1
|
Sharma R, Banerjee S, Sharma R. Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis. Neurochem Int 2024; 180:105865. [PMID: 39307460 DOI: 10.1016/j.neuint.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Centella asiatica Linn Urban (C. asiatica), aka Mandukparni, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to C. asiatica till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from C. asiatica that target the central nervous system.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Subhadip Banerjee
- Medicinal Plant Innovation Centre, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Costa A, Micheli L, Sordi V, Ciampi C, Lucci J, Passani MB, Provensi G. Preventing social defeat stress-induced behavioural and neurochemical alterations by repeated treatment with a mix of Centella asiatica, Echinacea purpurea and Zingiber officinale standardized extracts. Front Pharmacol 2024; 15:1439811. [PMID: 39253374 PMCID: PMC11381240 DOI: 10.3389/fphar.2024.1439811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background: Prolonged exposure to stress is a risk factor for the onset of several disorders. Modern life is burdened by a pervasive prevalence of stress, which represents a major societal challenge requiring new therapeutic strategies. In this context, botanical drug-based therapies can have a paramount importance. Methods: Here we studied the preventive effects of a repeated treatment (p.o. daily, 3 weeks) with a combination of Centella asiatica (200 mg/kg), Echinacea purpurea (20 mg/kg) and Zingiber officinale (150 mg/kg) standardized extracts, on the chronic social defeat stress (CSDS) deleterious outcomes. After 10 days of CSDS exposure, male mice' performances were evaluated in paradigms relevant for social (social interaction test), emotional (tail suspension test), cognitive (novel object recognition) domains as well as for pain perception (cold plate and von Frey tests) and motor skills (rotarod). Mice were then sacrificed, the spinal cords, hippocampi and frontal cortices dissected and processed for RT-PCR analysis. Results: Extracts mix treatment prevented stress-induced social aversion, memory impairment, mechanical and thermal allodynia and reduced behavioural despair independently of stress exposure. The treatment stimulated hippocampal and cortical BDNF and TrkB mRNA levels and counteracted stress-induced alterations in pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL4, IL10) cytokines expression in the same areas. It also modulated expression of pain related genes (GFAP and Slc1a3) in the spinal cord. Conclusion: The treatment with the extracts mix obtained from C. asiatica, E. purpurea and Z. officinale may represent a promising strategy to promote resilience and prevent the deleterious effects induced by extended exposure to psychosocial stress.
Collapse
Affiliation(s)
- Alessia Costa
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Virginia Sordi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Clara Ciampi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Sansepolcro, Italy
- Aboca S.p.A. Società Agricola, Innovation and Medical Science Division, Sansepolcro, Italy
| | | | - Gustavo Provensi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Hnin HM, Tun T, Jansook P. Development and validation of high-performance liquid chromatography method for the simultaneous quantification of rivastigmine hydrogen tartrate and asiaticoside co-loaded in niosomes: A Box-Behnken design approach. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124170. [PMID: 38805871 DOI: 10.1016/j.jchromb.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Rivastigmine hydrogen tartrate (RHT), a reversible cholinesterase inhibitor, is considered as the first-line therapy for mild to moderate Alzheimer's disease. Asiaticoside (AS), a pentacyclic triterpenoid saponin, is well known as cognitive enhancer due to its antioxidant effect. Based on the hypothesis of their synergistic therapeutic potential, RHT and AS were co-encapsulated in niosomal formulation. A simple, precise, and accurate high-performance liquid chromatography method was developed for simultaneous quantitative analysis. The chromatographic parameters were optimized by Box-Behnken experimental design. The separation was performed on a reversed-phase Phenomenex C18 (150 mm × 4.6 mm, 5 μm) column at 30 °C under the UV detection of 210 nm. The optimized mobile phase consisted of a mixture of 20 mM potassium dihydrogen phosphate buffer (pH 2.6) and acetonitrile (72:28 % v/v) under the isocratic mode at the flow rate of 0.9 mL/min. The developed method was fully validated under the ICH guidelines and could be successfully applied for simultaneous quantitative analysis of RHT and AS in niosomal formulation.
