1
|
Sharma A, Lee HJ. Antimicrobial Activity of Probiotic Bacteria Isolated from Plants: A Review. Foods 2025; 14:495. [PMID: 39942088 PMCID: PMC11817414 DOI: 10.3390/foods14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Lactic acid bacteria (LAB) constitute a heterogeneous group of bacteria isolated from fermented foods, animals, plants, and mammalian guts, with many health-promoting properties. Probiotics with antagonistic properties against human pathogens and foodborne bacteria have garnered significant attention from the scientific fraternity. A dedicated review focusing on plant-derived probiotic bacteria and their antagonistic properties has not been comprehensively reviewed. Thus, this review aimed at providing an overview of LAB isolates derived from several unconventional sources such as fruits, seeds, fruit pulp, leaves, roots, vegetables, grasses, and flowers and with their antibacterial, antifungal, and antiviral properties. This paper reviewed the antimicrobial properties of different genera, Lactobacillus, Leuconostoc, Weissella, Enterococcus, Pediococcus, Bacillus, and Fructobacillus, their postbiotics, and paraprobiotics. Several important mechanisms, including the secretion of bacteriocins, bacteriocin-like substances, reuterin, organic acids (lactic and acetic), peptides, exopolysaccharides, and hydrogen peroxide, have been attributed to their antimicrobial actions against pathogens. However, their precise mode of action is poorly understood; hence, further research should be conducted to reveal detailed mechanisms. Finally, the review discusses the summary and future implications. Given the significance, LAB and derived antimicrobial compounds can potentially be exploited in food preservation and safety or for medicinal applications after evaluating their safety.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Ageing and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Ageing and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Ramírez‐Serrano B, Querejeta M, Minchev Z, Pozo MJ, Dubreuil G, Giron D. Root inoculation with soil-borne microorganisms alters gut bacterial communities and performance of the leaf-chewer Spodoptera exigua. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70049. [PMID: 39592916 PMCID: PMC11598745 DOI: 10.1111/1758-2229.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (Solanum lycopersicum), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. Rhizophagus irregularis and Bacillus amyloliquefaciens had opposite effects on S. exigua weight. While plant inoculation with the fungus influenced gut bacterial diversity, B. amyloliquefaciens also affected the community composition. A reduced abundance of two S. exigua enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.
Collapse
Affiliation(s)
- Beatriz Ramírez‐Serrano
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Marina Querejeta
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- UMR CNRS 7267, Ecologie et Biologie des InteractionsUniversité de PoitiersPoitiersFrance
| | - Zhivko Minchev
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
- Agronomical Development Department, Business Unit MicrobiologyKoppert Biological SystemsBerkel en RodenrijsThe Netherlands
| | - María J. Pozo
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Géraldine Dubreuil
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| | - David Giron
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| |
Collapse
|
3
|
Fujii A, Kawada-Matsuo M, Nguyen-Tra Le M, Masuda K, Tadera K, Suzuki Y, Nishihama S, Hisatsune J, Sugawara Y, Kashiyama S, Shiba H, Aikawa T, Ohge H, Sugai M, Komatsuzawa H. Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan. Microbiol Immunol 2024; 68:254-266. [PMID: 38873884 DOI: 10.1111/1348-0421.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant Enterococcus (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including Enterococcus faecium (41 isolates), Enterococcus faecalis (80 isolates), Enterococcus raffinosus (11 isolates), Enterococcus casseliflavus (nine isolates), Enterococcus avium (12 isolates), Enterococcus lactis (eight isolates), Enterococcus gallinarum (two isolates), and Enterococcus malodoratus (one isolate), were analyzed. We found one vanA-positive E. faecium, which was already informed when the patient was transferred to the hospital, nine vanC-positive E. casseliflavus, and two vanC-positive E. gallinarum. E. faecium isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and E. faecalis isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant E. faecium had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. E. raffinosus showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and E. lactis showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes optrA and cfr(B) were found only in one isolate of E. faecalis and E. raffinosus, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.
