1
|
Wang F, Zhou W, Yang M, Niu J, Huang W, Chen Z, Chen Y, Wang D, Zhang J, Wu S, Yan S. Structure-guided discovery of novel AflG inhibitors for aflatoxin contamination control in aspergillus flavus. Front Microbiol 2024; 15:1425790. [PMID: 39070265 PMCID: PMC11272468 DOI: 10.3389/fmicb.2024.1425790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Aflatoxins (AFs) are highly carcinogenic metabolites produced by Aspergillus species that can contaminate critical food staples, leading to significant health and economic risks. The cytochrome P450 monooxygenase AflG catalyzes an early step in AF biosynthesis, resulting in the conversion of averantin (AVN) to 5'-hydroxy-averantin. However, the molecular mechanism underlying the AflG-AVN interaction remains unclear. Here, we sought to understand the structural features of AflG in complex with AVN to enable the identification of inhibitors targeting the AflG binding pocket. To achieve this goal, we employed a comprehensive approach combining computational and experimental methods. Structural modeling and microsecond-scale molecular dynamics (MD) simulations yielded new insights into AflG architecture and unveiled unique ligand binding conformations of the AflG-AVN complex. High-throughput virtual screening of more than 1.3 million compounds pinpointed specific subsets with favorable predicted docking scores. The resulting compounds were ranked based on binding free energy calculations and evaluated with MD simulations and in vitro experiments with Aspergillus flavus. Our results revealed two compounds significantly inhibited AF biosynthesis. Comprehensive structural analysis elucidated the binding sites of competitive inhibitors and demonstrated their regulation of AflG dynamics. This structure-guided pipeline successfully enabled the identification of novel AflG inhibitors and provided novel molecular insights that will guide future efforts to develop effective therapeutics that prevent AF contamination.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weijie Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jinlu Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenjie Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaofu Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuanyuan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jun Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | |
Collapse
|
2
|
Wang Y, Liu D, Yin H, Wang H, Cao C, Wang J, Zheng J, Liu J. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins (Basel) 2023; 15:414. [PMID: 37505683 PMCID: PMC10467056 DOI: 10.3390/toxins15070414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Peanut seeds are susceptible to Aspergillus flavus infection, which has a severe impact on the peanut industry and human health. However, the molecular mechanism underlying this defense remains poorly understood. The aim of this study was to analyze the changes in differentially expressed genes (DEGs) and differential metabolites during A. flavus infection between Zhonghua 6 and Yuanza 9102 by transcriptomic and metabolomic analysis. A total of 5768 DEGs were detected in the transcriptomic study. Further functional analysis showed that some DEGs were significantly enriched in pectinase catabolism, hydrogen peroxide decomposition and cell wall tissues of resistant varieties at the early stage of infection, while these genes were differentially enriched in the middle and late stages of infection in the nonresponsive variety Yuanza 9102. Some DEGs, such as those encoding transcription factors, disease course-related proteins, peroxidase (POD), chitinase and phenylalanine ammonialyase (PAL), were highly expressed in the infection stage. Metabolomic analysis yielded 349 differential metabolites. Resveratrol, cinnamic acid, coumaric acid, ferulic acid in phenylalanine metabolism and 13S-HPODE in the linolenic acid metabolism pathway play major and active roles in peanut resistance to A. flavus. Combined analysis of the differential metabolites and DEGs showed that they were mainly enriched in phenylpropane metabolism and the linolenic acid metabolism pathway. Transcriptomic and metabolomic analyses further confirmed that peanuts infected with A. flavus activates various defense mechanisms, and the response to A. flavus is more rapid in resistant materials. These results can be used to further elucidate the molecular mechanism of peanut resistance to A. flavus infection and provide directions for early detection of infection and for breeding peanut varieties resistant to aflatoxin contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.W.); (D.L.); (H.Y.); (H.W.); (C.C.); (J.W.); (J.Z.)
