1
|
Zhai J, Yan H, Liu M, Jiang C, Jin M, Xie B, Ma C, Cong B, Wen D. Decoding gelsenicine-induced neurotoxicity in mice via metabolomics and network toxicology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156753. [PMID: 40250031 DOI: 10.1016/j.phymed.2025.156753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Gelsenicine, the most toxic constituent of Gelsemium elegans Benth., is known for its diverse pharmacological activities alongside potent neurotoxicity, frequently leading to poisoning incidents following mistaken ingestion. However, its molecular mechanisms remain largely unexplored. PURPOSE This study aimed to elucidate the key mechanistic network underlying gelsenicine-induced neurotoxicity by employing a comprehensive strategy that integrated metabolomics, network toxicology, molecular docking, and experimental validation. METHODS Acute oral toxicity tests were conducted in C57BL/6J mice to assess toxic symptoms, determine the median lethal dose (LD50), and evaluate histopathological changes. Untargeted metabolomics was performed to identify differential metabolites and associated pathways in serum, hippocampus (HIP), and medulla oblongata (MO). Integration of network toxicology pinpointed core targets and pathways, which were further validated through molecular docking and RT-qPCR. A core "compound-target-metabolite-pathway" network involved in gelsenicine-induced neurotoxicity was established. RESULTS Gelsenicine exhibited an oral LD50 of approximately 1.82 mg/kg and induced neurotoxic damage in the HIP and MO. Two untargeted metabolomic approaches detected a broad range of metabolites, revealing that gelsenicine markedly altered the metabolic profiles of serum, HIP, and MO. Network toxicology analysis identified 187 key targets associated with gelsenicine neurotoxicity. Integrated analyses with the predicted targets of differential metabolites indicated that gelsenicine primarily interferes with the energy metabolism network centered on the malate-aspartate shuttle (MAS), affecting pathways such as carbon metabolism, amino acid metabolism, TCA cycle, and PPAR signaling pathway. Malate, glutamate, and aspartate were identified as core metabolites and potential biomarkers of gelsenicine poisoning. RT-qPCR validation revealed that gelsenicine interfered with the expression of core targets, including GLUD1, MDH, GOT and ME, all of which exhibited good binding energy with gelsenicine. CONCLUSION This study unveiled a novel mechanistic insight into gelsenicine-induced neurotoxicity, demonstrating its capacity to perturb multiple energy metabolism pathways associated with MAS. These findings could enhance the theoretical understanding of gelsenicine's neurotoxic effects and highlight potential applications in clinical diagnosis and forensic identification.
Collapse
Affiliation(s)
- Jinxiao Zhai
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China; College of Forensic Medicine, Jining Medical University, Jining 272067, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, 1347 West Guangfu Road, Shanghai 200063, China
| | - Minghao Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Chen Jiang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Mingyang Jin
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Lejri I, Grimm A, Trempat P, Boujedaini N, Eckert A. Gelsemium low doses protect against serum deprivation-induced stress on mitochondria in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118714. [PMID: 39181289 DOI: 10.1016/j.jep.2024.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.
Collapse
Affiliation(s)
- Imane Lejri
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | | | | | - Anne Eckert
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| |
Collapse
|
3
|
Zeng QQ, Wang J, Yue RC, Wang FS, Xu Y, Su YP, Zhang QL, Zheng YW, Zhang GF, Li B, Yu CX, Jin GL. Gelsevirine ameliorates sepsis-associated encephalopathy by inhibiting the STING signalling-mediated pyroptosis pathway in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156071. [PMID: 39326131 DOI: 10.1016/j.phymed.2024.156071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is among the most prevalent and deadly complications associated with sepsis, but satisfactory treatments and therapeutic agents are lacking. Gelsevirine, an active ingredient derived from Gelsemium elegans Benth., has shown promising effects in animal models of anxiety, ischaemic stroke and osteoarthritis. However, its protective effect against SAE and its mechanism of action are still unknown. PURPOSE To elucidate the efficacy of gelsevirine against SAE and the mechanism of its protective effect through the STING signalling-mediated pyroptosis pathway. METHODS We constructed a mouse model of caecum ligation and puncture (CLP)-induced sepsis and explored the protective effects of gelsevirine in mice with SAE by assessing survival rates and behavioural alterations. To further explore its mechanism of action, we investigated the modulatory effects of gelsevirine on the levels of inflammatory factors, microglial activation and pyroptosis by Western blotting, immunohistochemistry staining and PCR. STING knockout mice were used to verify the protective effect of gelsevirine against SAE through the STING pathway. RESULTS Gelsevirine increased the survival rate of mice with SAE. The Morris water maze and open field tests revealed that gelsevirine significantly alleviated cognitive dysfunction and increased exploratory behaviour in mice with SAE. Gelsevirine inhibited the activation of microglia and decreased inflammatory factor levels in the hippocampus of mice with SAE. In mice with SAE and in vitro BV2 microglia, gelsevirine reduced levels of inflammatory factors and inhibited STING protein phosphorylation and microglial pyroptosis. However, after STING knockout, the inhibitory effect of gelsevirine on microglial pyroptosis was significantly weakened, and gelsevirine-mediated protective effects were abolished. CONCLUSIONS Gelsevirine increased the survival rate, ameliorated cognitive impairment, inhibited glial cell activation and reduced inflammation in the hippocampi of mice with SAE; the mechanism may be related to the inhibition of STING signalling pathway-mediated pyroptosis in microglia.
Collapse
Affiliation(s)
- Qing-Quan Zeng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Wang
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Fa-Sheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yan-Ping Su
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Qiao-Ling Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - You-Wei Zheng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gui-Fei Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, PR China; Amway (China) Botanical R&D Center, Wuxi 214145, PR China.
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| | - Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| |
Collapse
|
4
|
Liu D, Wang J, Hou T, Zhang Y, Zhou H, Zhao Y, Zhou L, Cao C, Liu Y, Liang X. Dihydrokoumine, a dual-target analgesic with reduced side effects isolated from a traditional Chinese medicine. J Adv Res 2024:S2090-1232(24)00465-X. [PMID: 39461422 DOI: 10.1016/j.jare.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Opioids are the most common antinociceptive drugs, but long-term administration causes serious adverse side effects. Gelsemium elegans Benth. is traditionally used as an analgesic agent and mainly contains indole alkaloids with structures different from those in common opioids, indicating distinct pharmacological properties. This work aims to find a new analgesic from Gelsemium elegans Benth. and evaluate it in vitro and in vivo. METHODS Dihydrokoumine was purified from Gelsemium elegans Benth. Binding to mu opioid receptor (MOR), M3 receptor (M3R) and other 15 G protein-coupled receptors were evaluated in vitro combined with molecular docking analysis. Analgesic efficacy and side effects were measured in vivo using hot-plate, formalin paw, and rotarod tests in mice. Cytotoxicity, acute toxicity in mice and pharmacokinetics were assessed. RESULTS A MOR agonist, dihydrokoumine, was first identified from Gelsemium elegans Benth. Further investigations showed that dihydrokoumine exhibited selective partial agonist action on the MOR and antagonist action on the M3R among other 15 GPCRs. In in vivo mouse models, dihydrokoumine could relieve acute pain and chronic inflammatory pain without drug tolerance and sedative side effects. Additionally, we observed a good safety profile and favorable pharmacokinetic properties. CONCLUSION A MOR partial agonist/M3R antagonist analgesic with reduced side effects was isolated from a traditional Chinese medicine. This study bestows dihydrokoumine as a new dual-target analgesic and as a potential lead compound in long-term pain management.