Collapse
Affiliation(s)
- Hay Marn Hnin
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Theingi Tun
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Xu B, Bai L, Chen L, Tong R, Feng Y, Shi J. Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front Pharmacol 2022; 13:1036506. [PMCID: PMC9606746 DOI: 10.3389/fphar.2022.1036506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
PI3K/Akt, an essential signaling pathway widely present in cells, has been shown to be relevant to neurological disorders. As an important class of natural products, terpenoids exist in large numbers and have diverse backbones, so they have a great chance to be identified as neuroprotective agents. In this review, we described and summarized recent research for a range of terpenoid natural products associated with the PI3K/Akt pathway by classifying their basic chemical structures of the terpenes, identified by electronic searches on PubMed, Web of Science for research, and Google Scholar websites. Only articles published in English were included. Our discussion here concerned 16 natural terpenoids and their mechanisms of action, the associated diseases, and the methods of experimentation used. We also reviewed the discovery of their chemical structures and their derivatives, and some compounds have been concluded for their structure–activity relationships (SAR). As a result, terpenoids are excellent candidates for research as natural neuroprotective agents, and our content will provide a stepping stone for further research into these natural products. It may be possible for more terpenoids to serve as neuroprotective agents in the future.
Collapse
Affiliation(s)
- Bingyao Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| |
Collapse
|
5
|
Lanz M, Janeiro MH, Milagro FI, Puerta E, Ludwig IA, Pineda-Lucena A, Ramírez MJ, Solas M. Trimethylamine N-Oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model. Mech Ageing Dev 2022; 204:111668. [PMID: 35341897 DOI: 10.1016/j.mad.2022.111668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state was observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across an aging-disrupted blood brain barrier. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment that decreases TMAO levels. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between aging, insulin resistance and dementia. Thus, pharmacological intervention that leads to decreased TMAO levels, such as DMB, could open a new avenue for the future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- María Lanz
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fermin I Milagro
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iziar A Ludwig
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
6
|
Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and its use as a folk medicine for many years. Its therapeutic properties have been well correlated with the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes. The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among the active constituents that have been identified in Centella asiatica, madecassoside has been the subject of only a relatively small number of scientific reports. Therefore, this review, while including other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and toxicity of madecassoside.
Collapse
|
7
|
Wong JH, Barron AM, Abdullah JM. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease. Front Pharmacol 2021; 12:687935. [PMID: 34267660 PMCID: PMC8275827 DOI: 10.3389/fphar.2021.687935] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain & Behaviour Cluster and Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
8
|
Hazarika I, Mukundan GK, Sundari SP, Das A. The modulatory effect of Hydrocotyle sibthorpioides in attenuating the aluminium chloride induced neurotoxicity in rat brain. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Zweig JA, Brandes MS, Brumbach BH, Caruso M, Wright KM, Quinn JF, Soumyanath A, Gray NE. Prolonged Treatment with Centella asiatica Improves Memory, Reduces Amyloid-β Pathology, and Activates NRF2-Regulated Antioxidant Response Pathway in 5xFAD Mice. J Alzheimers Dis 2021; 81:1453-1468. [PMID: 33935097 PMCID: PMC10878128 DOI: 10.3233/jad-210271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-β (Aβ) plaque burden. OBJECTIVE Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aβ accumulation. METHODS Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aβ plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. RESULTS Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aβ plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. CONCLUSION These results suggest that prolonged CAW exposure could be beneficial in Alzheimer's disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer's disease.
Collapse
Affiliation(s)
- Jonathan A. Zweig
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Barbara H. Brumbach
- Biostatistics & Design Program Core, Oregon Health & Science University, Portland, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Matthews DG, Caruso M, Alcazar Magana A, Wright KM, Maier CS, Stevens JF, Gray NE, Quinn JF, Soumyanath A. Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer's Disease Model Mice. Nutrients 2020; 12:E3488. [PMID: 33202902 PMCID: PMC7698091 DOI: 10.3390/nu12113488] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Centella asiatica (CA) is an edible plant and a popular botanical dietary supplement. It is reputed, in Ayurveda, to mitigate age-related cognitive decline. There is a considerable body of preclinical literature supporting CA's ability to improve learning and memory. This study evaluated the contribution of CA's triterpenes (TT), widely considered its active compounds, and caffeoylquinic acids (CQA) to the cognitive effects of CA water extract (CAW) in 5XFAD mice, a model of Alzheimer's disease. 5XFAD mice were fed a control diet alone, or one containing 1% CAW or compound groups (TT, CQA, or TT + CQA) equivalent to their content in 1% CAW. Wild-type (WT) littermates received the control diet. Conditioned fear response (CFR) was evaluated after 4.5 weeks. Female 5XFAD controls showed no deficit in CFR compared to WT females, nor any effects from treatment. In males, CFR of 5XFAD controls was attenuated compared to WT littermates (p = 0.005). 5XFAD males receiving CQA or TT + CQA had significantly improved CFR (p < 0.05) compared to 5XFAD male controls. CFR did not differ between 5XFAD males receiving treatment diets and WT males. These data confirm a role for CQA in CAW's cognitive effects.