| |
Collapse
|
3
|
Pidoplichko VI, Figueiredo TH, Braga MFM, Pan H, Marini AM. Alpha-linolenic acid enhances the facilitation of GABAergic neurotransmission in the BLA and CA1. Exp Biol Med (Maywood) 2023; 248:596-604. [PMID: 37208920 PMCID: PMC10350796 DOI: 10.1177/15353702231165010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperexcitability is a major mechanism implicated in several neuropsychiatric disorders, such as organophosphate-induced status epilepticus (SE), primary epilepsy, stroke, spinal cord injury, traumatic brain injury, schizophrenia, and autism spectrum disorders. Underlying mechanisms are diverse, but a functional impairment and loss of GABAergic inhibitory neurons are common features in many of these disorders. While novel therapies abound to correct for the loss of GABAergic inhibitory neurons, it has been difficult at best to improve the activities of daily living for the majority of patients. Alpha-linolenic acid (ALA) is an essential omega-3 polyunsaturated fatty acid found in plants. ALA exerts pleiotropic effects in the brain that attenuate injury in chronic and acute brain disease models. However, the effect of ALA on GABAergic neurotransmission in hyperexcitable brain regions involved in neuropsychiatric disorders, such as the basolateral amygdala (BLA) and CA1 subfield of the hippocampus, is unknown. Administration of a single dose of ALA (1500 nmol/kg) subcutaneously increased the charge transfer of inhibitory postsynaptic potential currents mediated by GABAA receptors in pyramidal neurons by 52% in the BLA and by 92% in the CA1 compared to vehicle animals a day later. Similar results were obtained in pyramidal neurons from the BLA and CA1 when ALA was bath-applied in slices from naïve animals. Importantly, pretreatment with the high-affinity, selective TrkB inhibitor, k252, completely abolished the ALA-induced increase in GABAergic neurotransmission in the BLA and CA1, suggesting a brain-derived neurotrophic factor (BDNF)-mediated mechanism. Addition of mature BDNF (20 ng/mL) significantly increased GABAA receptor inhibitory activity in the BLA and CA1 pyramidal neurons similar to the results obtained with ALA. ALA may be an effective treatment for neuropsychiatric disorders where hyperexcitability is a major feature.
Collapse
Affiliation(s)
- Volodymir I Pidoplichko
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria FM Braga
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ann M Marini
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Wu S, Huang W, Wang F, Zou X, Li X, Liu CM, Zhang W, Yan S. Integrated metabolomics and lipidomics analyses suggest the temperature-dependent lipid desaturation promotes aflatoxin biosynthesis in Aspergillus flavus. Front Microbiol 2023; 14:1137643. [PMID: 37065116 PMCID: PMC10102665 DOI: 10.3389/fmicb.2023.1137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Temperature is one of the main factors affecting aflatoxin (AF) biosynthesis in Aspergillus flavus. Previous studies showed that AF biosynthesis is elevated in A. flavus at temperatures between 28°C-30°C, while it is inhibited at temperatures above 30°C. However, little is known about the metabolic mechanism underlying temperature-regulated AF biosynthesis. In this study, we integrated metabolomic and lipidomic analyses to investigate the endogenous metabolism of A. flavus across 6 days of mycelia growth at 28°C (optimal AF production) and 37°C (no AF production). Results showed that both metabolite and lipid profiles were significantly altered at different temperatures. In particular, metabolites involved in carbohydrate and amino acid metabolism were up-regulated at 37°C on the second day but down-regulated from days three to six. Moreover, lipidomics and targeted fatty acids analyses of mycelia samples revealed a distinct pattern of lipid species and free fatty acids desaturation. High degrees of polyunsaturation of most lipid species at 28°C were positively correlated with AF production. These results provide new insights into the underlying metabolic changes in A. flavus under temperature stress.
Collapse
Affiliation(s)
- Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fenghua Wang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinlu Zou
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Sharma S, Singh S, Sarma SJ. Challenges and advancements in bioprocess intensification of fungal secondary metabolite: kojic acid. World J Microbiol Biotechnol 2023; 39:140. [PMID: 36995482 DOI: 10.1007/s11274-023-03587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Kojic acid is a fungal secondary metabolite commonly known as a tyrosinase inhibitor, that acts as a skin-whitening agent. Its applications are widely distributed in the area of cosmetics, medicine, food, and chemical synthesis. Renewable resources are the alternative feedstocks that can fulfill the demand for free sugars which are fermented for the production of kojic acid. This review highlights the current progress and importance of bioprocessing of kojic acid from various types of competitive and non-competitive renewable feedstocks. The bioprocessing advancements, secondary metabolic pathway networks, gene clusters and regulations, strain improvement, and process design have also been discussed. The importance of nitrogen sources, amino acids, ions, agitation, and pH has been summarized. Two fungal species Aspergillus flavus and Aspergillus oryzae are found to be extensively studied for kojic acid production due to their versatile substrate utilization and high titer ability. The potential of A. flavus to be a competitive industrial strain for large-scale production of kojic acid has been studied.
