, virulence, mycelial growth, and sensitivity to osmotic stress for the Sshk-silenced and -overexpression transformants. Overexpression of Sshk resulted in resistance to dimethachlone and increased sensitivity to various stresses and to the cell-wall-perturbing agents sodium dodecyl sulfate (SDS) and Congo red (CR). Compared with the parent isolate, Sshk-silenced transformants had reduced resistance to dimethachlone, significantly higher (P < 0.05) mycelial growth and virulence, and lower sclerotium production, and were less sensitive to various exogenous stresses such as sodium chloride. Compared with the parent sensitive isolate HLJMG1, dimethachlone resistance ratios of the three overexpression transformants ∆C101, ∆C21, and ∆C10 increased 168.1-, 189.5-, and 221.2-fold, respectively. The three overexpression transformants were more sensitive to CR and SDS than their parent isolate. These findings suggest that overexpression of Sshk is a major mechanism for dimethachlone resistance in some isolates of S. sclerotiorum, and that Sshk plays an important role in maintaining the integrity of the cell wall. Our findings reveal a novel molecular mechanism for dimethachlone resistance in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Jinli Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
32
|
Ren W, Liu N, Yang Y, Yang Q, Chen C, Gao Q. The Sensor Proteins BcSho1 and BcSln1 Are Involved in, Though Not Essential to, Vegetative Differentiation, Pathogenicity and Osmotic Stress Tolerance in Botrytis cinerea. Front Microbiol 2019; 10:328. [PMID: 30858841 PMCID: PMC6397835 DOI: 10.3389/fmicb.2019.00328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/08/2019] [Indexed: 01/18/2023] Open
Abstract
High-osmolarity glycerol (HOG) signaling pathway belongs to mitogen-activated protein kinase (MAPK) cascades that regulate responses of organism to diverse extracellular stimuli. The membrane spanning proteins Sho1 and Sln1 serve as biosensors of HOG pathway in Saccharomyces cerevisiae. In this study, we investigated the biological functions of BcSHO1 and BcSLN1 in the gray mold fungus Botrytis cinerea. Target gene deletion demonstrated that both BcSHO1 and BcSLN1 are important for mycelial growth, conidiation and sclerotial formation. The BcSHO1 and BcSLN1 double deletion mutant ΔBcSln1-Sho1 produced much more, but smaller sclerotia than ΔBcSho1 and the wild-type (WT) strain, while ΔBcSln1 failed to develop sclerotia on all tested media, instead, formed a large number of conidia. Infection tests revealed that the virulence of ΔBcSln1-Sho1 decreased significantly, however, ΔBcSho1 or ΔBcSln1 showed no difference with the WT strain. In addition, ΔBcSln1-Sho1 exhibited resistance to osmotic stress by negatively regulating the phosphorylation of BcSak1 (yeast Hog1). All the phenotypic defects of mutants were recovered by target gene complementation. These results suggest that BcSHO1 and BcSLN1 share some functional redundancy in the regulation of fungal development, pathogenesis and osmotic stress response in B. cinerea.
Collapse
Affiliation(s)
- Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yalan Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingli Gao
- Plant Protection Station of Pizhou City, Xuzhou, China
| |
Collapse
|
33
|
Liang Q, Li B, Wang J, Ren P, Yao L, Meng Y, Si E, Shang X, Wang H. PGPBS, a mitogen-activated protein kinase kinase, is required for vegetative differentiation, cell wall integrity, and pathogenicity of the barley leaf stripe fungus Pyrenophora graminea. Gene 2019; 696:95-104. [PMID: 30779945 DOI: 10.1016/j.gene.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 01/23/2023]
Abstract
The high-osmolarity glycerol (HOG) signaling pathway regulates the adaptation of fungi to environmental stressors. The mitogen-activated protein kinase kinase (MAPKK) PBS2 of Saccharomyces cerevisiae serves as a scaffold protein in the HOG pathway. We characterized the pgpbs gene of Pyrenophora graminea, which encodes a MAPKK that is 56% orthologous to PBS2 of S. cerevisiae. A cloning technique based on homology was applied to amplify the pgpbs gene. Specific silent mutations then were generated in pgpbs. We evaluated the potential roles of PGPBS in the osmotic response, vegetative differentiation, cell wall integrity, drug resistance, and pathogenicity. Our findings indicated that the pgpbs coding region comprises 2075 base pairs and encodes a protein of 676 amino acids. Mutants deficient in pgpbs expression had significant reductions in vegetative growth and were sensitive to calcofluor white (CFW), an inhibitor of cell wall synthesis. Mutants also lost pathogenicity and were sensitive to an osmotic stress-inducing medium containing NaCl and sorbitol. Moreover, mutants had increased resistance to the dicarboximide fungicide iprodione and the triazole fungicide tebuconazole. These findings suggest that pgpbs is involved in the osmotic and ionic stress responses, vegetative differentiation, cell wall integrity, virulence, and tolerance to iprodione and tebuconazole. We expect that our findings will help elucidate the pathogenesis of barley leaf stripe and will inform strategies for breeding resistance to this disease.