Collapse
Affiliation(s)
- Donald G. Matthews
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Armando Alcazar Magana
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
| | - Kirsten M. Wright
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Nora E. Gray
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| |
Collapse
|
11
|
Hazarika I, Mukundan GK, Sundari PS, Laloo D. Journey of
Hydrocotyle sibthorpioides
Lam.: From traditional utilization to modern therapeutics—A review. Phytother Res 2020; 35:1847-1871. [DOI: 10.1002/ptr.6924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Iswar Hazarika
- Department of Pharmacology Girijananda Chowdhury Institute of Pharmaceutical Sciences Guwahati India
- Department of Pharmacology, College of Pharmaceutical Sciences Dayananda Sagar University Bengaluru India
| | - Geetha K. Mukundan
- Department of Pharmacology, College of Pharmaceutical Sciences Dayananda Sagar University Bengaluru India
| | - P. Sivakami Sundari
- Department of Pharmacognosy, College of Pharmaceutical Sciences Dayananda Sagar University Bengaluru India
| | - Damiki Laloo
- Department of Pharmacognosy Girijananda Chowdhury Institute of Pharmaceutical Sciences Guwahati India
| |
Collapse
|
12
|
Nalinratana N, Meksuriyen D, Ongpipattanakul B. Asiaticoside but not its aglycone exhibits neuritogenicity through TrkA receptor signaling: a bridge between ERK1/2-CREB and Akt-GSK3β/RhoA. Neuroreport 2020; 30:1261-1270. [PMID: 31651704 DOI: 10.1097/wnr.0000000000001352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neuritogenicity and the neuroregenerative potential of asiaticoside (AS) and its aglycone, asiatic acid (AA), has been generally reported. We recently identified the participation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and protein kinase B (Akt) in the neuritogenic mechanism of AS and AA. In this study, we further investigated the possible upstream target molecule and the associated downstream signaling of both triterpenoids in mouse neuroblastoma Neuro-2a cells. Our immunoblotting and immunofluorescence assays revealed that either AS or AA exerted neurite extension activity through inhibitory effect on glycogen synthase kinase 3β (GSK3β) and Ras homolog gene family member A (RhoA). AS appeared significantly more potent in promoting neurite elongation than AA, and concurrently expressed a higher degree of inhibition on GSK3β and RhoA activations. The mediation of GSK3β and RhoA activities in AS-treated cells involved Akt signaling. Moreover, when using GW441756, a specific tropomyosin receptor kinase A (TrkA) receptor signaling inhibitor, the ERK1/2 and Akt phosphorylation, the inhibitory effects on GSK3β and RhoA and the neurite outgrowth induced by AS, but not AA, were totally suppressed. In conclusion, our findings supported the different upstream regulators of AS and AA in promoting neuritogenicity in Neuro-2a cells. Although both AS and AA could enhance neurite elongation through the suppression of GSK3β and RhoA activities, only AS could modulate the effect through TrkA receptor signaling.