Collapse
Affiliation(s)
- Dian Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Tao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaopeng Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Liangliang Zhou
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Cuiyan Cao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
5
|
Mailänder LK, Nosrati Gazafroudi K, Lorenz P, Daniels R, Stintzing FC, Kammerer DR. It Is Not All about Alkaloids-Overlooked Secondary Constituents in Roots and Rhizomes of Gelsemium sempervirens (L.) J.St.-Hil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2208. [PMID: 39204644 PMCID: PMC11358907 DOI: 10.3390/plants13162208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Gelsemium sempervirens (L.) J.St.-Hil. is an evergreen shrub occurring naturally in North and Middle America. So far, more than 120 alkaloids have been identified in this plant in addition to steroids, coumarins and iridoids, and its use in traditional medicine has been traced back to these compound classes. However, a comprehensive phytochemical investigation of the plant with a special focus on further compound classes has not yet been performed. Therefore, the present study aimed at an extensive HPLC-MSn characterization of secondary metabolites and, for the first time, reports the occurrence of various depsides and phenolic glycerides in G. sempervirens roots and rhizomes, consisting of benzoic and cinnamic acid derivatives as well as dicarboxylic acids. Furthermore, mono- and disaccharides were assigned by GC-MS. Applying the Folin-Ciocalteu assay, the phenolic content of extracts obtained with different solvents was estimated to range from 30 to 50% calculated as chlorogenic acid equivalents per g dry weight and was related to the DPPH radical scavenging activity of the respective extracts. Upon lactic acid fermentation of aqueous G. sempervirens extracts, degradation of phenolic esters was observed going along with the formation of low-molecular volatile metabolites.
Collapse
Affiliation(s)
- Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| |
Collapse
|
6
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Wang D, Leng X, Tian Y, Liu J, Zou J, Xie S. Toxic Effects of Koumine on the Early-Life Development Stage of Zebrafish. TOXICS 2023; 11:853. [PMID: 37888703 PMCID: PMC10611223 DOI: 10.3390/toxics11100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Koumine is one of the most abundant alkaloids found in Gelsemium elegans, and it has a wide range of pharmacological effects including antitumor, anti-inflammatory, analgesic treatment effects, and antianxiety. However, its high toxicity and unclear mechanism of action have greatly limited the medicinal development and use of koumine. We investigated the toxic effects of koumine on the developmental toxicity and behavioral neurotoxicity of zebrafish embryos and larvae. Embryos at 6 h postfertilization (hpf) were exposed to 12.5, 25, 50, 75, and 100 mg/L of koumine until 120 hpf. Koumine affected the hatching and heartbeats of the embryos. The morphological analysis also revealed many abnormalities, such as shortened bodies, yolk sac edemas, tail malformations, and pericardial edemas. To identify the neurotoxicity of koumine, the behavior of the larvae was measured. Koumine at 50 and 100 mg/L affect the escape response. The embryos exhibited uncoordinated muscle contractions along the body axis in response to touch at 36 hpf. More importantly, we found that the neurotoxicity of koumine is mainly caused by influencing the ACh content and the activity of AChE without impairing motor neuron development. A comprehensive analysis shows that a high concentration of koumine has obvious toxic effects on zebrafish, and the safe concentration of koumine for zebrafish should be less than 25 mg/L. These results will be valuable for better understanding the toxicity of koumine and provide new insights into the application of koumine.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Xinyi Leng
- College of Life Sciences, Wuhan University, Wuhan 430000, China; (X.L.); (J.L.)
| | - Yao Tian
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jiangdong Liu
- College of Life Sciences, Wuhan University, Wuhan 430000, China; (X.L.); (J.L.)
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
8
|
Lin YR, Zheng FT, Xiong BJ, Chen ZH, Chen ST, Fang CN, Yu CX, Yang J. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116474. [PMID: 37031823 DOI: 10.1016/j.jep.2023.116474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.
Collapse
Affiliation(s)
- Ya-Rong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Feng-Ting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ze-Hong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| | - Shi-Ting Chen
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chao-Nan Fang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
9
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
10
|
Wang D, Wang Q, Zuo Z, Dong Z, He J, Ye X, Tang H, Zou J. Koumine induces apoptosis in Cyprinus carpio liver cells by regulating JAK-STAT and p53 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108475. [PMID: 36496140 DOI: 10.1016/j.fsi.2022.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Koumine is an alkaloid with significant anti-anxiety, anticancer cell proliferation, and analgesic activities, and our previous studies have shown that koumine can be used as an immunostimulant in aquaculture, but the molecular mechanism of its effect remains unclear. We fed a basal diet with 0, 0.2, 2, and 20 mg/kg koumine to C. carpio for 10 weeks, and comprehensive studies of the histological and biochemical parameters and transcriptomes of the four groups were performed. Histological results indicated that the number of apoptotic cells in the liver increased with increasing koumine concentration. Compared with those of the control group, the malondialdehyde, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase, and lactate dehydrogenase levels of the treatment group increased to varying degrees. In total, 100.11 GB of clean data, 4774 DEGs, and 138 differentially expressed genes were obtained from the transcriptome data. Differentially expressed genes were classified into 187 signalling pathways, and the circadian rhythm signalling pathway, the JAK-STAT signalling pathway, the p53 signalling pathway and the PPAR signalling pathway were the top enriched pathways. The qRT-PCR results confirmed that the key genes ifnar1, socs3l, epoa, ghra, cMyc, mcl-1, shisa4, and gtse1 involved in balancing cell proliferation and apoptosis were enriched in these pathways. We discovered that the JAK-STAT and p53 pathways are important targets of koumine. Such information contributes to a better understanding of the potential mechanism by which koumine regulates hepatic immunity as well as to lays the theoretical foundation for its application.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jiayang He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiangchen Ye
- Aquatic Species Introduction and Breeding Centre of Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
11
|
Lu JS, Yang L, Chen J, Xiong FF, Cai P, Wang XY, Xiong BJ, Chen ZH, Chen L, Yang J, Yu CX. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine. Br J Pharmacol 2022; 180:1408-1428. [PMID: 36519959 DOI: 10.1111/bph.16011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of diabetic neuropathic pain (DNP) due to insufficient efficacy of available therapies. Here, we used chemogenetic approaches combined with in vivo pharmacology to elucidate the role of basolateral amygdala (BLA) astrocytes in DNP pathogenesis and provide new insights into therapeutic strategies for DNP. EXPERIMENTAL APPROACH A streptozotocin-induced DNP model was established. Designer receptors exclusively activated by designer drugs (DREADDs) were used to regulate astrocyte activity. Mechanical hyperalgesia was assessed using the electronic von Frey test. Anxiety-like behaviours were detected using open field and elevated plus maze tests. Astrocytic activity was detected by immunofluorescence, and cytokine content was determined by ELISA. KEY RESULTS BLA astrocytes were regulated by DREADDs, and inhibition of BLA astrocytes attenuated mechanical allodynia and pain-related negative emotions in DNP rats. In contrast, temporary activation of BLA astrocytes induced allodynia without anxious behaviours in naive rats. In addition, koumine (KM) alleviated mechanical allodynia and anxiety-like behaviours in DNP rats, inhibited the activation of BLA astrocytes and suppressed the inflammatory response. Furthermore, persistent activation of BLA astrocytes through chemogenetics mimicked chronic pain, and KM alleviated the pain hypersensitivity and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS DREADDs bidirectionally regulate the activity of BLA astrocytes, which proves for the first time the role of BLA astrocyte activation in the pathogenesis of DNP and represents a novel therapeutic strategy for DNP. KM ameliorates DNP, perhaps by inhibiting the activation of BLA astrocytes and reveal KM as a potential candidate for treating DNP.