Collapse
Affiliation(s)
- Qianqian Liang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Engeering Laboratory of Application Mycology, Hexi University, Zhangye, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China; College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Junchen Wang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Panrong Ren
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Lirong Yao
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Yaxiong Meng
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Erjing Si
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Xunwu Shang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Huajun Wang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
| |
Collapse
|
34
|
Brandhorst TT, Klein BS. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food Chem Toxicol 2018; 123:561-565. [PMID: 30458269 DOI: 10.1016/j.fct.2018.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Fludioxonil is a phenylpyrrole pesticide that is applied to fruit and vegetable crops post-harvest to minimize losses to mold, both during transport and at point of sale. Its effectiveness is reflected in the dramatic increase in its production/usage since its introduction in 1994, an increase that has peaked in recent years as it became licenced for use abroad. Recently, doubts as to the nature of its mechanism of action have been raised. Given that the pesticide has long been known to induce stress intermediates in target and non-target organisms alike, the lack of a firmly established mechanism might be cause for concern. Troubling reports further delineate a capacity to disrupt hepatic, endocrine and neurological systems, indicating that fludioxonil may represent a health threat to consumers. In the absence of a clear, safe mechanism of action, fludioxonil should be re-evaluated for its potential to impact human health.
Collapse
Affiliation(s)
- T Tristan Brandhorst
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA; Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
35
|
Tong SM, Feng MG. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol 2018; 103:577-587. [PMID: 30448905 DOI: 10.1007/s00253-018-9516-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022]
Abstract
Fungal entomopathogenicity may have evolved at least 200 million years later than carnivorism of nematophagous fungi on Earth. This mini-review focuses on the composition and regulatory roles of mitogen-activated protein kinase (MAPK) cascades, which act as stress-responsive signaling pathways. Unveiled by genomic comparison, three MAPK cascades of these mycopathogens consist of singular MAPKs (Fus3/Hog1/Slt2), MAPK kinases (Ste7/Pbs2/Mkk1), and MAPK kinase kinases (Ste11/Ssk2/Bck1). All cascaded components characterized in fungal entomopathogens play conserved and special roles in regulating multiple stress responses and phenotypes associated with biological control potential. Fus3-cascaded components are indispensable for fungal growth on oligotrophic substrata and virulence, and mediate cell tolerance to Na+/K+ toxicity, which is often misinterpreted as hyperosmotic effect but readily clarified by transcriptional changes of Na+/K+ ATPase genes and/or cell responses to osmotic polyols. Hog1-cascaded components regulate osmotolerance positively and phenylpyrrole-type fungicide resistance negatively, and also play differential roles in cell growth, conidiation, virulence, and responses to other stress cues. Ste11 has no stress-responsive role in the Beauveria Hog1 cascade despite an essential role in branched yeast Hog1 cascade. Slt2-cascaded components are required for mediation of cell wall integrity and repair of cell wall damage. A crosstalk between Hog1 and Slt2 cascades ensures fungal osmotolerance inside or outside insect. In nematode-trapping fungi, Slt2 is indispensable for cell wall integrity, conidiation, and mycelial trap formation, suggesting that the Slt2 cascade could have evolved along a distinct trajectory required for fungal carnivorism and dispersal/survival in nematode habitats. Altogether, the MAPK cascades are major parts of signaling network that regulate fungal adaptation to insects and nematodes and their habitats.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China. .,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
36
|
Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van de Wouw AP, López-Ruiz FJ. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biol Biotechnol 2017; 4:12. [PMID: 29270298 PMCID: PMC5732519 DOI: 10.1186/s40694-017-0043-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background The dicarboximide fungicide iprodione has been used to combat blackleg disease of canola (Brassica napus), caused by the fungus Leptosphaeria maculans. For example, in Australia the fungicide was used in the late 1990s but is no longer registered for use against blackleg disease, and therefore the impact of iprodione on L. maculans has not been investigated. Results Resistance to iprodione emerged spontaneously under in vitro conditions at high frequency. A basis for this resistance was mutations in the hos1 gene that encodes a predicted osmosensing histidine kinase. While loss of the homologous histidine kinase in some fungi has deleterious effects on growth and pathogenicity, the L. maculans strains with the hos1 gene mutated had reduced growth under high salt conditions, but were still capable of causing lesions on B. napus. The relative ease to isolate mutants with resistance to iprodione provided a method to develop and then optimize a CRISPR/Cas9 system for gene disruptions in L. maculans, a species that until now has been particularly difficult to manipulate by targeted gene disruptions. Conclusions While iprodione is initially effective against L. maculans in vitro, resistance emerges easily and these strains are able to cause lesions on canola. This may explain the limited efficacy of iprodione in field conditions. Iprodione resistance, such as through mutations of genes like hos1, provides an effective direction for the optimization of gene disruption techniques.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Andrew S Urquhart
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Dinesh R Vummadi
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Steven Chang
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| | - Angela P Van de Wouw
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Francisco J López-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| |
Collapse
|
37
|
|
38
|
Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Environ Microbiol 2017; 19:4091-4102. [DOI: 10.1111/1462-2920.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Lei Qiu
- School of Bioengineering; Qilu University of Technology; Jinan, Shandong 250353 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| |
Collapse
|
39
|
Mohanan VC, Chandarana PM, Chattoo BB, Patkar RN, Manjrekar J. Fungal Histidine Phosphotransferase Plays a Crucial Role in Photomorphogenesis and Pathogenesis in Magnaporthe oryzae. Front Chem 2017; 5:31. [PMID: 28580356 PMCID: PMC5437211 DOI: 10.3389/fchem.2017.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation, and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well-studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.
Collapse
Affiliation(s)
- Varsha C Mohanan
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Pinal M Chandarana
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Bharat B Chattoo
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Rajesh N Patkar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Johannes Manjrekar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India.,Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| |
Collapse
|
40
|
Spadinger A, Ebel F. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int J Med Microbiol 2017; 307:200-208. [PMID: 28527583 DOI: 10.1016/j.ijmm.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
The type III hybrid histidine kinase (HHK) TcsC enables the pathogenic mold Aspergillus fumigatus to thrive under hyperosmotic conditions. It is, moreover, of particular interest, since it is the target of certain antifungal agents, such as fludioxonil. This study was aimed at a functional characterization of the domains that constitute the sensing and the kinase module of TcsC. The sensing module consists of six HAMP domains, an architecture that is commonly found in type III HHKs of filamentous fungi. To dissect the functional role of the individual domains, we have analyzed a set of truncated derivatives of TcsC with respect to their impact on fungal growth and their ability to respond to hyperosmotic stress and fludioxonil. Our data demonstrate that the TcsC kinase module per se is constitutively active and under the control of the sensing module. We furthermore found that the sixth HAMP domain alone is sufficient to arrest the kinase module in an inactive state. This effect can be partially lifted by the presence of the fifth HAMP domain. Constructs harboring more than these two HAMP domains are per se inactive and all six HAMP domains are required to enable a response to fludioxonil or hyperosmotic stress. When expressed in an A. fumigatus wild type strain, the construct harboring only the sixth HAMP domain exerts a strong dominant negative effect on the native TcsC. This effect is successively reduced in other constructs harboring increasing numbers of HAMP domains. To our knowledge, this is the first molecular characterization of a type III HHK containing six HAMP domains. Our data strongly suggest that TcsC is a positive regulator of its MAPK SakA and thereby differs fundamentally from the prototypic yeast type III HHK DhNik1 of Debaryomyces hansenii, which harbors only five HAMP domains and acts as a negative regulator of its MAPK.