Collapse
Affiliation(s)
- Nonthaneth Nalinratana
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok
| | - Duangdeun Meksuriyen
- Drug and Health Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani
| | - Boonsri Ongpipattanakul
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok.,Chulalongkorn University Drugs and Health Products Innovation and Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Wang L, Guo T, Guo Y, Xu Y. Asiaticoside produces an antidepressant‑like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Mol Med Rep 2020; 22:2364-2372. [PMID: 32705202 PMCID: PMC7411460 DOI: 10.3892/mmr.2020.11305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Asiaticoside is one of the triterpenoid components found in Centella asiatica that has promising neuroprotective properties. The present study aimed to evaluate the antidepressant‑like properties of asiaticoside and to investigate the possible mechanisms underlying its mode of action using a mouse model of chronic unpredictable mild stress (CMS). Behavioral tests, including sucrose preference test, forced swimming test and tail suspension test, were performed to evaluate symptoms of depression. The expression levels of neurotransmitters, 5‑hydroxytryptamine (5‑HT) and norepinephrine (NE), in the hippocampus were measured by high‑performance liquid chromatography. ELISA and western blotting were used to detect protein expression. It was demonstrated that asiaticoside treatment (20 and 40 mg/kg; intragastric) significantly reversed the decrease in sucrose consumption, and reduced the immobility time in tail suspension tests and forced swimming tests in CMS mice. Furthermore, asiaticoside treatment upregulated the expression of 5‑HT and NE in the CMS mouse model. Asiaticoside administration also downregulated the levels of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α in the hippocampus, and reduced the phosphorylation of nuclear factor (NF)‑κBp65 and the expression of nod‑like receptor protein 3 (NLRP3), thus decreasing the expression of mature caspase‑1. Furthermore, asiaticoside significantly increased the levels of cAMP and protein kinase A (PKA), and enhanced phosphorylation of the cAMP‑related specific marker vasodilator‑stimulated phosphoprotein at serine 157. Therefore, asiaticoside may activate the cAMP/PKA signaling pathway to inhibit NF‑κB‑ and NLRP3‑related inflammation. Moreover, phosphorylation of the cAMP‑responsive element‑binding protein at serine 133 and the expression of brain‑derived neurotrophic factor were increased after asiaticoside administration. Collectively, the present results suggested that asiaticoside may play a vital role as an antidepressant and anti‑inflammatory agent in the CMS mouse model by regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Luoqing Wang
- Department of Cardiovascular Medicine, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Ting Guo
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yuanfang Guo
- Department of Respiratory Medicine, Ganyu District People's Hospital, Lianyungang, Jiangsu 222100, P.R. China
| | - Yujie Xu
- Department of Anesthesiology and Perioperative Medicine, Jiangsu Province Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
14
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
15
|
Choi JG, Khan Z, Hong SM, Kim YC, Oh MS, Kim SY. The Mixture of Gotu Kola, Cnidium Fruit, and Goji Berry Enhances Memory Functions by Inducing Nerve-Growth-Factor-Mediated Actions Both In Vitro and In Vivo. Nutrients 2020; 12:nu12051372. [PMID: 32403381 PMCID: PMC7285178 DOI: 10.3390/nu12051372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/02/2022] Open
Abstract
Nerve growth factor (NGF), a typical neurotrophin, has been characterized by the regulation of neuronal cell differentiation and survival involved in learning and memory functions. NGF has a main role in neurite extension and synapse formation by activating the cyclic adenosine monophosphate-response-element-binding protein (CREB) in the hippocampus. The purpose of this study was to determine whether a mixture of Gotu Kola, Cnidium fruit, and Goji berry (KYJ) enhances memory function by inducing NGF-mediated actions both in vitro and in vivo. The KYJ combination increased NGF concentration and neurite length in C6 glioma and N2a neuronal cells, respectively. Additionally, we discovered memory-enhancing effects of KYJ through increased NGF-mediated synapse maturation, CREB phosphorylation, and cell differentiation in the mouse hippocampus. These findings suggest that this combination may be a potential nootropic cognitive enhancer via the induction of NGF and NGF-dependent activities.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Zahra Khan
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
| | - Seong Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Korea;
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (M.S.O.); (S.Y.K.); Tel.: +82-2-961-2252 (M.S.O.); +82-32-820-4931 (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
- Correspondence: (M.S.O.); (S.Y.K.); Tel.: +82-2-961-2252 (M.S.O.); +82-32-820-4931 (S.Y.K.)