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fang-Fang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xin-Yao Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ze-Hong Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Li YJ, Hu PP, Zhang Z, Yuan ZH, Yang K, Sun ZL. Protective autophagy alleviates neurotoxin-gelsenicine induced apoptosis through PERK signaling pathway in Neuro-2a cells. Toxicology 2022; 474:153210. [PMID: 35588915 DOI: 10.1016/j.tox.2022.153210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Gelsemium elegans Benth. (G. elegans) showed significant biological activities, but it has the side effects of neurotoxicity, predominantly in the form of respiratory depression. Gelsenicine is the main toxic constituent of G. elegans which is highly neurotoxic to humans and animals. Although the acute neurotoxicity of gelsenicine has been widely reported, but neurotoxicity mechanisms have not been elucidated and its direct effect on nerve cells remains poorly characterized. In this study, Neuro-2a cells were used to be our object of study for determining the mechanism by which gelsenicine induced neurotoxicity. We found that gelsenicine is neurotoxic to Neuro-2a cells; indeed cell proliferation was inhibited and apoptosis was induced in a dose-dependent manner. Meanwhile, gelsenicine markedly promoted autophagy and activated autophagic flux. Additionally, promoting autophagy with rapamycin decreased apoptosis, whereas blocking autophagy with 3-methyladenine (3-MA) increased apoptosis. Furthermore, the protein kinase ribose nucleic acid (RNA)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway was involved in the induction of protective autophagy in Neuro-2a cells. Inhibition of PERK using small interfering RNA (siRNA) inhibited gelsenicine-induced autophagy and aggravated apoptosis. These data indicate that gelsenicine not only exhibited cytotoxicity and induced apoptosis, but it also induced protective autophagy via PERK signaling pathway to alleviate gelsenicine-mediated apoptosis in Neuro-2a cells.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pei-Pei Hu
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhiqiang Zhang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhi-Hang Yuan
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kun Yang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China.
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
13
|
Toxicokinetics, in vivo metabolic profiling, and in vitro metabolism of gelsenicine in rats. Arch Toxicol 2022; 96:525-533. [DOI: 10.1007/s00204-021-03209-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
|
14
|
Que W, Wu Z, Chen M, Zhang B, You C, Lin H, Zhao Z, Liu M, Qiu H, Cheng Y. Molecular Mechanism of Gelsemium elegans (Gardner and Champ.) Benth. Against Neuropathic Pain Based on Network Pharmacology and Experimental Evidence. Front Pharmacol 2022; 12:792932. [PMID: 35046814 PMCID: PMC8762237 DOI: 10.3389/fphar.2021.792932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gelsemium elegans (Gardner and Champ.) Benth. (Gelsemiaceae) (GEB) is a toxic plant indigenous to Southeast Asia especially China, and has long been used as Chinese folk medicine for the treatment of various types of pain, including neuropathic pain (NPP). Nevertheless, limited data are available on the understanding of the interactions between ingredients-targets-pathways. The present study integrated network pharmacology and experimental evidence to decipher molecular mechanisms of GEB against NPP. The candidate ingredients of GEB were collected from the published literature and online databases. Potentially active targets of GEB were predicted using the SwissTargetPrediction database. NPP-associated targets were retrieved from GeneCards, Therapeutic Target database, and DrugBank. Then the protein-protein interaction network was constructed. The DAVID database was applied to Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Molecular docking was employed to validate the interaction between ingredients and targets. Subsequently, a 50 ns molecular dynamics simulation was performed to analyze the conformational stability of the protein-ligand complex. Furthermore, the potential anti-NPP mechanisms of GEB were evaluated in the rat chronic constriction injury model. A total of 47 alkaloids and 52 core targets were successfully identified for GEB in the treatment of NPP. Functional enrichment analysis showed that GEB was mainly involved in phosphorylation reactions and nitric oxide synthesis processes. It also participated in 73 pathways in the pathogenesis of NPP, including the neuroactive ligand-receptor interaction signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, 11-Hydroxyrankinidin well matched the active pockets of crucial targets, such as EGFR, JAK1, and AKT1. The 11-hydroxyrankinidin-EGFR complex was stable throughout the entire molecular dynamics simulation. Besides, the expression of EGFR and JAK1 could be regulated by koumine to achieve the anti-NPP action. These findings revealed the complex network relationship of GEB in the "multi-ingredient, multi-target, multi-pathway" mode, and explained the synergistic regulatory effect of each complex ingredient of GEB based on the holistic view of traditional Chinese medicine. The present study would provide a scientific approach and strategy for further studies of GEB in the treatment of NPP in the future.
Collapse
Affiliation(s)
- Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhaoyang Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Maohua Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Binqing Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chuihuai You
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hailing Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China.,College of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Li YJ, Yang K, Long XM, Xiao G, Huang SJ, Zeng ZY, Liu ZY, Sun ZL. Toxicity assessment of gelsenicine and the search for effective antidotes. Hum Exp Toxicol 2022; 41:9603271211062857. [PMID: 35018838 DOI: 10.1177/09603271211062857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gelsenicine, one of the most toxic alkaloids of Gelsemium elegans Benth (G. elegans), causes severe respiratory depression. However, its toxicity mechanisms are yet to be elucidated and no effective antidotes are available. OBJECTIVE This study aimed to analyse the toxicity characteristics of gelsenicine. METHODS Both acute and sub-acute toxicities were evaluated. Gelsenicine distribution and elimination in the central nervous system (CNS) and blood were observed. Effective antidotes for gelsenicine poisoning were screened. RESULTS In the acute toxicity study, gelsenicine was highly toxic, and female rats exhibited greater sensitivity to gelsenicine than male rats (LD50 0.520 mg/kg vs 0.996 mg/kg, respectively). Death was primarily caused by respiratory failure. However, in the sub-acute toxicity study, no significant organ damage was observed. Gelsenicine was easily absorbed from the gastrointestinal tract and penetrated the blood-brain barrier, reaching peak concentrations in the CNS within 15 min and rapidly decreasing thereafter. Flumazenil or diazepam combined with epinephrine reversed gelsenicine toxicity and significantly improved survival rate in mice. CONCLUSIONS Gelsenicine is a highly toxic substance that affects nerve conduction without causing damage; the potential toxic mechanism is possibly associated with GABAA receptors. Our findings provide insights into the clinical treatment of gelsenicine-related poisoning and its toxicity mechanisms.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,Department of Basic Medicine, Xiangnan University, Chenzhou, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Kun Yang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, China
| | - Gang Xiao
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Si-Juan Huang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zi-Yue Zeng
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol 2022; 914:174690. [PMID: 34890543 DOI: 10.1016/j.ejphar.2021.174690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.