Collapse
Affiliation(s)
- Anja Spadinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
41
|
Sang H, Popko JT, Chang T, Jung G. Molecular Mechanisms Involved in Qualitative and Quantitative Resistance to the Dicarboximide Fungicide Iprodione in Sclerotinia homoeocarpa Field Isolates. PHYTOPATHOLOGY 2017; 107:198-207. [PMID: 27642797 DOI: 10.1094/phyto-05-16-0211-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dicarboximide fungicide class is commonly used to control Sclerotinia homoeocarpa, the causal agent of dollar spot on turfgrass. Despite frequent occurrences of S. homoeocarpa field resistance to iprodione (dicarboximide active ingredient), the genetic mechanisms of iprodione resistance have not been elucidated. In this study, 15 field isolates (seven suspected dicarboximide resistant, three multidrug resistance (MDR)-like, and five dicarboximide sensitive) were used for sequence comparison of a histidine kinase gene, Shos1, of S. homoeocarpa. The suspected dicarboximide-resistant isolates displayed nonsynonymous polymorphisms in codon 366 (isoleucine to asparagine) in Shos1, while the MDR-like and sensitive isolates did not. Further elucidation of the Shos1 function, using polyethylene glycol-mediated protoplast transformation indicated that S. homoeocarpa mutants (Shos1I366N) from a sensitive isolate gained resistance to dicarboximides but not phenylpyrrole and polyols. The deletion of Shos1 resulted in higher resistance to dicarboximide and phenylpyrrole and higher sensitivity to polyols than Shos1I366N. Levels of dicarboximide sensitivity in the sensitive isolate, Shos1I366N, and Shos1 deletion mutants were negatively correlated to values of iprodione-induced expression of ShHog1, the last kinase in the high-osmolarity glycerol pathway. Increased constitutive and induced expression of the ATP-binding cassette multidrug efflux transporter ShPDR1 was observed in six of seven dicarboximide-resistant isolates. In conclusion, S. homoeocarpa field isolates gained dicarboximide resistance through the polymorphism in Shos1 and the overexpression of ShPDR1.
Collapse
Affiliation(s)
- Hyunkyu Sang
- First, second, and fourth authors: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003; and third author: School of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 742-711, Korea
| | - James T Popko
- First, second, and fourth authors: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003; and third author: School of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 742-711, Korea
| | - Taehyun Chang
- First, second, and fourth authors: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003; and third author: School of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 742-711, Korea
| | - Geunhwa Jung
- First, second, and fourth authors: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003; and third author: School of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 742-711, Korea
| |
Collapse
|
42
|
Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea. Sci Rep 2016; 6:29313. [PMID: 27381557 PMCID: PMC4933888 DOI: 10.1038/srep29313] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen.
Collapse
|
43
|
Ren W, Shao W, Han X, Zhou M, Chen C. Molecular and Biochemical Characterization of Laboratory and Field Mutants of Botrytis cinerea Resistant to Fludioxonil. PLANT DISEASE 2016; 100:1414-1423. [PMID: 30686204 DOI: 10.1094/pdis-11-15-1290-re] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botrytis cinerea is a filamentous phytopathogen with a high risk of developing resistance to fungicides. The phenylpyrrole fungicide fludioxonil has been reported to have excellent activity against B. cinerea and increasingly has been applied to control gray mold in China. In this study, molecular and biochemical characteristics of laboratory and field mutants of B. cinerea resistant to fludioxonil has been investigated. During 2012 to 2014, B. cinerea isolates collected from Jiangsu and Shandong Provinces in China were tested in vitro for sensitivity to fungicides commonly used to suppress gray mold of cucumber and tomato. Among the 75 isolates collected from cucumber in 2013, two were highly resistant (HR) to fludioxonil. Of the 308 isolates collected from tomato in 2014, four were fludioxonil-HR. This was the first time that B. cinerea isolates HR to fludioxonil had been detected in the field. Six fludioxonil-resistant mutants were obtained in the laboratory by selection on fungicide-amended media. These mutants exhibited stable resistance to fludioxonil, as indicated by resistance factor values that ranged from 34.38 to >10,000. In comparison with fludioxonil-sensitive isolates of B. cinerea, all field and laboratory mutants showed reduced fitness, as defined by mycelial growth, sporulation, virulence, and sensitivity to osmotic stress. When treated with fludioxonil at 1 μg/ml, sensitive isolates showed increased glycerol contents in mycelium and expression levels of Bchog1, while levels in field and laboratory HR mutants increased only slightly. Sequences of the Bos1 gene of field and laboratory fludioxonil-HR mutants showed that mutations in field mutants were located in the histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase (HAMP) domains of the N-terminal region, whereas mutations in the laboratory mutants were distributed in HAMP domains or in the HATPase_c domain of the C-terminal region. These results will enhance our understanding of the resistance mechanism of B. cinerea to fludioxonil.