Collapse
Affiliation(s)
- Sumit Sharma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India
| | - Shikha Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India.
| |
Collapse
|
6
|
Wu S, Zhang Q, Zhang W, Huang W, Kong Q, Liu Q, Li W, Zou X, Liu CM, Yan S. Linolenic Acid-Derived Oxylipins Inhibit Aflatoxin Biosynthesis in Aspergillus flavus through Activation of Imizoquin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15928-15944. [PMID: 36508213 PMCID: PMC9785051 DOI: 10.1021/acs.jafc.2c06230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Oxylipins play important signaling roles in aflatoxin (AF) biosynthesis in Aspergillus flavus. We previously showed that exogenous supply of autoxidated linolenic acid (AL) inhibited AF biosynthesis in A. flavus via oxylipins, but the molecular mechanism is still unknown. Here, we performed multiomics analyses of A. flavus grown in media with or without AL. Targeted metabolite analyses and quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) showed that the imizoquin (IMQ) biosynthetic pathway was distinctly upregulated in the presence of AL. 13C-glucose labeling confirmed in parallel that the tricarboxylic acid cycle was also enhanced by AL, consistent with observed increases in mycelial growth. Moreover, we integrated thermal proteome profiling and molecular dynamics simulations to identify a potential receptor of AL; AL was found to interact with a transporter (ImqJ) located in the IMQ gene cluster, primarily through hydrophobic interactions. Further analyses of strains with an IMQ pathway transcription factor overexpressed or knocked out confirmed that this pathway was critical for AL-mediated inhibition of AF biosynthesis. Comparison of 22 assembled A. flavus and Aspergillus oryzae genomes showed that genes involved in the IMQ pathway were positively selected in A. oryzae. Taken together, the results of our study provide novel insights into oxylipin-mediated regulation of AF biosynthesis and suggest potential methods for preventing AF contamination of crops.
Collapse
Affiliation(s)
- Shaowen Wu
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qunjie Zhang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
- Institution
of Genomics and Bioinformatics, South China
Agricultural University, Guangzhou510642, China
| | - Wenyang Zhang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Wenjie Huang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qian Kong
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qinjian Liu
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Wenyan Li
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Xinlu Zou
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Chun-Ming Liu
- Key
Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing100093, China
| | - Shijuan Yan
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| |
Collapse
|
7
|
Jabran M, Chen D, Muhae-Ud-Din G, Liu T, Chen W, Liu C, Gao L. Metabolomic Analysis of Wheat Grains after Tilletia laevis Kühn Infection by Using Ultrahigh-Performance Liquid Chromatography–Q-Exactive Mass Spectrometry. Metabolites 2022; 12:metabo12090805. [PMID: 36144210 PMCID: PMC9502932 DOI: 10.3390/metabo12090805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography–Q-exactive mass spectrometry (UPLC-QE-MS) was used to examine the changes in wheat grains after T. laevis infection. PCA analysis suggested that T. laevis-infected and non-infected samples were scattered separately during the interaction. In total, 224 organic acids and their derivatives, 170 organoheterocyclic compounds, 128 lipids and lipid-like molecules, 85 organic nitrogen compounds, 64 benzenoids, 31 phenylpropanoids and polyketides, 21 nucleosides, nucleotides, their analogues, and 10 alkaloids and derivatives were altered in hyphal-infected grains. According to The Kyoto Encyclopedia of Genes and genomes analysis, the protein digestion and absorption, biosynthesis of amino acids, arginine and proline metabolism, vitamin digestion and absorption, and glycine, serine, and threonine metabolism pathways were activated in wheat crops after T. laevis infection.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Delai Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Technology, Longdong University, Qingyang 745000, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
8
|
Transcriptional Stages of Conidia Germination and Associated Genes in Aspergillus flavus: An Essential Role for Redox Genes. Toxins (Basel) 2022; 14:toxins14080560. [PMID: 36006223 PMCID: PMC9412981 DOI: 10.3390/toxins14080560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Aflatoxin is a threatening mycotoxin primarily present in the agricultural environment, especially in food and feedstuff, and poses significant global health risks. Aflatoxins are produced mainly by Aspergillus flavus. Conidia germination is the first step for A. flavus development. In this study, the transcriptome of A. flavus conidia was analyzed at three different stages of conidia germination, which were characterized by two different microscopes. Dormant conidia grew isotropically with the cell size increasing up to 5 h of after being inoculated in a liquid medium. Conidia changed towards polarized growth from 5 to 10 h of germination, during which germ tubes formed. Moreover, transcriptome analyses revealed that a larger number of genes changed in the isotropic growth stages compared to polarized growth, with 1910 differentially expressed genes (DEGs) up-regulated and 969 DEGs down-regulated in isotropic growth. GO and KEGG pathway analyses and pathway enrichment demonstrated that, in the isotropic growth stage, the top three pathways were translation, amino acid and carbohydrate metabolism. The ribosome was a key pathway in translation, as RPS28e, RPL53 and RPL36e were the top three DEGs. For polarized growth stage, lipid metabolism, amino acid metabolism and carbohydrate metabolism were the top three most active pathways. POX1 from alpha-linolenic acid metabolism was a DEG in lipid metabolism as well. Genes related to the antioxidant system were crucial for conidia germination. Furthermore, RT-PCR results showed the same trends as the transcriptome for redox genes, and essential oils have a significant inhibitory effect on germination rate and redox gene expression. Therefore, redox genes play an important role during germination, and the disruption of redox genes is involved in the mechanism of action of coumalic acid and geraniol against A. flavus spore germination.