| |
Collapse
|
16
|
Zhang C, Chen S, Zhang Z, Xu H, Zhang W, Xu D, Lin B, Mei Y. Asiaticoside Alleviates Cerebral Ischemia-Reperfusion Injury via NOD2/Mitogen-Activated Protein Kinase (MAPK)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e920325. [PMID: 32006420 PMCID: PMC7009775 DOI: 10.12659/msm.920325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) remains a serious health problem. Centella asiatica formulations are used to treat central nervous system disorders. In the present study, asiaticoside, an extract of the plant Centella asiatica, was investigated in CIRI in vivo and vitro. MATERIAL AND METHODS We made a CIRI model in vivo in SD rats treated by middle cerebral artery occlusion, and a cell model of ischemia-reperfusion injury was made in PC12 cells treated by deprivation of oxygen and glucose/restoration. CIRI in vivo was assessed by scores of neurological functions, encephaledema, and cerebral infarction area. Inflammation level and oxidative stress level were detected by the appropriate kits. TUNEL assay was performed for assessment of cell apoptosis and Western blot analysis was performed to assess protein expression levels. CCK8 assay was performed for evaluation of cell survival and flow cytometer was used to detect cell apoptosis in vitro. RESULTS Nervous function injury, brain edema, cell apoptosis, infarct size, apoptosis-related protein expressions, and protein expressions of the NOD2/MAPK/NF-kappaB signaling pathway in the CIRI model were all reversed by asiaticoside in rats. The cell apoptosis, inflammation level, and oxidative stress level in the model of cerebral ischemia-reperfusion injury were reduced by asiaticoside. The effects of asiaticoside on CIRI were reversed by NOD 2 agonists. CONCLUSIONS Asiaticoside showed a protective effect against cerebral ischemia-reperfusion injury via the NOD2/MAPK/NF-kappaB signaling pathway. These findings are vital for future research on use of asiaticoside in CIRI, providing a new avenue for alleviating CIRI.
Collapse
Affiliation(s)
- Chunhui Zhang
- Department of Clinical Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Suyan Chen
- Department of Public Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhenxiang Zhang
- Department of Fundamental Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Hui Xu
- Department of Fundamental Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weihong Zhang
- Department of Basic Medicine, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dongqing Xu
- Rehabilitation Department, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China (mainland)
| | - Beilei Lin
- Department of Clinical Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yongxia Mei
- Department of Public Nursing, Nursing and Health College of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
17
|
Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, Mohd Moklas MA. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: Behavioral and ultrastructural approaches. Biomed Pharmacother 2018; 109:853-864. [PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats. MATERIALS AND METHODS Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes. RESULTS The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil. CONCLUSION In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.
Collapse
Affiliation(s)
- Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, Borno State, Nigeria
| | | | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Puncak Alam, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
18
|
Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 2018; 57:1017-1039. [PMID: 27662312 DOI: 10.3233/jad-160623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Collapse
|
19
|
Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:161-194. [PMID: 31736679 PMCID: PMC6857646 DOI: 10.1007/s11101-017-9528-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
This review describes in detail the phytochemistry and neurological effects of the medicinal herb Centella asiatica (L.) Urban. C. asiatica is a small perennial plant that grows in moist, tropical and sub-tropical regions throughout the world. Phytochemicals identified from C. asiatica to date include isoprenoids (sesquiterpenes, plant sterols, pentacyclic triterpenoids and saponins) and phenylpropanoid derivatives (eugenol derivatives, caffeoylquinic acids, and flavonoids). Contemporary methods for fingerprinting and characterization of compounds in C. asiatica extracts include liquid chromatography and/or ion mobility spectrometry in conjunction with high-resolution mass spectrometry. Multiple studies in rodent models, and a limited number of human studies support C. asiatica's traditional reputation as a cognitive enhancer, as well as its anxiolytic and anticonvulsant effects. Neuroprotective effects of C.asiatica are seen in several in vitro models, for example against beta amyloid toxicity, and appear to be associated with increased mitochondrial activity, improved antioxidant status, and/or inhibition of the pro-inflammatory enzyme, phospholipase A2. Neurotropic effects of C. asiatica include increased dendritic arborization and synaptogenesis, and may be due to modulations of signal transduction pathways such as ERK1/2 and Akt. Many of these neurotropic and neuroprotective properties of C.asiatica have been associated with the triterpene compounds asiatic acid, asiaticoside and madecassoside. More recently, caffeoylquinic acids are emerging as a second important group of active compounds in C. asiatica, with the potential of enhancing the Nrf2-antioxidant response pathway. The absorption, distribution, metabolism and excretion of the triterpenes, caffeoylquinic acids and flavonoids found in C. asiatica have been studied in humans and animal models, and the compounds or their metabolites found in the brain. This review highlights the remarkable potential for C. asiatica extracts and derivatives to be used in the treatment of neurological conditions, and considers the further research needed to actualize this possibility.