Collapse
Affiliation(s)
- Yarong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qian Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zehong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Fengting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Huihui Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
17
|
Yue R, Liu H, Huang Y, Wang J, Shi D, Su Y, Luo Y, Cai P, Jin G, Yu C. Sempervirine Inhibits Proliferation and Promotes Apoptosis by Regulating Wnt/β-Catenin Pathway in Human Hepatocellular Carcinoma. Front Pharmacol 2021; 12:806091. [PMID: 34950042 PMCID: PMC8689006 DOI: 10.3389/fphar.2021.806091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Gelsemium elegans (G. elegans) Benth., recognized as a toxic plant, has been used as traditional Chinese medicine for the treatment of neuropathic pain and cancer for many years. In the present study, we aim to obtain the anti-tumor effects of alkaloids of G. elegans and their active components in hepatocellular carcinoma (HCC) and the potential mechanism was also further investigated. We demonstrated that sempervirine induced HCC cells apoptosis and the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and down-regulation of cyclin D1, cyclin B1 and CDK2. Furthermore, sempervirine inhibited HCC tumor growth and enhances the anti-tumor effect of sorafenib in vivo. In addition, inactivation of Wnt/β-catenin pathway was found to be involved in sempervirine-induced HCC proliferation. The present study demonstrated that alkaloids of G. elegans were a valuable source of active compounds with anti-tumor activity. Our findings justified that the active compound sempervirine inhibited proliferation and induced apoptosis in HCC by regulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Haiping Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yaxin Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dongmei Shi
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanping Su
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Zuo MT, Huang SJ, Wu Y, Tang MH, Yu H, Qi XJ, Liu ZY. A proteomics study of the subacute toxicity of rat brain after long-term exposure of Gelsemium elegans. Curr Mol Pharmacol 2021; 15:794-801. [PMID: 34886788 DOI: 10.2174/1874467214666211209144139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gelsemium elegans (G. elegans) has been shown to have strong pharmacological and pharmacodynamic effects in relevant studies both in China and USA. G. elegans has been used as a traditional medicine to treat a variety of diseases and even has the potential to be an alternative to laboratory synthesized drugs. However, its toxicity severely limited its application and development. At present, there is little attention paid to protein changes in toxicity. AIM This study investigated the toxicity effects after long-term exposure of G. elegans of the rat brain through proteomic. METHOD 11 differential abundance proteins were detected, among which 8 proteins were higher in the G. elegans- exposure group than in the control group, including Ig-like domain-containing protein (N/A), receptor-type tyrosine-protein phosphatase C (Ptprc), disheveled segment polarity protein 3 (Dvl3), trafficking protein particle complex 12 (Trappc12), seizure-related 6 homolog-like (Sez6l), transmembrane 9 superfamily member 4 (Tm9sf4), DENN domain-containing protein 5A (Dennd5a) and Tle4, whereas the other 3 proteins do the opposite including Golgi to ER traffic protein 4 (Get4), vacuolar protein sorting 4 homolog B (Vps4b) and cadherin-related 23 (CDH23). Furthermore, we performed validation of WB analysis on the key protein CDH23. RESULT Finally, only fewer proteins and related metabolic pathways were affected, indicating that there was no accumulative toxicity of G. elegans. G. elegans has the potential to develop and utilize of its pharmacological activity. CHD23, however, is a protein associated with hearing. CONCLUSION Whether the hearing impairment is a sequela after G. elegans exposure remains to be further studied.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Hui Yu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| |
Collapse
|
19
|
Activity tracking isolation of Gelsemium elegans alkaloids and evaluation of their antihuman gastric cancer activity in vivo. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hu Q, Fu X, Su Y, Wang Y, Gao S, Wang X, Xu Y, Yu C. Enhanced oral bioavailability of koumine by complexation with hydroxypropyl-β-cyclodextrin: preparation, optimization, ex vivo and in vivo characterization. Drug Deliv 2021; 28:2415-2426. [PMID: 34763595 PMCID: PMC8592623 DOI: 10.1080/10717544.2021.1998248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Koumine (KME) is an active alkaloid extracted from Gelsemium elegans, and its diverse bioactivities have been studied for decades. However, KME exhibits poor solubility and low oral bioavailability, which hampers its potential therapeutic exploitation. This work aimed to develop optimized inclusion complexes to improve the bioavailability of KME. The KME/hydroxypropyl-β-cyclodextrin (KME/HP-β-CD) inclusion complexes were prepared by the solvent evaporation method and later optimized using the Box-Behnken design. The optimal KME/HP-β-CD was characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. The physicochemical characterization results revealed that the crystalline state of KME was transformed into an amorphous form, forming KME/HP-β-CD inclusion complexes. Compared with KME, the solubility and in vitro release rate of KME/HP-β-CD was significantly enhanced by 52.34- and 1.3-fold, respectively. Further research was performed to investigate the intestinal absorption characteristics and in vivo bioavailability in rats. The optimal KME/HP-β-CD showed enhanced absorptive permeability and relative bioavailability increased more than two-fold compared to that of raw KME. These results indicate that the optimal KME/HP-β-CD can be used as an effective drug carrier to improve the solubility, intestinal absorption, and bioavailability of KME.
Collapse
Affiliation(s)
- Qing Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoling Fu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanping Su
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanfang Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Sihuan Gao
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoqin Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
You G, Yang R, Wei Y, Hu W, Gan L, Xie C, Zheng Z, Liu Z, Liao R, Ye L. The detoxification effect of cytochrome P450 3A4 on gelsemine-induced toxicity. Toxicol Lett 2021; 353:34-42. [PMID: 34627953 DOI: 10.1016/j.toxlet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/14/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Gelsemine (GA), the principal alkaloid in Gelsemium elegans Benth, exhibits potent and specific antinociception in chronic pain without the induction of apparent tolerance. However, GA also exerts neurotoxicity and hepatotoxicity when overdosed, and potential detoxification pathways are urgently needed. Cytochrome P450 enzymes (CYPs) are important phase I enzymes involved in the detoxification of xenobiotic compounds. The study aimed to investigate the role of CYPs-mediated metabolism in GA-induced toxicity. Microsomes, chemical special inhibitors and human recombinant CYPs indicated that GA was mainly metabolized by CYP3A4/5. The major metabolite of GA was isolated and identified as 4-N-demethyl-GA by high-resolution mass spectrometry and nuclear magnetic resonance technology. The CYP3A4 inhibitor ketoconazole significantly inhibited the metabolism of GA. This drastically increased GA toxicity which is caused by increasing the level of malondialdehyde and decreasing the level of the superoxide dismutase in mice. In contrast, the CYP3A4 inducer dexamethasone significantly increased GA metabolism and markedly decreased GA toxicity in mice. Notably, in CYP3A4-humanized mice, the toxicity of GA was significantly reduced compared to normal mice. These findings demonstrated that CYP3A4-mediated metabolism is a robust detoxification pathway for GA-induced toxicity.