Collapse
Affiliation(s)
- Weichao Ren
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyong Shao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Han
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Shao W, Zhang Y, Wang J, Lv C, Chen C. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Sci Rep 2016; 6:28673. [PMID: 27346661 PMCID: PMC4921815 DOI: 10.1038/srep28673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 01/05/2023] Open
Abstract
In Saccharomyces cerevisiae, the Mtg2 gene encodes the Obg protein, which has an important function in assembling ribosomal subunits. However, little is known about the role of the Obg GTPase in filamentous fungi. In this study, we identified an Mtg2 ortholog, BcMtg2, in B. cinerea. The BcMtg2 deletion mutant showed a defect in spore production, conidial germination and sclerotial formation. Additionally, the mutant increased sensitivity to various environmental stresses. The BcMtg2 mutant exhibited dramatically decreased virulence on host plant tissues. BcMtg2 mutant showed increased sensitivity to osmotic and oxidative stresses, and to Congo red (cell wall stress agent). In the yeast complement assay, growth defects of yeast BY4741ΔMTG2 mutant were partly restored by genetic complementation of BcMtg2 under these environmental stresses. Additionally, compared with the parental strain and complement strain, the BcMtg2 deletion mutant displayed a minor glycerol response to osmosis stress. These defective phenotypes were recovered in the complement strain ΔBcMtg2C, which was created by adding the wild-type BcMtg2 gene to the ΔBcMtg2 mutant. The results of this study indicate that BcMtg2 has a necessary role in asexual development, environmental stress response and pathogenicity in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
45
|
Firoz MJ, Xiao X, Zhu FX, Fu YP, Jiang DH, Schnabel G, Luo CX. Exploring mechanisms of resistance to dimethachlone in Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2016; 72:770-779. [PMID: 26037646 DOI: 10.1002/ps.4051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The dicarboximide fungicide dimethachlone has been widely used in China for more than 12 years to control the Sclerotinia stem rot caused by Sclerotinia sclerotiorum disease. First signs of resistance in the field are reported at low frequency. In this study, four resistant isolate/mutants were used to explore still unknown mechanisms leading to dimethachlone resistance. RESULTS The resistant isolate/mutants had significantly higher EC50 values compared with the sensitive control isolates. Cross-resistance was confirmed between dimethachlone and procymidone, iprodione and fludioxonil. The resistant isolate/mutants revealed a decreased mycelial growth rate, were less pathogenic on leaves of oilseed rape, were more sensitive to osmotic pressure and oxidative stress and released more electrolytes compared with the sensitive isolates. Only in one lab mutant did we find a point mutation (V238A) in the SsOs1 gene of the high-osmolarity glycerol (HOG) signalling pathway. The expression of this gene was lost in the field resistant isolate HN456-1-JBJ and decreased in mycelium that was subjected to either high osmotic pressure or dimethachlone; however, another key gene in the HOG pathway, SsHog1, could be induced in the resistant isolate and mutants with NaCl treatment. CONCLUSION This study demonstrates that resistance to dicarboximide fungicide dimethachlone in S. sclerotiorum is emerging in China. Several fitness parameters, including mycelial growth rate, sclerotia formed in vitro, aggressiveness on leaves and osmotic and H2 O2 sensitivity, indicate that the resistant strains may not effectively compete with sensitive isolates in the field in the absence of selection pressure. Lost expression or the V238A point mutation in the SsOs1 gene may confer resistance to dicarboximide fungicide dimethachlone in S. sclerotiorum, but this study illustrates that other, yet unknown mechanisms also exist.