Collapse
Affiliation(s)
- Ayumi Fujii
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kanako Masuda
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kayoko Tadera
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujin Suzuki
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saki Nishihama
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Seiya Kashiyama
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Ram Das A, Pillai N, Nanduri B, Rothrock MJ, Ramkumar M. Exploring Pathogen Presence Prediction in Pastured Poultry Farms through Transformer-Based Models and Attention Mechanism Explainability. Microorganisms 2024; 12:1274. [PMID: 39065042 PMCID: PMC11278766 DOI: 10.3390/microorganisms12071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we explore how transformer models, which are known for their attention mechanisms, can improve pathogen prediction in pastured poultry farming. By combining farm management practices with microbiome data, our model outperforms traditional prediction methods in terms of the F1 score-an evaluation metric for model performance-thus fulfilling an essential need in predictive microbiology. Additionally, the emphasis is on making our model's predictions explainable. We introduce a novel approach for identifying feature importance using the model's attention matrix and the PageRank algorithm, offering insights that enhance our comprehension of established techniques such as DeepLIFT. Our results showcase the efficacy of transformer models in pathogen prediction for food safety and mark a noteworthy contribution to the progress of explainable AI within the biomedical sciences. This study sheds light on the impact of effective farm management practices and highlights the importance of technological advancements in ensuring food safety.
Collapse
Affiliation(s)
- Athish Ram Das
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.D.); (B.N.)
| | - Nisha Pillai
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS 39762, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.D.); (B.N.)
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, USDA-ARS U.S. National Poultry Research Center, Athens, GA 30605, USA;
| | - Mahalingam Ramkumar
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS 39762, USA;
| |
Collapse
|
5
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Pandova M, Kizheva Y, Tsenova M, Rusinova M, Borisova T, Hristova P. Pathogenic Potential and Antibiotic Susceptibility: A Comprehensive Study of Enterococci from Different Ecological Settings. Pathogens 2023; 13:36. [PMID: 38251343 PMCID: PMC10818344 DOI: 10.3390/pathogens13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The pathway and the lifestyle of known enterococcus species are too complicated. The aim of the present study is to trace the path of pathogenicity of enterococci isolated from seven habitats (Cornu aspersum intestine; Bulgarian yoghurt; goat and cow feta cheese-mature and young, respectively; Arabian street food-doner kebab; cow milk; and human breast milk) by comparing their pathogenic potential. In total, 72 enterococcal strains were isolated and identified by MALDI-TOF, sequencing, and PCR. Hemolytic and gelatinase activity were biochemically determined. PCR was carried out for detection of virulence factors (cylB, esp, gls24, nucl, psaA, agg, gelE, and ace) and antibiotic resistance (erm, ermB, blaZ, vanA, aphA, mefA, gyrA, catpIP501, and aac6'-aph2″). Phenotypic antibiotic resistance was assigned according to EUCAST. Eleven representatives of the genus Enterococcus were identified: E. mundtii, E. casseliflavus, E. gilvus, E. pseudoavium, E. pallens, E. malodoratus, E. devriesei, E. gallinarum, E. durans, E. faecium, and E. faecalis. Twenty-two strains expressed α-hemolysis. Thirteen strains had the cylB gene. Only two strains expressed α-hemolysis and possessed the cylB gene simultaneously. Positive amplification for gelE was found in 35% of the isolates, but phenotypic gelatinase activity was observed only in three strains. All isolates showed varying antibiotic resistance. Only E. faecalis BM15 showed multiple resistance (AMP-HLSR-RP). Correlation between genotypic and phenotypic macrolide resistance was revealed for two E. faecalis strains.
Collapse
Affiliation(s)
- Maria Pandova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (M.P.); (M.T.); (P.H.)
| | - Yoana Kizheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (M.P.); (M.T.); (P.H.)
| | - Margarita Tsenova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (M.P.); (M.T.); (P.H.)
| | - Mariya Rusinova
- Human Milk Bank Bulgaria, 1309 Sofia, Bulgaria; (M.R.); (T.B.)
| | | | - Petya Hristova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (M.P.); (M.T.); (P.H.)