Collapse
Affiliation(s)
- Guoquan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingjie Wei
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lili Gan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cong Xie
- Pharmacy Department of Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Zheng
- Clinical Pharmacology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Rongxin Liao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
22
|
Zhang HH, Yang WJ, Huang YJ, Li WJ, Zhang SX, Liu ZY. The metabolism of gelsevirine in human, pig, goat and rat liver microsomes. Vet Med Sci 2021; 7:2086-2092. [PMID: 33955684 PMCID: PMC8464259 DOI: 10.1002/vms3.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Gelsemium is a small genus of flowering plants from the family Loganiaceae comprising five species, three of which, Gelsemium sempervirens (L.) J. St.‐Hil., G. elegans Benth and G. rankinii Small, are particularly popular. Compared with other alkaloids from G. elegans, gelsemine, gelsevirine and koumine exhibit equally potent anxiolytic effects and low toxicity. Although the pharmacological activities and metabolism of koumine and gelsemine have been reported in previous studies, the species differences of gelsevirine metabolism have not been well studied. In this study, the metabolism of gelsevirine was investigated by using liver microsomes of humans, pigs, goats and rats by means of HPLC‐QqTOF/MS. The results indicated that the metabolism of gelsevirine in liver microsomes had qualitative and quantitative species differences. Based on the results, the possible metabolic pathways of gelsevirine in liver microsomes were proposed. Investigation of the metabolism of gelsevirine will provide a basis for further studies of the in vivo metabolism of this drug.
Collapse
Affiliation(s)
- Hua-Hai Zhang
- College of Forestry, Northwest A&F University, Yangling, China.,Qinling National Forest Ecosystem Research Station, Huoditang, China
| | - Wen-Jia Yang
- Yangling Demonstration Zone Hospital, Yangling, China
| | - Ya-Jun Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Prima Drug Research Center Co., Ltd., Changsha, China
| | - Wen-Jing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Shuo-Xin Zhang
- College of Forestry, Northwest A&F University, Yangling, China.,Qinling National Forest Ecosystem Research Station, Huoditang, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Zuo MT, Wu Y, Wang ZY, Wang N, Huang SJ, Yu H, Zhao XJ, Huang CY, Liu ZY. A comprehensive toxicity evaluation in rats after long-term oral Gelsemium elegans exposure. Biomed Pharmacother 2021; 137:111284. [PMID: 33561641 DOI: 10.1016/j.biopha.2021.111284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) is a flowering plant of the Loganiaceae family, which had been used in traditional Chinese herb medicine for many years for the treatment of rheumatoid pain, neuropathic pain, spasticity, skin ulcers, anxiety and cancer. Acute toxicity of the plant severely limits the application and development of G. elegans; however, long-term toxicity of exposure to G. elegans has not been illuminated. PURPOSE This study is a comprehensive observation of the effects of long-term exposure (21 days at 70 mg/kg) to G. elegans in rats. METHODS AND RESULTS The histopathological examination showed only a mild glial cell proliferation in the brain, and no lesions were observed in other organs. No abnormal changes in the biochemical parameters were observed that would have significant effects. The identification and analysis of absorbed natural ingredients showed that the active ingredients of the G. elegans could distribute to various tissues, and six compounds were identified in the brain, suggesting that they could cross the blood-brain barrier. Based on the intestinal content metabolomics, the tryptophan (Trp) biosynthesis, bile acid synthesis and bile secretion pathways have attracted our attention. Plasma metabolomic results showed that uric acid (UA) was significantly increased. The results of the brain metabolomic tests showed that the level of pyridoxal (PL) was decreased; considering the expression levels of the related enzymes, it was hypothesized that the level of pyridoxal 5'-phosphate (PLP) was decreased. PLP was important for the regulation of the neuronal γ-aminobutyric acid (GABA)/glutamate (Glu) interconversion and therefore neuronal excitability. The data of the study suggested that toxic reaction caused by G. elegans was due to a disruption of the balance of the neurotransmitter GABA/Glu transformation. CONCLUSIONS Overall, G. elegans did not cause significant toxic reaction in the rats after long-term exposure. The results were significant for the future clinical applications of G. elegans and suggested that G. elegans could be potentially developed as a drug. The study provided a scientific basis for investigation of the mechanisms of toxicity and detoxification.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Na Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
24
|
Liu Y, Tang Q, Cheng P, Zhu M, Zhang H, Liu J, Zuo M, Huang C, Wu C, Sun Z, Liu Z. Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharm Sin B 2020; 10:374-382. [PMID: 32082980 PMCID: PMC7016290 DOI: 10.1016/j.apsb.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) (2n = 2x = 16) is genus of flowering plants belonging to the Gelsemicaeae family. METHOD Here, a high-quality genome assembly using the Oxford Nanopore Technologies (ONT) platform and high-throughput chromosome conformation capture techniques (Hi-C) were used. RESULTS A total of 56.11 Gb of raw GridION X5 platform ONT reads (6.23 Gb per cell) were generated. After filtering, 53.45 Gb of clean reads were obtained, giving 160 × coverage depth. The de novo genome assemblies 335.13 Mb, close to the 338 Mb estimated by k-mer analysis, was generated with contig N50 of 10.23 Mb. The vast majority (99.2%) of the G. elegans assembled sequence was anchored onto 8 pseudo-chromosomes. The genome completeness was then evaluated and 1338 of the 1440 conserved genes (92.9%) could be found in the assembly. Genome annotation revealed that 43.16% of the G. elegans genome is composed of repetitive elements and 23.9% is composed of long terminal repeat elements. We predicted 26,768 protein-coding genes, of which 84.56% were functionally annotated. CONCLUSION The genomic sequences of G. elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.
Collapse
|
25
|
Ye Q, Feng Y, Wang Z, Zhou A, Xie S, Fan L, Xiang Q, Song E, Zou J. Effects of dietary Gelsemium elegans alkaloids on intestinal morphology, antioxidant status, immune responses and microbiota of Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 94:464-478. [PMID: 31546035 DOI: 10.1016/j.fsi.2019.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Numerous plant extracts used as feed additives in aquaculture have been shown to stimulate appetite, promote growth and enhance immunostimulatory and disease resistance in cultured fish. However, there are few studies on the famous Chinese herbal medicine Gelsemium elegans, which attracts our attention. In this study, we used the Megalobrama amblycephala to investigate the effects of G. elegans alkaloids on fish intestinal health after diet supplementation with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids for 12 weeks. We found that dietary G. elegans alkaloids at 40 mg/kg improved intestinal morphology by increasing villus length, muscle thickness and villus number in the foregut and midgut and muscle thickness in the hindgut (P < 0.05). These alkaloids also significantly improved intestinal antioxidant capabilities by increasing superoxide dismutase, catalase, total antioxidant capacity and malondialdehyde levels and up-regulated intestinal Cu/Zn-SOD and Mn-SOD (P < 0.05) at 20 and 40 mg/kg. Dietary G. elegans alkaloids improved intestinal immunity via up-regulating the pro-inflammatory cytokines IL-1β, IL-8, TNF-α and IFN-α and down-regulating expression of the anti-inflammatory cytokines IL-10 and TGF-β (P < 0.05) at 20 and 40 mg/kg. The expression of Toll-like receptors TRL1, 3, 4 and 7 were also up-regulated in intestine of M. amblycephala (P < 0.05). In intestinal microbiota, the abundance of Proteobacteria was increased while the Firmicutes abundance was decreased at phylum level after feeding the alkaloids (P < 0.05). The alkaloids also increased the abundance of the probiotic Rhodobacter and decreased the abundance of the pathogenic Staphylococcus at genus level (P < 0.05). In conclusion, dietary G. elegans alkaloid supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal microbiota in M. amblycephala.