Collapse
|
9
|
The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins (Basel) 2022; 14:toxins14030188. [PMID: 35324685 PMCID: PMC8954725 DOI: 10.3390/toxins14030188] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Fungal contamination presents several problems: in humans, health issues arise from infections with opportunistic filamentous fungi and yeast, while in food, fungi cause spoilage and, in particular, in the case of mycotoxigenic fungi, can cause serious health issues. Several types of fatty acids and their derivatives, oxylipins, have been found to have inhibitory effect towards fungal growth and the production of mycotoxins. The use of fatty acids as antifungals could fulfil consumer’s requests of more natural and environmentally friendly compounds, while being less likely to promote fungal resistance. In addition, due to their nature, fatty acids are easily used as food additives. In this work, we review the most relevant and recent studies on the antifungal ability of fatty acids. We focused on saturated fatty acids, unsaturated fatty acids, and oxylipins, their different impact on fungal inhibition, their proposed modes of action, and their ability to impair mycotoxin production. Applications of fatty acids as antifungals and their limitations are also addressed.
Collapse
|
10
|
|
11
|
Wang Y, Wang S, Zeng L, Han Z, Cao J, Wang Y, Zhong G. Long-chain unsaturated fatty acids are involved in the viability and itraconazole susceptibility of Aspergillus fumigatus. Biochem Biophys Res Commun 2021; 585:82-88. [PMID: 34800884 DOI: 10.1016/j.bbrc.2021.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The prevalence of invasive aspergillosis with azole resistance is increasing, but the mechanisms underlying the development of resistance and treatment strategies are still limited. The present work is focused on finding a relationship between long-chain unsaturated fatty acids (LCUFAs), Aspergillus fumigatus development, and antifungal resistance. The effects of LCUFAs on antifungal agents in vitro were determined, and the stearic acid desaturase gene (sdeA) of A. fumigatus was characterized. In in vitro antifungal tests, LCUFAs antagonized the antifungal activity of itraconazole by extracting it from media, thereby preventing it from entering cells. The OA auxotrophic phenotype caused by an sdeA deletion confirmed that SdeA was required for OA biosynthesis in A. fumigatus. Furthermore, several low-level sdeA-overexpressing mutants with impaired vegetative growth phenotypes were successfully constructed. Additionally, an sdeA-overexpressing mutant, OEsdeA-5, showed lowered sensitivity levels to itraconazole. Moreover, RNA sequencing of OEsdeA-5 revealed that the altered gene-expression pattern. Through targeted metabolomics, decreased palmitic acid and stearic acid contents, accompanied by higher palmitoleic acid, margaroleic acid, and OA production levels, were found in OEsdeA-5. This study provides a novel insight of understanding of azole resistance and a potential target for drug development.
Collapse
Affiliation(s)
- Yuanzhou Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, China
| | - Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Ziyu Han
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiayi Cao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Qiu M, Wang Y, Sun L, Deng Q, Zhao J. Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins (Basel) 2021; 13:toxins13120852. [PMID: 34941690 PMCID: PMC8707646 DOI: 10.3390/toxins13120852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Fungal contamination of food, especially by mycotoxigenic fungi, not only reduces the quality of the food, but can also cause serious diseases, thus posing a major food safety challenge to humans. Apart from sound food control systems, there is also a continual need to explore antifungal agents that can inhibit fungal growth and mycotoxin production in food. Many types of fatty acids (FAs) and their oxidized derivatives, oxylipins, have been found to exhibit such effects. In this review, we provide an update on the most recent literature on the occurrence and formation of FAs and oxylipins in food, their effects on fungal growth and mycotoxin synthesis, as well as the genetic and molecular mechanisms of actions. Research gaps in the field and needs for further studies in order to realizing the potential of FAs and oxylipins as natural antifungal preservatives in food are also discussed.