| |
Collapse
|
7
|
Kwit R, Zając M, Śmiałowska-Węglińska A, Skarżyńska M, Bomba A, Lalak A, Skrzypiec E, Wojdat D, Koza W, Mikos-Wojewoda E, Pasim P, Skóra M, Polak M, Wiącek J, Wasyl D. Prevalence of Enterococcus spp. and the Whole-Genome Characteristics of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Free-Living Birds in Poland. Pathogens 2023; 12:836. [PMID: 37375526 DOI: 10.3390/pathogens12060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Enterococci as opportunistic bacteria are important for human health. Due to the prevalence and ease of acquisition and transfer of their genes, they are an excellent indicator of environmental contamination and the spread of antimicrobial resistance. The aim of the study was to assess the prevalence of Enterococcus spp. in wild birds in Poland, determination of antimicrobial susceptibility and WGS analysis of Enterococcus (E.) faecium and E. faecalis. For this purpose, 138 samples from various species of free-living birds were tested, with 66.7% positive results. Fourteen species were detected, with E. faecalis being the most common, followed by E. casseliflavus and E. hirae. In antimicrobial susceptibility testing, 10.0% of E. faecalis and 50.0% of E. faecium showed resistance to one antimicrobial agent, in addition the MDR phenotype which was found in one E. faecium. The most common resistance phenotype included tetracycline and quinupristin/dalfopristin. The WGS analysis confirmed the significant advantage of the virulence gene diversity of E. faecalis strains over E. faecium. In addition, plasmid replicons were found in 42.0% of E. faecalis and 80.0% of E. faecium. The obtained results confirm free-living birds can be a reservoir of Enterococcus spp. with a considerable zoonotic potential.
Collapse
Affiliation(s)
- Renata Kwit
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | | | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Arkadiusz Bomba
- Department of Omic Analyses, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Anna Lalak
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Ewelina Skrzypiec
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Dominika Wojdat
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Weronika Koza
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Emilia Mikos-Wojewoda
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Paulina Pasim
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Milena Skóra
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Marcin Polak
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Sklodowska University (UMCS), 20-033 Lublin, Poland
| | - Jarosław Wiącek
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Sklodowska University (UMCS), 20-033 Lublin, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
- Department of Omic Analyses, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| |
Collapse
|
8
|
Bacteriocinogenic Enterococcus casseliflavus Isolated from Fresh Guava Fruit (Psidium guajava): Characterization of Bacteriocin ST192Gu and Some Aspects of Its Mode of Action on Listeria spp. and Enterococcus spp. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Strain ST182Gu, isolated from fresh guava fruit, was identified as Enterococcus casseliflavus on the basis of biochemical tests, sugar fermentation reactions (API20Strip), PCR with genus-specific primers, and 16S rRNA sequencing. This appears to be the first documentation of the presence of this species in guava. E. casseliflavus ST182Gu was shown to produce a 4.8 kDa class IIa bacteriocin, active against various lactic acid bacteria including Enterococcus spp. and Streptococcus spp., and Staphylococcus aureus, and different serotypes of Listeria spp. The activity of the peptide was reduced by treatment with 0.1 mg/mL proteolytic enzymes, but not by α-amylase, catalase, lipase, and 1% (w/v) sodium dodecyl sulphate (SDS), Tween-20, Tween-80, urea, NaCl, and EDTA. No change in activity was recorded after adjustment to pH values of between 2.0 and 12.0 for 2 h, and after treatment at 100 °C for 120 min or 121°C for 20 min, compared with non-treated antimicrobial peptide. The mode of action against representative susceptible bacteria was shown to be bactericidal and associated with cell lysis and enzyme- and DNA-leakage. These susceptible bacteria, Listeria ivanovii subsp. ivanovii ATCC 19119, Listeria monocytogenes ATCC 15313, and Enterococcus faecalis ATCC 19443 differed however in their sensitivity to bacteriocin ST182Gu (6,553,600 AU/mL, 102,400 AU/mL, and 51,200 AU/mL, respectively). No significant differences were detected in cell growth and bacteriocin production when strain ST182Gu was grown in MRS broth at 26 °C, 30 °C, and 37 °C for 24 h. Bacteriocin ST182Gu recovery from the surface of the producer cells showed different activity, dependent of the applied test organisms (3200, 800 and 400 AU/mL, evaluated versus L. ivanovii subsp. ivanovii ATCC 19119, L. monocytogenes ATCC 15313 and E. faecalis ATCC 19443, respectively), however, with proportional values with the activity recorded in cell free supernatant versus same test microorganisms. When bacteriocin ST182Gu was combined with sublethal doses of ciprofloxacin, synergistic inhibition of L. ivanovii subsp. ivanovii ATCC 19119 was demonstrated. This increase in ciprofloxacin sensitivity may be due to the dissipation of the proton gradient in the cell membrane of the target organism associated with exposure to bacteriocin ST182Gu. Apart from reducing the MIC of classical therapeutic antibiotics, bacteriocins such as ST182Gu may also play an important role in the treatment of multidrug resistant strains.