Collapse
Affiliation(s)
- Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Ye Q, Feng Y, Wang Z, Zhou A, Xie S, Zhang Y, Xiang Q, Song E, Zou J. Effects of dietary Gelsemium elegans alkaloids on growth performance, immune responses and disease resistance of Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 91:29-39. [PMID: 31100439 DOI: 10.1016/j.fsi.2019.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The present study aim to investigate the effects of dietary Gelsemium elegans alkaloids supplementation in Megalobrama amblycephala. A basal diet supplemented with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids were fed to M. amblycephala for 12 weeks. The study indicated that dietary 20 mg/kg and 40 mg/kg G. elegans alkaloids supplementation could significantly improve final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER) (P < 0.05). The 20 mg/kg and 40 mg/kg G. elegans alkaloids groups showed significantly higher whole body and muscle crude protein and crude lipid contents compared to the control group (P < 0.05). The amino acid contents in muscle were also significantly increased in 20 mg/kg and 40 mg/kg groups (P < 0.05). Dietary 40 mg/kg G. elegans alkaloids had a significant effect on the contents of LDH, AST, ALT, ALP, TG, TC, LDL-C, HDL-C, ALB and TP in M. amblycephala (P < 0.05). Fish fed 20 mg/kg and 40 mg/kg dietary G. elegans alkaloids showed significant increase in complement 3, complement 4 and immunoglobulin M contents. The liver antioxidant enzymes (SOD, CAT and T-AOC) and MDA content significantly increased at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). The mRNA levels of immune-related genes IL-1β, IL8, TNF-α and IFN-α were significantly up-regulated, whereas TGF-β and IL10 genes were significantly down-regulated in the liver, spleen and head kidney of fish fed dietary supplementation with 20 mg/kg and 40 mg/kg G. elegans alkaloids. After challenge with Aeromonas hydrophila, significant higher survival rate was observed at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). Therefore, these results indicated that M. amblycephala fed a diet supplemented with 20 mg/kg and 40 mg/kg G. elegans alkaloids could significantly promote its growth performance, lipids and amino acids deposition, immune ability and resistance to Aeromonas hydrophila.
Collapse
Affiliation(s)
- Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- Department of Pharmacology, Department Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
27
|
Zhang HH, Huang YJ, Liu YC, Jiang XY, Zhang SX, Liu ZY. Characterization of gelsevirine metabolites in rat liver S9 by accurate mass measurements using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1179-1184. [PMID: 30989727 DOI: 10.1002/rcm.8457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Gelsemium elegans Benth. belongs to the family Loganiaceae and is widely distributed in northern America, east Asia, and southeast Asia. It has attracted wide attention for its diverse biological effects and complex architectures. Gelsevirine is one of the major components in G. elegans. Compared with other alkaloids from G. elegans, gelsevirine exhibits equally potent anxiolytic effects but with less toxicity. However, the metabolism of gelsevirine has not been clearly elucidated. METHODS The metabolism of gelsevirine was investigated using liver S9 fractions derived from rat liver homogenates by centrifugation at 9000 g. A rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS) method was applied to characterize the gelsevirine metabolites. RESULTS We discovered a total number of four metabolites of gelsevirine. The metabolic pathways of gelsevirine consisted of hydrogenation, N-demethylenation and oxidation in rat liver S9. CONCLUSIONS This is the first study on the metabolism of gelsevirine. We proposed possible metabolic pathways of gelsevirine. These findings may warrant future studies of the in vivo metabolism of gelsemine in animals.
Collapse
Affiliation(s)
- Hua-Hai Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi, 711600, China
| | - Ya-Jun Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan-Chun Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xu-Yan Jiang
- College of Landscape Architecture and Arts, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
| | - Shuo-Xin Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi, 711600, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
28
|
Sun R, Chen M, Hu Y, Lan Y, Gan L, You G, Yue M, Wang H, Xia B, Zhao J, Tang L, Cai Z, Liu Z, Ye L. CYP3A4/5 mediates the metabolic detoxification of humantenmine, a highly toxic alkaloid from Gelsemium elegans Benth. J Appl Toxicol 2019; 39:1283-1292. [PMID: 31119768 DOI: 10.1002/jat.3813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
Abstract
Gelsemium elegans Benth., a well-known toxic herbal plant, is widely used to treat rheumatic arthritis, inflammation and other diseases. Gelsemium contains humantenmine (HMT), which is an important bioactive and toxic alkaloid. Cytochrome P450 enzymes (CYPs) play important roles in the elimination and detoxification of exogenous substances. This study aimed to investigate the roles of CYPs in the metabolism and detoxification of HMT. First, metabolic studies were performed in vitro by using human liver microsomes, selective chemical inhibitors and recombinant human CYPs. Results indicated that four metabolites, including hydroxylation and oxidation metabolites, were found in human liver microsomes and identified based on their high-resolution mass spectrum. The isoform responsible for HMT metabolism was mainly CYP3A4/5. Second, the toxicity of HMT on L02 cells in the presence of the nicotinamide adenine dinucleotide phosphate system (NADPH) was significantly less than that without NADPH system. A CYP3A4/5 activity inhibition model was established by intraperitoneally injecting ketoconazole in mice and used to evaluate the role of CYP3A4/5 in HMT detoxification. In this model, the 14-day survival rate of the mice decreased to 17% after they were intragastrically treated with HMT, along with hepatic injury and increasing alanine aminotransferase (ALT) /aspartate aminotransferase (AST) levels. Overall, CYP3A4/5 mediated the metabolism and detoxification of HMT.
Collapse
Affiliation(s)
- Rongjin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Minghao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxian Hu
- Center For Certification And Evaluation, Guangdong Food And Drug Administration, Guangzhou, China
| | - Yao Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guoquan You
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Min Yue
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hongmei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bijun Xia
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zeng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
A novel two-dimensional liquid chromatography system for the simultaneous determination of three monoterpene indole alkaloids in biological matrices. Anal Bioanal Chem 2019; 411:3857-3870. [PMID: 31073732 DOI: 10.1007/s00216-019-01859-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
Abstract
The present paper describes a novel two-dimensional liquid chromatography (2D-LC) system, which is comprised of a first-dimensional ion exchange chromatography (IEX1) column, trap column, and second-dimensional reversed-phase chromatography (RP2) column system. The biological sample is separated by the first-dimensional LC using an IEX column to remove interferences. The analytes are transferred to the trap column after heart-cutting. Then, the analytes are transferred to the second-dimensional LC using an RP2 column for further separation and ultraviolet detection. This 2D-LC system can offer a large injection volume to provide sufficient sensitivity and exhibits a strong capacity for removing interferences. Here, the determination of three monoterpene indole alkaloids (MIAs; gelsemine, koumine, and humantenmine) from Gelsemium in biological matrices (plasma, tissue, and urine) was used this 2D-LC system. After a rapid and easy sample preparation method based on protein precipitation, the sample was injected into the 2D-LC. The method was developed and validated in terms of the selectivity, LOD, LOQ, linearity, precision, accuracy, and stability. The sample preparation time for the three MIAs was 15 min. The LOD for these compounds was 10 ng/mL, which was lower than the developed HPLC methods. The results showed that this method had good quantitation performance and allowed the determination of gelsemine, koumine, and humantenmine in biological matrices. The method is rapid, exhibits high selectivity, has good sensitivity, and is low-cost, thus making it well-suited for application in the pharmaceutical and toxicological analysis of Gelsemium. Graphical abstract.