Collapse
Affiliation(s)
- Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Correspondence:
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
13
|
Metabolomics analysis of grains of wheat infected and noninfected with Tilletia controversa Kühn. Sci Rep 2021; 11:18876. [PMID: 34556726 PMCID: PMC8460654 DOI: 10.1038/s41598-021-98283-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Dwarf bunt caused by the pathogen Tilletia controversa Kühn is one of the most serious quarantine diseases of winter wheat. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue levels of plants. In the present study, a liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was used to investigate the changes in the grain metabolomics of infected and noninfected with T. controversa samples. PCA suggested that T. controversa-infected and noninfected samples were separated during the interaction. LC/MS analysis showed that 62 different metabolites were recorded in the grains, among which a total of 34 metabolites were upregulated and 28 metabolites were downregulated. Prostaglandins (PGs) and 9-hydroxyoctadecadienoic acids (9-HODEs) are fungal toxin-related substances, and their expression significantly increased in T. controversa-infected grains. Additionally, the concentrations of cucurbic acid and octadecatrienoic acid changed significantly after pathogen infection, which play a large role in plant defense. The eight different metabolic pathways activated during T. controversa and wheat plant interactions included phenylalanine metabolism, isoquinoline alkaloid biosynthesis, starch and sucrose metabolism, tyrosine metabolism, sphingolipid metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, and tryptophan metabolism. In conclusion, we found differences in the metabolic profiles of wheat grains after T. controversa infection. To our knowledge, this is the first study to evaluate the metabolites in wheat grains after T. controversa infection.
Collapse
|
14
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Mungamuri SK, Mavuduru VA. Role of epigenetic alterations in aflatoxin‐induced hepatocellular carcinoma. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/lci2.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathish Kumar Mungamuri
- Division of Food Safety Indian Council of Medical Research (ICMR) ‐ National Institute of Nutrition (NIN) Hyderabad Telangana India
| | | |
Collapse
|
16
|
Nastić N, Borrás-Linares I, Lozano-Sánchez J, Švarc-Gajić J, Segura-Carretero A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Caceres I, Snini SP, Puel O, Mathieu F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B₁ Producer. Toxins (Basel) 2018; 10:toxins10110442. [PMID: 30380704 PMCID: PMC6267218 DOI: 10.3390/toxins10110442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.
Collapse
Affiliation(s)
- Isaura Caceres
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, 31300 Toulouse, France.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| |
Collapse
|
18
|
Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels. Toxins (Basel) 2018; 10:toxins10050187. [PMID: 29735944 PMCID: PMC5983243 DOI: 10.3390/toxins10050187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.
Collapse
|
19
|
Jung B, Park J, Kim N, Li T, Kim S, Bartley LE, Kim J, Kim I, Kang Y, Yun K, Choi Y, Lee HH, Ji S, Lee KS, Kim BY, Shon JC, Kim WC, Liu KH, Yoon D, Kim S, Seo YS, Lee J. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun 2018; 9:31. [PMID: 29295978 PMCID: PMC5750236 DOI: 10.1038/s41467-017-02430-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Soyeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jinnyun Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Inyoung Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Yoonhee Kang
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kihoon Yun
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Younghae Choi
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kwang Sik Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Bo Yeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Won Cheol Kim
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Suhkman Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46269, Korea.
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
20
|
Qi W, Gutierrez GE, Gao X, Dixon H, McDonough JA, Marini AM, Fisher AL. The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins. Aging Cell 2017; 16:1125-1135. [PMID: 28772063 PMCID: PMC5595674 DOI: 10.1111/acel.12651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
The dietary intake of ω-3 polyunsaturated fatty acids has been linked to a reduction in the incidence of aging-associated disease including cardiovascular disease and stroke. Additionally, long-lived Caenorhabditis elegans glp-1 germ line-less mutant animals show a number of changes in lipid metabolism including the increased production of the ω-3 fatty acid, α-linolenic acid (ALA). Here, we show that the treatment of C. elegans with ALA produces a dose-dependent increase in lifespan. The increased longevity of the glp-1 mutant animals is known to be dependent on both the NHR-49/PPARα and SKN-1/Nrf2 transcription factors, although the mechanisms involved are incompletely understood. We find that ALA treatment increased the lifespan of wild-type worms and that these effects required both of these transcription factors. Specifically, NHR-49 was activated by ALA to promote the expression of genes involved in the β-oxidation of lipids, whereas SKN-1 is not directly activated by ALA, but instead, the exposure of ALA to air results in the oxidation of ALA to a group of compounds termed oxylipins. At least one of the oxylipins activates SKN-1 and enhances the increased longevity resulting from ALA treatment. The results show that ω-3 fatty acids inhibit aging and that these effects could reflect the combined effects of the ω-3 fatty acid and the oxylipin metabolites. The benefits of ω-3 fatty acid consumption on human health may similarly involve the production of oxylipins, and differences in oxylipin conversion could account for at least part of the variability found between observational vs. interventional clinical trials.