Collapse
|
9
|
Morgado ME, Hudson CL, Chattopadhyay S, Ta K, East C, Purser N, Allard S, Ferrier MD, Sapkota AR, Sharma M, Goldstein RR. The effect of a first flush rainwater harvesting and subsurface irrigation system on E. coli and pathogen concentrations in irrigation water, soil, and produce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156976. [PMID: 35768032 DOI: 10.1016/j.scitotenv.2022.156976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change is stressing irrigation water sources, necessitating the evaluation of alternative waters such as harvested rainwater to determine if they meet water quality and food safety standards. We collected water, soil, and produce samples between June and August 2019 from two vegetable rain garden (VRG) sites in Frederick, Maryland that harvest rainwater using a first flush system, and deliver this water to produce through subsurface irrigation. The raised VRG beds include layers of gravel, sand, and soil that act as filters. We recorded the average surface soil moisture in each bed as well as antecedent precipitation. All water (n = 29), soil (n = 55), and produce (n = 57) samples were tested for generic E. coli using standard membrane filtration, and water samples were also tested for Salmonella spp. and Listeria monocytogenes by selective enrichment. No Salmonella spp. or L. monocytogenes isolates were detected in any water samples throughout the study period. Average E. coli levels from all harvested rainwater samples at both sites (1.2 and 24.4 CFU/100 mL) were well below the Good Agricultural Practices food safety guidelines. Only 7 % (3/44) of produce samples from beds irrigated with harvested rainwater were positive for E. coli. E. coli levels in soil samples were positively associated with average surface soil moisture (r2 = 0.13, p = 0.007). Additionally, E. coli presence in water samples was marginally associated with a shorter length of antecedent dry period (fewer days since preceding rainfall) (p = 0.058). Our results suggest that harvested rainwater collected through a first flush system and applied to produce through subsurface irrigation meets current food safety standards. Soil moisture monitoring could further reduce E. coli contamination risks from harvested rainwater-irrigated produce. First flush and subsurface irrigation systems could help mitigate climate change-related water challenges while protecting food safety and security.
Collapse
Affiliation(s)
- Michele E Morgado
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - Claire L Hudson
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Department of Biology, Hood College, Frederick, MD, USA.
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - Kaitlin Ta
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA.
| | - Nathan Purser
- Department of Biology, Hood College, Frederick, MD, USA.
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - M Drew Ferrier
- Department of Biology, Hood College, Frederick, MD, USA.
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA.
| | - Rachel Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
10
|
Beharielal T, Thamaga-Chitja J, Schmidt S. Socioeconomic Characteristics Associated with Farming Practices, Food Safety and Security in the Production of Fresh Produce—A Case Study including Small-Scale Farmers in KwaZulu-Natal (South Africa). SUSTAINABILITY 2022; 14:10590. [DOI: 10.3390/su141710590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Farmer practices may influence the microbial quality and safety of fresh produce. The increasing demands to create ready-to-eat (RTE) fresh produce while providing potential niche markets for smallholder farmers might be contributing to increased numbers of fresh produce-associated foodborne disease outbreaks. This study determined the demographic and socioeconomic characteristics and farmer hygiene practices of farmers using open-ended questionnaires and key informant interviews. Additionally, the relationships between farmer socioeconomic characteristics and hygiene practices were statistically analyzed. The semi-organic smallholder farmer population and the farmworkers of the organic farm were female-dominated. Tertiary education was a predominant characteristic in the organic and semi-conventional workforces. While the semi-organic and semi-conventional farms relied on a combination of ‘store-bought’ synthetic and composted organic fertilizers, the organic farm owner only used composted organic fertilizer. The irrigation water sources varied amongst the farm types. However, most of the semi-organic farmers did not pre-treat irrigation water prior to use. The irrigation water source and fertilizer type selected by farmers varied and might affect the microbial quality and safety of fresh produce. Socioeconomic factors such as gender and education may influence farmer hygiene practices. These characteristics should therefore be considered when planning farmer support interventions.