Collapse
|
30
|
Xu PW, Yu JS, Chen C, Cao ZY, Zhou F, Zhou J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03694] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng-Wei Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| | - Chen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| | - Zhong-Yan Cao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
31
|
Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochem Pharmacol 2019; 161:136-148. [PMID: 30668937 DOI: 10.1016/j.bcp.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Gelsemine, the principal active alkaloid from Gelsemium sempervirens Ait., and koumine, the most dominant alkaloids from Gelsemium elegans Benth., produced antinociception in a variety of rodent models of painful hypersensitivity. The present study explored the molecular mechanisms underlying gelsemine- and koumine-induced mechanical antiallodynia in neuropathic pain. The radioligand binding and displacement assays indicated that gelsemine and koumine, like glycine, were reversible and orthosteric agonists of glycine receptors with full efficacy and probably acted on same binding site as the glycine receptor antagonist strychnine. Treatment with gelsemine, koumine and glycine in primary cultures of spinal neurons (but not microglia or astrocytes) concentration dependently increased 3α-hydroxysteroid oxidoreductase (3α-HSOR) mRNA expression, which was inhibited by pretreatment with strychnine but not the glial inhibitor minocycline. Intrathecal injection of gelsemine, koumine and glycine stimulated 3α-HSOR mRNA expression in the spinal cords of neuropathic rats and produced mechanical antiallodynia. Their spinal mechanical antiallodynia was completely blocked by strychnine, the selective 3α-HSOR inhibitor medroxyprogesterone acetate (MPA), 3α-HSOR gene silencer siRNA/3α-HSOR and specific GABAA receptor antagonist isoallopregnanolone, but not minocycline. All the results taken together uncovered that gelsemine and koumine are orthosteric agonists of glycine receptors, and produce mechanical antiallodynia through neuronal glycine receptor/3α-HSOR/allopregnanolone/GABAA receptor pathway.
Collapse
|
32
|
Wang Z, Liu S, Sun Z, Li M, Zhou A, Xie S, Zou J, Xiang Q, Song EF. Complete sequence and comparative analysis of the chloroplast genome of Gelsemium elegans. MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2018.1541716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhuolin Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - En-Feng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Cheng WF, Chen LY, Xu FF, Lin WY, Ren X, Li Y. Organocatalytic asymmetric Michael addition between 3-subsituted oxindoles and enals catalyzed by camphor sulfonyl hydrazine. Org Biomol Chem 2019; 17:885-891. [DOI: 10.1039/c8ob02934b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3,3-Disubstituted oxindoles containing vicinal stereogenic carbon centers have been synthesized through organocatalytic asymmetric Michael addition between 3-substituted oxindoles and enals catalyzed by chiral camphor sulfonyl hydrazines (CaSHs).
Collapse
Affiliation(s)
- Wen-Fu Cheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Fang-Fang Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wei-Yu Lin
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xinfeng Ren
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Ya Li
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
34
|
Chow TYA, Ng CHV, Tse ML. Clinical manifestations and causes of gelsemium poisoning in Hong Kong from 2005 to 2017: Review of 33 cases. HONG KONG J EMERG ME 2018. [DOI: 10.1177/1024907918808156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Gelsemium elegans is an extremely toxic plant, but gelsemium poisoning is seldom reported in the English literature. Objectives: To evaluate the clinical manifestations and causes of gelsemium poisoning in Hong Kong. Methods: A retrospective review of gelsemium poisoning recorded by the Hong Kong Poison Information Centre from 2005 to 2017. Results: In total, 33 cases (55% female, median age 44 (interquartile range: 30–56)) were identified in 14 incidences. Consumption of contaminated Ficus hirta (五指毛桃) soup is the commonest cause (52%). Other causes include misidentification of herbs (12%), consumption of parasitic plant Cassytha filiformis (無根藤) (15%) and suicidal ingestion of Gelsemium elegans (斷腸草) (3%). Most patients (94%) had mild to moderate toxicity, with one fatal case and one severe case presented with coma and respiratory depression. All patients complained of dizziness (100%), followed by visual blurring (34%) and nausea (28%). More than half (53%) had ocular manifestations (e.g. visual blurring, ptosis, nystagmus, diplopia) which are not commonly reported in other herbal poisoning. The time of symptom onset was early (median: 50 min (interquartile range: 30–60)) and all occurred within 2 h after oral intake. Most patients (94%) recovered uneventfully with conservative treatment. Conclusion: Most gelsemium poisoning in Hong Kong was due to contamination or misidentification. Early-onset dizziness (<2 h) with ocular symptoms after herbs consumption highly suggests Gelsemium poisoning. Good supportive care, particularly respiratory support, is the mainstay of management. Early recognition and the corresponding preventive measures would be useful.
Collapse
Affiliation(s)
- Tin Yat Anthony Chow
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Chun Ho Vember Ng
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Man Li Tse
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| |
Collapse
|
35
|
Vitet L, Patte-Mensah C, Boujedaini N, Mensah-Nyagan AG, Meyer L. Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol Sci 2018; 39:2183-2196. [DOI: 10.1007/s10072-018-3575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/14/2018] [Indexed: 12/01/2022]
|
36
|
Kalluraya B, Mallya S, Kumar K A. Microwave Assisted Neat Synthesis of Spiropyrrolidine Library. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Balakrishna Kalluraya
- Department of Studies in Chemistry; Mangalore University; Mangalagangothri 574199 Karnataka India
| | - Sahana Mallya
- Department of Studies in Chemistry; Mangalore University; Mangalagangothri 574199 Karnataka India
| | - Anish Kumar K
- Department of Studies in Chemistry; Mangalore University; Mangalagangothri 574199 Karnataka India
| |
Collapse
|
37
|
Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 2018; 499:499-505. [PMID: 29596830 DOI: 10.1016/j.bbrc.2018.03.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Liposome-encapsulated clodronate (LEC) is a specific depletor of macrophages. Our study characterized the LEC depletory effects, given intrathecally, on spinal microglia and assessed its effects on initiation and maintenance of neuropathic pain. Measured by using the MTT assay, LEC treatment specifically inhibited cell viability of cultured primary microglia, but not astrocytes or neurons, from neonatal rats, with an IC50 of 43 μg/mL. In spinal nerve ligation-induced neuropathic rats, pretreatment (1 day but not 5 days earlier) with intrathecal LEC specifically depleted microglia (but not astrocytes or neurons) in both contralateral and ipsilateral dorsal horns by the same degree (63% vs. 71%). Intrathecal injection of LEC reversibly blocked the antinociceptive effects of the GLP-1 receptor agonist exenatide and dynorphin A stimulator bulleyaconitine, which have been claimed to be mediated by spinal microglia, whereas it failed to alter morphine- or the glycine receptor agonist gelsemine-induced mechanical antiallodynia which was mediated via the neuronal mechanisms. Furthermore, intrathecal LEC injection significantly attenuated initial (one day after nerve injury) but not existing (2 weeks after nerve injury) mechanical allodynia. Our study demonstrated that LEC, given intrathecally, is a specific spinal microglial inhibitor and significantly reduces initiation but not maintenance of neuropathic pain, highlighting an opposite role of spinal microglia in different stages of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China.