Collapse
Affiliation(s)
- Wenbo Qi
- Center for Healthy Aging; University of Texas Health Science Center at San Antonio; San Antonio TX 78229 USA
| | - Gloria E. Gutierrez
- Pharmaceuticals and Bioengineering; Chemistry and Chemical Engineering Division; Southwest Research Institute; San Antonio TX 78238 USA
| | - Xiaoli Gao
- Department of Biochemistry; University of Texas Health Science Center at San Antonio; San Antonio TX 78229 USA
| | - Hong Dixon
- Pharmaceuticals and Bioengineering; Chemistry and Chemical Engineering Division; Southwest Research Institute; San Antonio TX 78238 USA
| | - Joe A. McDonough
- Pharmaceuticals and Bioengineering; Chemistry and Chemical Engineering Division; Southwest Research Institute; San Antonio TX 78238 USA
| | - Ann M. Marini
- Department of Neurology and Program in Neuroscience; Uniformed Services University of the Health Sciences; Bethesda MD 20814 USA
| | - Alfred L. Fisher
- Center for Healthy Aging; University of Texas Health Science Center at San Antonio; San Antonio TX 78229 USA
- Division of Geriatrics, Gerontology, and Palliative Medicine; Department of Medicine; University of Texas Health Science Center at San Antonio; San Antonio TX 78229 USA
- GRECC; South Texas VA Healthcare System; San Antonio TX 78229 USA
| |
Collapse
|
21
|
Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus. Appl Microbiol Biotechnol 2017; 101:6683-6696. [PMID: 28725928 DOI: 10.1007/s00253-017-8426-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 01/18/2023]
Abstract
Aspergillus flavus is an opportunistic mold that represents a serious threat for human and animal health due to its ability to synthesize and release, on food and feed commodities, different toxic secondary metabolites. Among them, aflatoxin B1 is one of the most dangerous since it is provided with a strong cancerogenic and mutagenic activity. Controlling fungal contamination on the different crops that may host A. flavus is considered a priority by sanitary authorities of an increasing number of countries due also to the fact that, owing to global temperature increase, the geographic areas that are expected to be prone to experience sudden A. flavus outbreaks are widening. Among the different pre- and post-harvest strategies that may be put forward in order to prevent fungal and/or mycotoxin contamination, fungicides are still considered a prominent weapon. We have here analyzed different structural modifications of a natural-derived compound (cuminaldehyde thiosemicarbazone) for their fungistatic and anti-aflatoxigenic activity. In particular, we have focused our attention on one of the compound that presented a prominent anti-aflatoxin specificity, and performed a set of physiological and molecular analyses, taking also advantage of yeast (Saccharomyces cerevisiae) cell as an experimental model.
Collapse
|
22
|
Li C, Song Y, Xiong L, Huang K, Liang Z. Initial Spore Density Has an Influence on Ochratoxin A Content in Aspergillus ochraceus CGMCC 3.4412 in PDB and Its Interaction with Seeds. Toxins (Basel) 2017; 9:E146. [PMID: 28430142 PMCID: PMC5408220 DOI: 10.3390/toxins9040146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/04/2022] Open
Abstract
The morphology and secondary metabolism of Aspergillus spp. are associated with initial spore density (ISD). Fatty acids (FA) are involved in the biosynthesis of aflatoxins (AF) through Aspergillus quorum sensing (QS). Here, we studied how ochratoxin A (OTA) was regulated by spore density in Aspergillus ochraceus CGMCC 3.4412. The results contribute to understanding the role of spore density in morphogenesis, OTA biosynthesis, and host-pathogen interactions. When A. ochraceus was grown in Potato Dextrose Broth (PDB) media at different spore densities (from 10¹ to 10⁶ spores/mL), more OTA was produced when ISD were increased, but a higher level of ISD inhibited OTA biosynthesis. Seed infection studies showed that peanuts (Arachis hypogaea) and soybeans (Glycine max) with high FA content were more susceptible to OTA production when infected by A. ochraceus and reactive oxygen species (ROS)-induced OTA biosynthesis. These results suggested that FA was vital for OTA biosynthesis, and that oxidative stress was closely related to OTA biosynthesis in A. ochraceus.