Collapse
Affiliation(s)
- Tashiana Beharielal
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
- Discipline of Food Security, School of Agriculture, Environmental and Earth Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| | - Joyce Thamaga-Chitja
- Discipline of Food Security, School of Agriculture, Environmental and Earth Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| |
Collapse
|
11
|
Grenda A, Grenda T, Domaradzki P, Kwiatek K. Enterococci-Involvement in Pathogenesis and Therapeutic Potential in Cancer Treatment: A Mini-Review. Pathogens 2022; 11:pathogens11060687. [PMID: 35745541 PMCID: PMC9227201 DOI: 10.3390/pathogens11060687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/04/2022] Open
Abstract
Enterococcus spp. are Gram-positive, heterogeneous lactic acid bacteria inhabiting various environments. Several species of Enterococci are considered to be able to stimulate the immune system and play an important role in intestinal homeostasis. Some Enterococci can be used as probiotics. Some strains of E. faecium are components of pharmaceutical products used to treat diarrhea, antibiotic-associated diarrhea, or irritable bowel syndrome (IBS). However, it has been proved that they are responsible for food contamination, and are sometimes undesirable from the point of view of food technology. Additionally, the virulence and multi-drug resistance of Enterococci potentially pose a risk of an epidemic, especially in hospital environments. Moreover, there are indications of their negative role in colon tumorigenesis; however, some nterococci are proved to support immunotherapy in cancer treatment. In general, it can be concluded that this group of microorganisms, despite its nature, has properties that can be used to support cancer treatment—both aggressive chemotherapy and cutting-edge therapy targeting immune checkpoints (IC).
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-724-42-93
| | - Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland; (T.G.); (K.K.)
| | - Piotr Domaradzki
- Department of Commodity Science and Animal Raw Materials Processing, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland; (T.G.); (K.K.)
| |
Collapse
|
12
|
Solaiman S, Patterson R, Davey K, Katz Y, Payne-Sturges D, R Sapkota A, Micallef SA. Effects of season and water type on the distribution and antimicrobial resistance of Enterococcus faecalis and E. faecium from surface and reclaimed water. J Appl Microbiol 2022; 133:477-487. [PMID: 35396758 DOI: 10.1111/jam.15570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the safety of irrigation water sources based on phenotypic antimicrobial resistance (AMR) in Enterococcus spp., a potential environmental reservoir for AMR determinants. METHODS AND RESULTS Eleven sites representing fresh and brackish water rivers, ponds and reclaimed water, were sampled over two years. Samples (n=333) yielded 198 unique isolates of E. faecalis and E. faecium which were tested for antimicrobial susceptibility by microbroth dilution. Species distribution was influenced by water type and season. E. faecalis was more likely found in freshwater rivers and in summer, and E. faecium in reclaimed water and in spring. Only 11% of isolates were pansusceptible, while 48.5% and 26.3% were single (SDR) and multidrug resistant (MDR), respectively. MDR was more likely detected in E. faecium than E. faecalis. Winter isolates were more likely than summer isolates to exhibit MDR than SDR. CONCLUSIONS E. faecalis and E. faecium in surface and reclaimed water exhibited diverse phenotypic AMR and a low-level resistance to clinically important antimicrobials such as ampicillin, vancomycin and linezolid. SIGNIFICANCE AND IMPACT OF THE STUDY Single and multidrug resistance in E. faecalis and E. faecium varied by season but not water type. AMR prevalence can assist decisions on the safety of irrigation water sources for fresh produce crops.