Collapse
Affiliation(s)
- Md Jahangir Firoz
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiang Xiao
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Fu-Xing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Ping Fu
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Dao-Hong Jiang
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Chao-Xi Luo
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Liñeiro E, Chiva C, Cantoral JM, Sabido E, Fernández-Acero FJ. Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors. J Proteomics 2016; 139:84-94. [DOI: 10.1016/j.jprot.2016.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
|
47
|
Shao W, Yang Y, Zhang Y, Lv C, Ren W, Chen C. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2016; 17:438-47. [PMID: 26176995 PMCID: PMC6638451 DOI: 10.1111/mpp.12292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Str2 gene encodes a cystathionine γ-synthase that is a key enzyme in methionine (Met) biosynthesis in Saccharomyces cerevisiae. Met plays a critical role in protein synthesis and diverse cellular processes in both eukaryotes and prokaryotes. In this study, we characterized the Str2 orthologue gene BcStr2 in Botrytis cinerea. The BcStr2 mutant was unable to grow on minimal medium (MM). In addition, conidia of the mutant were unable to germinate in water-agar medium within 15 h of incubation. Supplementation with 1 mm Met or 0.5 mg/mL homocysteine, but not 1 mm cysteine or 0.5 mg/mL glutathione, rescued the defect in mycelial growth of the BcStr2 deletion mutant. These results indicate that the enzyme encoded by BcStr2 is involved in the conversion of cysteine into homocysteine. The mutant exhibited decreased conidiation and impaired sclerotium development. In addition, the BcStr2 mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents and thermal stress. The mutant demonstrated dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutant with wild-type BcStr2. Taken together, the results of this study indicate that BcStr2 plays a critical role in the regulation of various cellular processes in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yalan Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
48
|
John E, Lopez-Ruiz F, Rybak K, Mousley CJ, Oliver RP, Tan KC. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. MICROBIOLOGY-SGM 2016; 162:1023-1036. [PMID: 26978567 PMCID: PMC5042077 DOI: 10.1099/mic.0.000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity.
Collapse
Affiliation(s)
- Evan John
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Francisco Lopez-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kasia Rybak
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Carl J Mousley
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct and Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Richard P Oliver
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kar-Chun Tan
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
49
|
Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. EUKARYOTIC CELL 2015; 14:636-51. [PMID: 25934690 DOI: 10.1128/ec.00043-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Important for the lifestyle and survival of every organism is the ability to respond to changing environmental conditions. The necrotrophic plant pathogen Botrytis cinerea triggers an oxidative burst in the course of plant infection and therefore needs efficient signal transduction to cope with this stress. The factors involved in this process and their precise roles are still not well known. Here, we show that the transcription factor Bap1 and the response regulator (RR) B. cinerea Skn7 (BcSkn7) are two key players in the oxidative stress response (OSR) of B. cinerea; both have a major influence on the regulation of classical OSR genes. A yeast-one-hybrid (Y1H) approach proved direct binding to the promoters of gsh1 and grx1 by Bap1 and of glr1 by BcSkn7. While the function of Bap1 is restricted to the regulation of oxidative stress, analyses of Δbcskn7 mutants revealed functions beyond the OSR. Involvement of BcSkn7 in development and virulence could be demonstrated, indicated by reduced vegetative growth, impaired formation of reproductive structures, and reduced infection cushion-mediated penetration of the host by the mutants. Furthermore, Δbcskn7 mutants were highly sensitive to oxidative, osmotic, and cell wall stress. Analyses of Δbap1 bcskn7 double mutants indicated that loss of BcSkn7 uncovers an underlying phenotype of Bap1. In contrast to Saccharomyces cerevisiae, the ortholog of the glutathione peroxidase Gpx3p is not required for nuclear translocation of Bap1. The presented results contribute to the understanding of the OSR in B. cinerea and prove that it differs substantially from that of yeast, demonstrating the complexity and versatility of components involved in signaling pathways.
Collapse
|
50
|
Yang Q, Yin D, Yin Y, Cao Y, Ma Z. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2015; 16:276-287. [PMID: 25130972 PMCID: PMC6638353 DOI: 10.1111/mpp.12181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The high-osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high-osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7-1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7-1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high-osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7-1 are restored by genetic complementation of the mutant with the wild-type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|