Collapse
Affiliation(s)
- Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Joseph Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC),
Portland Veterans Affairs Medical Center, Portland, OR, USA 97239
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Claudia S. Maier
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
20
|
Jiang JZ, Ye J, Jin GY, Piao HM, Cui H, Zheng MY, Yang JS, Che N, Choi YH, Li LC, Yan GH. Asiaticoside Mitigates the Allergic Inflammation by Abrogating the Degranulation of Mast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8128-8135. [PMID: 28891650 DOI: 10.1021/acs.jafc.7b01590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of asiaticoside (AS) on allergic responses mediated by mast cells were investigated. AS showed no obvious cytotoxicity on RPMCs (rat peritoneal mast cells). AS reduced the intracellular calcium in RPMCs and deprived the histamine release and degranulation. AS also decreased the generation of antigen-induced tumor necrosis factor α, interleukin (IL)-4, IL-8, and IL-1β in RBL-2H3 cells sensitized by IgE. The suppression of AS on pro-inflammatory cytokines was related with the activation of the intracellular FcεRI and the inhibition of the nuclear factor-κB signaling pathway. In addition, AS disabled the phosphorylation of antigen-induced Syk, Lyn, Gab2, and PLCγ1, thus suppressing the downstream Akt phosphorylation and MAPKs pathways. It also increased HO-1 and Nrf2 expression time dependently. In summary, we demonstrate that AS suppresses the allergic inflammation mediated by mast cells and this effect might be mediated by FcεRI-dependent signaling pathways.
Collapse
Affiliation(s)
- Jing Zhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Jing Ye
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Yu Jin
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Mei Piao
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Cui
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Ming Yu Zheng
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Jin Shi Yang
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Nan Che
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School of Institute of Medical Sciences, Chonbuk National University , Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Liang Chang Li
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Hai Yan
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| |
Collapse
|
21
|
de Costa F, Barber CJS, Kim YB, Reed DW, Zhang H, Fett-Neto AG, Covello PS. Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:9-17. [PMID: 28716424 DOI: 10.1016/j.plantsci.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Triterpene saponins include bioactive compounds with structures consisting of triterpene aglycones (sapogenins) and one or more sugar moieties linked through acetal or ester glycosidic linkages at one or more sites. Centella asiatica (L.) Urban is a medicinal plant that contains bioactive ursane-type saponins, such as madecassoside and asiaticoside. In this work, glucosylation of triterpenoids in C. asiatica was investigated starting with plant extracts. An enzyme capable of glucosylating asiatic and madecassic acids was partially purified. Proteomics methods and cDNA sequence data were employed as tools to obtain a full-length cDNA clone encoding a glucosyltransferase. The recombinant gene product, UGT73AD1, was functionally expressed in Escherichia coli and purified by immobilized metal-affinity chromatography. Purified recombinant UGT73AD1 was found to have a narrow specificity, glucosylating asiatic and madecassic acids at the C28 carboxyl. mRNA accumulated in all tissues tested (leaves, stems, roots and flowers), with highest expression in leaves. Thus, UGT73AD1 was identified as a triterpenoid carboxylic acid: UDP-glucose 28-O-glucosyltransferase that appears to be involved in saponin biosynthesis in C. asiatica.