Collapse
Affiliation(s)
- Caiyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanmin Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Lu Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| | - Zhihong Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Characterization of the Far Transcription Factor Family in Aspergillus flavus. G3-GENES GENOMES GENETICS 2016; 6:3269-3281. [PMID: 27534569 PMCID: PMC5068947 DOI: 10.1534/g3.116.032466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE) of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation.
Collapse
|
24
|
Baquião AC, Lopes EL, Corrêa B. Molecular and mycotoxigenic biodiversity of Aspergillus flavus isolated from Brazil nuts. Food Res Int 2016; 89:266-271. [PMID: 28460913 DOI: 10.1016/j.foodres.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 01/20/2023]
Abstract
The objective of this study was to carry out a transcription analysis of eight genes belonging to the aflatoxin (AF) and cyclopiazonic acid (CPA) biosynthesis pathway, and to detect aflatoxin B1 (AFB1) and CPA production in Aspergillus flavus strains isolated from Brazil nuts. Additionally, these genes were correlated with the different mycotoxigenic profiles of the same strains. Four previously identified A. flavus strains (ICB-01, ICB-151, ICB-161, and ICB-165) were grown on Brazil nut agar at 25°C for 10days. Mycotoxins were separated by high-performance liquid chromatography. Transcriptional analysis was performed by real-time RT-PCR using specific primers designed based on the conserved regions of two regulatory genes (aflR and aflS), three structural genes of the AFB1 biosynthesis pathway (aflH, aflJ and aflP), and three structural genes of the CPA biosynthesis pathway (maoA, dmaT and pks-nrps). The expression of most genes in the A. flavus isolates varied according to the mycotoxin profile of each strain. The most expressed genes in the aflatoxigenic strain ICB-151 were aflJ (77.11%) and aflH (32.75%), while the CPA-producing strain ICB-161 mainly expressed dmaT (100%), maoA (63.72%), aflS (43.52%), and aflR (42.63%). The ICB-01 isolate was a producer of AFB1 and CPA and the most expressed genes were aflS (47.79%), dmaT (42.77%), aflP (39.5%), and aflR (38.02%). ICB-198 did not produce any mycotoxin and exhibited lower expression of almost all genes analyzed. Furthermore, the ratio of aflS/aflR expression was correlated with the biosynthesis of AF and CPA in A. flavus strains producing exclusively AF or CPA or producing both AF and CPA. The ratio of aflS/aflR expression therefore seems to be related to the production of mycotoxins in Brazil nuts. Our results provide important data for the development of innovative and more cost-effective strategies to reduce and prevent AFB and CPA contamination in Brazil nuts.
Collapse
Affiliation(s)
- Arianne Costa Baquião
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, CEP 05508-000 São Paulo, Brazil.
| | - Evandro Luiz Lopes
- Escola Paulista de Política, Economia e Negócios, Universidade Federal de São Paulo, Brazil
| | - Benedito Corrêa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, CEP 05508-000 São Paulo, Brazil
| |
Collapse
|
25
|
Wang H, Lei Y, Wan L, Yan L, Lv J, Dai X, Ren X, Guo W, Jiang H, Liao B. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus. BMC PLANT BIOLOGY 2016; 16:54. [PMID: 26922489 PMCID: PMC4769821 DOI: 10.1186/s12870-016-0738-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/17/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of peanut response to aflatoxin production by A. flavus, RNA-seq was used for global transcriptome profiling of post-harvest seed of resistant (Zhonghua 6) and susceptible (Zhonghua 12) peanut genotypes under the fungus infection and aflatoxin production stress. RESULT A total of 128.72 Gb of high-quality bases were generated and assembled into 128, 725 unigenes (average length 765 bp). About 62, 352 unigenes (48.43%) were annotated in the NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Swiss-Prot, KEGG Ortholog, Protein family, Gene Ontology, or eukaryotic Ortholog Groups database and more than 93% of the unigenes were expressed in the samples. Among obtained 30, 143 differentially expressed unigenes (DEGs), 842 potential defense-related genes, including nucleotide binding site-leucine-rich repeat proteins, polygalacturonase inhibitor proteins, leucine-rich repeat receptor-like kinases, mitogen-activated protein kinase, transcription factors, ADP-ribosylation factors, pathogenesis-related proteins and crucial factors of other defense-related pathways, might contribute to peanut response to aflatoxin production. Notably, DEGs involved in phenylpropanoid-derived compounds biosynthetic pathway were induced to higher levels in the resistant genotype than in the susceptible one. Flavonoid, stilbenoid and phenylpropanoid biosynthesis pathways were enriched only in the resistant genotype. CONCLUSIONS This study provided the first comprehensive analysis of transcriptome of post-harvest peanut seeds in response to aflatoxin production, and would contribute to better understanding of molecular interaction between peanut and A. flavus. The data generated in this study would be a valuable resource for genetic and genomic studies on crops resistance to aflatoxin contamination.