Collapse
Affiliation(s)
- Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Rebecca Patterson
- Maryland Institute of Applied and Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Kaitlyn Davey
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD, USA
| | - Yisrael Katz
- Department of Biological Sciences, University of Maryland, College Park, MD, USA
| | - Devon Payne-Sturges
- Maryland Institute of Applied and Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Amy R Sapkota
- Maryland Institute of Applied and Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.,Centre for Food Safety and Security System, University of Maryland, College Park, MD, USA
| |
Collapse
|
13
|
Mafiz AI, He Y, Zhang W, Zhang Y. Soil Bacteria in Urban Community Gardens Have the Potential to Disseminate Antimicrobial Resistance Through Horizontal Gene Transfer. Front Microbiol 2021; 12:771707. [PMID: 34887843 PMCID: PMC8650581 DOI: 10.3389/fmicb.2021.771707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Fifteen soil and 45 vegetable samples from Detroit community gardens were analyzed for potential antimicrobial resistance contamination. Soil bacteria were isolated and tested by antimicrobial susceptibility profiling, horizontal gene transfer, and whole-genome sequencing. High-throughput 16S rRNA sequencing analysis was conducted on collected soil samples to determine the total bacterial composition. Of 226 bacterial isolates recovered, 54 were from soil and 172 from vegetables. A high minimal inhibitory concentration (MIC) was defined as the MIC greater than or equal to the resistance breakpoint of Escherichia coli for Gram-negative bacteria or Staphylococcus aureus for Gram-positive bacteria. The high MIC was observed in 63.4 and 69.8% of Gram-negative isolates from soil and vegetables, respectively, against amoxicillin/clavulanic acid, as well as 97.5 and 82.7% against ampicillin, 97.6 and 90.7% against ceftriaxone, 85.4 and 81.3% against cefoxitin, 65.8 and 70.5% against chloramphenicol, and 80.5 and 59.7% against ciprofloxacin. All Gram-positive bacteria showed a high MIC to gentamicin, kanamycin, and penicillin. Forty of 57 isolates carrying tetM (70.2%) successfully transferred tetracycline resistance to a susceptible recipient via conjugation. Whole-genome sequencing analysis identified a wide array of antimicrobial resistance genes (ARGs), including those encoding AdeIJK, Mex, and SmeDEF efflux pumps, suggesting a high potential of the isolates to become antimicrobial resistant, despite some inconsistency between the gene profile and the resistance phenotype. In conclusion, soil bacteria in urban community gardens can serve as a reservoir of antimicrobial resistance with the potential to transfer to clinically important pathogens, resulting in food safety and public health concerns.
Collapse
Affiliation(s)
- Abdullah Ibn Mafiz
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States.,Department of Human Sciences, Tennessee State University, Nashville, TN, United States
| | - Yingshu He
- Department of Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL, United States.,Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Wei Zhang
- Department of Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL, United States
| | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
14
|
Mays C, Garza GL, Waite-Cusic J, Radniecki TS, Navab-Daneshmand T. Impact of biosolids amendment and wastewater effluent irrigation on enteric antibiotic-resistant bacteria - a greenhouse study. WATER RESEARCH X 2021; 13:100119. [PMID: 34585133 PMCID: PMC8452883 DOI: 10.1016/j.wroa.2021.100119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Reuse of wastewater effluent and biosolids in agriculture is essential to sustainable water and nutrient resource management practices. Wastewater and biosolids, however, are reportedly the recipients, reservoirs, and sources of antibiotic-resistant enteric pathogens. While decay rates of fecal bacterial indicators in soil are frequently studied, very few studies have reported on the persistence of the antibiotic-resistant sub-populations. Little is known about how multi-drug resistance phenotypes of enteric bacteria in agricultural soil change over time. In this study, germinated carrot seeds were planted in soil that received biosolids amendment and/or wastewater effluent irrigation in a greenhouse setting. We quantified total and antibiotic-resistant fecal bacterial indicators (Escherichia coli and enterococci) weekly in soil and total E. coli at harvest (day 77) on carrots. Antibiotic susceptibility of 121 E. coli and 110 enterococci collected isolates were determined. E. coli or enterococci were not recovered from the soil without biosolids amendment regardless of the irrigation water source. After biosolids amendment, soil E. coli and enterococci concentrations increased more than 3 log10 CFU/g-TS within the first week, declined slowly over time, but stayed above the detection limit (0.39 CFU/g-TS) over the entirety of the study. No statistical difference was found between effluent wastewater or water irrigation in soil total and antibiotic-resistant E. coli and enterococci concentrations or carrots E. coli levels. Soil antibiotic-resistant E. coli and enterococci decayed significantly faster than total E. coli and enterococci. Moreover, the prevalence of multi-drug resistant (resistance to three or more antibiotics) E. coli declined significantly over time, while almost all collected enterococci isolates showed multi-drug resistance phenotypes. At harvest, E. coli were present on carrots; the majority of which were resistant to ampicillin. The survival of antibiotic-resistant enteric bacteria in soil and on harvested carrots indicates there are transmission risks associated with biosolids amendment use in root crops.