Collapse
Affiliation(s)
- Fernanda de Costa
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada; Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
| | - Carla J S Barber
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada.
| | - Yeon-Bok Kim
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada; Herbal Crop Research Division, Department of Herbal Crop Research, Bisanro 92, Eumseong, Chungbuk, 369-873, Korea.
| | - Darwin W Reed
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada.
| | - Haixia Zhang
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada.
| | - Arthur G Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
| | - Patrick S Covello
- National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK S7N 0W9, Canada.
| |
Collapse
|
22
|
Rhea EM, Banks WA. The SAMP8 mouse for investigating memory and the role of insulin in the brain. Exp Gerontol 2016; 94:64-68. [PMID: 27979769 DOI: 10.1016/j.exger.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 02/01/2023]
Abstract
SAMP8 mice exhibit changes that commonly occur with normal aging late in life, but do so at a much earlier age. These changes include impairments in learning and memory as early as 8months of age and so the SAMP8 is a useful model to investigate those age-related brain changes that may affect cognition. As brain insulin signaling and memory decline with aging, the SAMP8 model is useful for investigating these changes and interventions that might prevent the decline. This review will summarize the SAMP8 mouse model, highlight changes in brain insulin signaling and its role in memory, and discuss intranasal insulin delivery in investigating effects on insulin metabolism and memory in the SAMP8 mice.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States
| |
Collapse
|
23
|
Qiong W, Yong-Liang Z, Ying-Hui L, Shan-Guang C, Jiang-Hui G, Yi-Xi C, Ning J, Xin-Min L. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:9-16. [PMID: 27103112 DOI: 10.1016/j.jep.2016.03.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is vital for astronauts to develop effective countermeasures to prevent their decline of cognitive performance in microgravity to make space-flight missions successful. The traditional Chinese herbal formula Kai Xin San (KXS) has been used to treat amnesia for thousands years. It is a traditional complex prescription comprising of ginseng (Panax ginseng C. A. Meyer), hoelen (Poria cocos (Schw.) Wolf), polygala (Polygala tenaifolia Willd), and acorus (Acorus tatarinowii Schott). Previous study showed KXS could improve CMS-induced memory impairment in rats. MATERIAL AND METHODS In this paper, a unique environmental factor-microgravity (weightlessness) was simulated as hindlimb suspension (HLS) by tail in rats for two weeks as the HLS animal model. The KXS at the doses of 0.3 or 0.6g/kg p.o. daily was administrated to HLS rats for two weeks at the same time of HLS, the memory behavior tests were investigated with Morris water maze (MWM) and Shuttle Box (SB) test. The levels of ROS, 8-OHdG and 3-nitrotyrosine (3-NT) in the serum, and AChE and ChAT activity in the brain of rats were determined by ELISA or biochemical analysis. RESULTS After HLS for two weeks, the escape latency and the swimming distance were significantly increased in the MWM test in rats in the HLS group, compared with control group. The percent of swimming distance in target quadrant and the number of target crossing was significantly decreased in rats in the HLS group compared with the control group. Performance in the SB test showed, the numbers and the distance of active avoidance was decreased from day 4 to day 7, the time spent in electric area was increased in rats in the HLS group compared with the control group. Administration of KXS 0.3 or 0.6g/kg to the HLS rats for two weeks significantly reduced the escape latency and the swimming distance, increased the percentage of swimming distance in target quadrant and the number of target crossings (P<0.01, compared with the HLS group) in the MWM test. Similar treatment with KXS increased the numbers and the distance of active avoidance (P<0.01, compared with the HLS group) and reduced the time spent in electric area after training 3 days in the SB test (P<0.01, compared with the HLS group). The HLS induced the increase of the ROS, 8-OHdG and 3-NT in the serum of rats, but has little influence on the AChE, ChAT activity in the brain. Only the AChE activity in the cortex and the ChAT activity in the hippocampus had some changes in rats in the HLS model group. After administration of KXS 0.6g/kg for two weeks, the abnormal levels of ROS, 8-OHdG, 3-NT were found reversed in the serum of rats (P<0.05, compared with HLS model group). And KXS 0.3g/kg was found reversed the increased AChE activity in the cortex. CONCLUSIONS Experimental results from this study show that KXS may improve memory deficiency induced by HLS, its mechanisms are major related to antioxidant activities, rather than the central cholinergic system.