Collapse
Affiliation(s)
- Houmiao Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Yong Lei
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Liyun Wan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Liying Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jianwei Lv
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Xiaofeng Dai
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaoping Ren
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Wei Guo
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huifang Jiang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Boshou Liao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
26
|
Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016; 21:254. [PMID: 26907241 PMCID: PMC6273781 DOI: 10.3390/molecules21020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Nine oxylipin mimics were designed and synthesized starting from d-mannose. Their antifungal activity against three citrus postharvest pathogens was evaluated by spore germination assay. The results indicated that all the compounds significantly inhibited the growth of Penicillium digitatum, Penicillium italicum and Aspergillus niger. The compound (3Z,6Z,8S,9R,10R)-octadeca-3,6-diene-8,9,10-triol (3) exhibited excellent inhibitory effect on both Penicillium digitatum (IC50 = 34 ppm) and Penicillium italicum (IC50 = 94 ppm). Their in vivo antifungal activities against citrus postharvest blue mold were tested with fruit inoculated with the pathogen Penicillium italicum. The compound (3R,4S)-methyl 3,4-dihydroxy-5-octyltetrahydrofuran-2-carboxylate (9) demonstrated significant efficacy by reducing the disease severity to 60%. The antifungal mechanism of these oxylipin mimics was postulated in which both inhibition of pathogenic mycelium and stimuli of the host oxylipin-mediated defense response played important roles.
Collapse
|
27
|
Wang H, Lei Y, Yan L, Wan L, Ren X, Chen S, Dai X, Guo W, Jiang H, Liao B. Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Toxins (Basel) 2016; 8:46. [PMID: 26891328 PMCID: PMC4773799 DOI: 10.3390/toxins8020046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022] Open
Abstract
In the Aspergillus flavus (A. flavus)-peanut pathosystem, development and metabolism of the fungus directly influence aflatoxin contamination. To comprehensively understand the molecular mechanism of A. flavus interaction with peanut, RNA-seq was used for global transcriptome profiling of A. flavus during interaction with resistant and susceptible peanut genotypes. In total, 67.46 Gb of high-quality bases were generated for A. flavus-resistant (af_R) and -susceptible peanut (af_S) at one (T1), three (T2) and seven (T3) days post-inoculation. The uniquely mapped reads to A. flavus reference genome in the libraries of af_R and af_S at T2 and T3 were subjected to further analysis, with more than 72% of all obtained genes expressed in the eight libraries. Comparison of expression levels both af_R vs. af_S and T2 vs. T3 uncovered 1926 differentially expressed genes (DEGs). DEGs associated with mycelial growth, conidial development and aflatoxin biosynthesis were up-regulated in af_S compared with af_R, implying that A. flavus mycelia more easily penetrate and produce much more aflatoxin in susceptible than in resistant peanut. Our results serve as a foundation for understanding the molecular mechanisms of aflatoxin production differences between A. flavus-R and -S peanut, and offer new clues to manage aflatoxin contamination in crops.
Collapse
Affiliation(s)
- Houmiao Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong Lei
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Liying Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Liyun Wan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoping Ren
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Silong Chen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaofeng Dai
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wei Guo
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huifang Jiang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Boshou Liao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
28
|
Sakuda S, Yoshinari T, Furukawa T, Jermnak U, Takagi K, Iimura K, Yamamoto T, Suzuki M, Nagasawa H. Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci Biotechnol Biochem 2016; 80:43-54. [DOI: 10.1080/09168451.2015.1086261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Mycotoxin contamination of crops is a serious problem throughout the world because of its impact on human and animal health as well as economy. Inhibitors of mycotoxin production are useful not only for developing effective methods to prevent mycotoxin contamination, but also for investigating the molecular mechanisms of secondary metabolite production by fungi. We have been searching for mycotoxin production inhibitors among natural products and investigating their modes of action. In this article, we review aflatoxin and trichothecene production inhibitors, including our works on blasticidin S, methyl syringate, cyclo(l-Ala-l-Pro), respiration inhibitors, and precocene II.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Usuma Jermnak
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, Bangkok, Thailand
| | - Keiko Takagi
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
|