| |
Collapse
|
38
|
Bellavite P, Bonafini C, Marzotto M. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues. J Ayurveda Integr Med 2018; 9:69-74. [PMID: 29428604 PMCID: PMC5884012 DOI: 10.1016/j.jaim.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
39
|
Development and in-house validation of a sensitive LC–MS/MS method for simultaneous quantification of gelsemine, koumine and humantenmine in porcine plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:54-60. [DOI: 10.1016/j.jchromb.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023]
|
40
|
Yang K, Huang YJ, Xiao S, Liu YC, Sun ZL, Liu YS, Tang Q, Liu ZY. Identification of gelsemine metabolites in rat liver S9 by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:19-22. [PMID: 29027298 DOI: 10.1002/rcm.8012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Gelsemine has been extensively studied because of its anti-tumor, immunomodulatory, insecticidal itching and other significant effects. However, limited information on the pharmacokinetics and metabolism of gelsemine has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of gelsemine in rat liver S9 by using rapid and accurate high-performance liquid chromatography/ quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). METHODS The incubation mixture was processed with 15% trichloroacetic acid. Multiple scans of gelsemine metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only 30 min. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the parent drug. RESULTS Five metabolites of gelsemine were identified in rat liver S9. Of these, four metabolites of gelsemine were identified for the first time. The present results showed that the metabolic pathways of gelsemine are oxidation, demethylation, and dehydrogenation in rat liver S9. CONCLUSIONS In this study, metabolites of gelsemine in liver S9 were identified and elucidated firstly using the HPLC/QqTOF-MS method. The proposed metabolic pathways of gelsemine in liver S9 will provide a basis for further studies of the in vivo metabolism of gelsemine in animals and humans.
Collapse
Affiliation(s)
- Kun Yang
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ya-Jun Huang
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Sa Xiao
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan-Chun Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, 410128, China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi-Song Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, 410128, China
| | - Qi Tang
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, 410128, China
| | - Zhao-Ying Liu
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
41
|
Fingerprint analysis of Gelsemium elegans by HPLC followed by the targeted identification of chemical constituents using HPLC coupled with quadrupole-time-of-flight mass spectrometry. Fitoterapia 2017; 121:94-105. [DOI: 10.1016/j.fitote.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
|
42
|
Chen CJ, Zhong ZF, Xin ZM, Hong LH, Su YP, Yu CX. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med 2017; 71:397-408. [DOI: 10.1007/s11418-017-1070-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
|
43
|
Imlach WL. New approaches to target glycinergic neurotransmission for the treatment of chronic pain. Pharmacol Res 2016; 116:93-99. [PMID: 27988386 DOI: 10.1016/j.phrs.2016.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Inhibitory glycinergic neurotransmission in the spinal cord dorsal horn plays an important role in regulating nociceptive signalling by inhibiting neuronal excitation. Blocking glycinergic transmission in the dorsal horn causes normally innocuous stimuli to become painful (allodynia) and increases sensitivity to noxious stimuli (hyperalgesia). Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Management of neuropathic pain with current therapeutics is challenging and there is a great need for more effective treatments. Preclinical studies using drugs that increase glycinergic signalling by potentiating glycine receptor activity or inhibiting transporter activity suggest that targeting this system is a good therapeutic strategy. The spatially restricted expression of glycine receptors and transporters is an advantage for targeting specific pathologies such as pain. However, until recently there have been few pharmacological modulators identified and most of which do not specifically target glycinergic signalling. This mini-review provides an overview of recent advances in the development of therapeutics and novel approaches that aim to increase glycinergic neurotransmission for the treatment of persistent pain.
Collapse
Affiliation(s)
- Wendy L Imlach
- Discipline of Pharmacology, School of Medical Sciences, Rm. W300, Blackburn D06, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
44
|
Hu Y, Wang Z, Huang X, Xia B, Tang L, Zheng Z, Ye L. Oxidative metabolism of koumine is mainly catalyzed by microsomal CYP3A4/3A5. Xenobiotica 2016; 47:584-591. [PMID: 27499416 DOI: 10.1080/00498254.2016.1213925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Gelsemium elegans Benth (Loganiaceae) is a toxic plant that can be used for committing suicide besides alleviating pains. Its anti-inflammatory and analgesic effect mainly come from its active ingredient, namely koumine. Koumine, an indole alkaloid, possesses widely pharmacological effects especially inhibition of neuropathic pain. 2. This study aimed to investigate the metabolic profile of koumine using human liver microsomes (HLMs), selective chemical inhibitors and recombinant human CYP isoforms. Ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) was used to detect and identify metabolites. 3. Four major metabolites of koumine were found after incubation with HLMs or individual CYP isoforms. The metabolic pathways of koumine included demethylation, dehydrogenation, oxidation and demethyl-dehydrogenation. Chemical inhibition study showed that the inhibitor of CYP3A4/3A5 significantly decreased (93%) the formation of koumine metabolites. Further, CYP3A4/3A5 was shown as the most efficient isoform in biotransformation of koumine, among a series of CYP isoforms tested. 4. In conclusion, koumine was metabolized into four oxidative metabolites in HLMs. And CYP3A4/3A5 was probably the main contributor to the hepatic oxidative metabolism of koumine.
Collapse
Affiliation(s)
- Yanxian Hu
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| | - Zhaoyu Wang
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| | - Xin Huang
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| | - Bijun Xia
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| | - Lan Tang
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| | - Zhijie Zheng
- b Department of Clinical Pharmacology , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Ling Ye
- a Department of Pharmaceutics , Guangdong Provincial Key Laboratory of New Drug Screening, State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , China and
| |
Collapse
|
45
|
Liu C, Liu X, Xue Y, Ding T, Sun J. Hydrolyzed tilapia fish collagen modulates the biological behavior of macrophages under inflammatory conditions. RSC Adv 2015; 5:30727-30736. [DOI: 10.1039/c5ra02355f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
This is the first study showing that HFC can inhibit the excessive production of inflammatory mediators in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Biomaterials Research & Testing Center
- Shanghai 200023
- China
| | - Xin Liu
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Biomaterials Research & Testing Center
- Shanghai 200023
- China
| | - Yang Xue
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Biomaterials Research & Testing Center
- Shanghai 200023
- China
| | - Tingting Ding
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Biomaterials Research & Testing Center
- Shanghai 200023
- China
| | - Jiao Sun
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Biomaterials Research & Testing Center
- Shanghai 200023
- China
| |
Collapse
|