Collapse
Affiliation(s)
- Wang Qiong
- Sichuan Medical University, Luzhou 646000, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhang Yong-Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Li Ying-Hui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chen Shan-Guang
- National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Gao Jiang-Hui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chen Yi-Xi
- Sichuan Medical University, Luzhou 646000, China
| | - Jiang Ning
- Sichuan Medical University, Luzhou 646000, China
| | - Liu Xin-Min
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
24
|
Chen C, Nong Z, Meng M, Wen Q, Lin X, Qin F, Huang J, Huang R. Toxicological evaluation of Yulangsan polysaccharide in Wistar rats: A 26-week oral gavage study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:1-7. [PMID: 26645132 DOI: 10.1016/j.etap.2015.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Although numerous studies have proven the medicinal values of Yulangsan polysaccharide (YLSP), the toxicity of this active ingredient is unknown. In the acute toxicity study, a single oral administration of 24 g/kg YLSP caused neither toxicological symptoms nor mortality, and the LD50 was estimated >24 g/kg. In the chronic toxicity study, we administered doses of 0, 0.6, 1.2 and 2.4 g/kg YLSP in rats by oral gavage for 26 weeks followed by a 3-week recovery period. There was no mortality or remarkable clinical signs observed during this 26-week study. Additionally, there were no toxic differences in the following parameters: body weight, food consumption, hematology, clinical biochemistry, organ weight, and macroscopic findings. There were no adverse effects on histopathology observed in males or female rats treated with YLSP. Based on the results, the no-observed-adverse-effect-level of YLSP in rats is greater than 2.4 g/kg when administered orally for 26 consecutive weeks.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Department of Hyperbaric Oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Mingyu Meng
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Qingwei Wen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Feizhang Qin
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Jianchun Huang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Renbin Huang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
25
|
Yin Z, Yu H, Chen S, Ma C, Ma X, Xu L, Ma Z, Qu R, Ma S. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav Brain Res 2015; 292:288-99. [PMID: 26097002 DOI: 10.1016/j.bbr.2015.06.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Diabetes-associated cognitive dysfunction, referred as "diabetic encephalopathy", has been confirmed in a great deal of literature. Current evidence support that oxidative stress, inflammation, energy metabolism imbalance, and aberrant insulin signaling are associated with cognition deficits induced by diabetes. The present study explore the effect of asiaticoside on the cognition behaviors, synapses, and oxidative stress in diabetic rats. Asiaticoside could markedly ameliorate the performance in the Morris Water Maze (decreased latency time and path length, and increased time spent in the target quadrant), which was correlated with its capabilities of suppressing oxidative stress, restoring Na(+)-K(+)-ATPase activity and protecting hippocampal synapses. In vitro, asiaticoside could up-regulate synaptic proteins expression via modulating Phosphoinositide 3-kinase (PI3K)/Protein Kinase B(AKT)/Nuclear Factor -kappa B (NF-κB)-mediated inflammatory pathway in SH-SY5Y cells incubated with high glucose chronically. In conclusion, asiaticoside had beneficial effects on the prevention and treatment of diabetes-associated cognitive deficits, which was involved in oxidative stress, PI3K/Akt/NF-κB pathway and synaptic function in the development of cognitive decline induced by diabetes.
Collapse
Affiliation(s)
- Zhujun Yin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyang Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - She Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chunhua Ma
- School of Life Sciences, Nanjing University, Nanjing 210009, PR China
| | - Xiao Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lixing Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, PR China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
Stem cell treatment for Alzheimer's disease. Int J Mol Sci 2014; 15:19226-38. [PMID: 25342318 PMCID: PMC4227270 DOI: 10.3390/ijms151019226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.
Collapse
|
27
|
Ikehara S, Li M. Stem cell transplantation improves aging-related diseases. Front Cell Dev Biol 2014; 2:16. [PMID: 25364723 PMCID: PMC4206983 DOI: 10.3389/fcell.2014.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models.
Collapse
Affiliation(s)
- Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| | - Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| |
Collapse
|
28
|
LUO YANG, FU CHANGFENG, WANG ZHENYU, ZHANG ZHUO, WANG HONGXIA, LIU YI. Asiaticoside attenuates the effects of spinal cord injury through antioxidant and anti-inflammatory effects, and inhibition of the p38-MAPK mechanism. Mol Med Rep 2012; 12:8294-300. [DOI: 10.3892/mmr.2015.4425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 08/20/2015] [Indexed: 11/05/2022] Open
|