Collapse
Affiliation(s)
- Catherine Mays
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Gabriela L. Garza
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331, United States
| | - Tyler S. Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| |
Collapse
|
15
|
Xu S, Schwinghamer T, Sura S, Cessna AJ, Zvomuya F, Zaheer R, Larney FJ, McAllister TA. Degradation of antimicrobial resistance genes within stockpiled beef cattle feedlot manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1093-1106. [PMID: 34605371 DOI: 10.1080/10934529.2021.1965416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation of antimicrobial resistance genes (ARG) in manure from beef cattle administered (kg-1 feed) 44 mg of chlortetracycline (CTC), 44 mg of chlortetracycline plus sulfamethazine (CTCSMZ), 11 mg of tylosin (TYL), or no antimicrobials (Control) was examined. Manure was stockpiled and quantitative PCR (qPCR) was used to assess tetracycline [tet(C), (L), (M), (W)], erythromycin [erm(A), (B), (F), (X)], and sulfamethazine [sul(1), (2)] ARG and 16S rDNA. After 102 d, copies of all ARG decreased by 0.3 to 1.5 log10 copies (g dry matter)-1. Temperature in the interior of piles averaged ≥ 55 °C for 10 d, except for CTCSMZ, but did not reach 55 °C at pile exteriors. Compared to Control, CTCSMZ increased (P < 0.05) tet(C), tet(M), tet(W), sul(1), and sul(2) in stockpiled manure. Copies of 16S rDNA remained higher (P < 0.05) in CTCSMZ than Control for the first 26 d. Levels of most ARG did not differ between the interior and exterior of stockpiles. Our results suggest that stockpiled manure would still introduce ARG to land upon manure application, but at levels lower than if manure was applied fresh.
Collapse
Affiliation(s)
- Shanwei Xu
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Tim Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Srinivas Sura
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Allan J Cessna
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Francis J Larney
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
16
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
17
|
Rethinking Manure Application: Increase in Multidrug-Resistant Enterococcus spp. in Agricultural Soil Following Chicken Litter Application. Microorganisms 2021; 9:microorganisms9050885. [PMID: 33919134 PMCID: PMC8170873 DOI: 10.3390/microorganisms9050885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p < 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index > 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks.
Collapse
|
18
|
Zhang H, Zhang Q, Chen S, Zhang Z, Song J, Long Z, Yu Y, Fang H. Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138708. [PMID: 32334231 DOI: 10.1016/j.scitotenv.2020.138708] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) harbored by plant microbiomes have been implicated as a potential risk to public health via food chain, especially directly edible fruits and vegetables. Here, we investigated the microbiome and antibiotic resistome in soil-strawberry ecosystem using shotgun metagenomic sequencing. The results showed that the enterobacterial population dominated the endophytes of strawberry fruits. Moreover, 85 subtypes of ARGs, including several clinically important ARGs, were detected in the strawberry fruit metagenomes. Additionally, host tracking analysis in combination with antibiotic-resistant bacterial isolate screening suggested that fruit-borne ARGs were mainly carried by members of the Enterobacteriaceae family. Unexpectedly, most of fruit-borne isolates were found to be resistant to several clinically important antimicrobials, e.g., erythromycin and cephalexin. Our findings provide broad insights into endophytic antibiotic resistomes of direct edible strawberry fruits and their potential hosts, and highlight the potential exposure risks of plant microbiomes to the human food chain.
Collapse
Affiliation(s)
- Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianke Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zihan Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Qiu J, Liu Q, Zhang M, Li X, Zhang J, Xiong R, He L. Simultaneous Determination of Aminoglycoside Residues in Environmental Water Matrices by Lyophilization Combined with Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1734606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jingli Qiu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qingying Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Meiyu Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuezhi Li
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahui Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renping Xiong
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Huff R, Inhoque Pereira R, Pissetti C, Mellender de Araújo A, Alves d’Azevedo P, Frazzon J, GuedesFrazzon AP. Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars. PeerJ 2020; 8:e8647. [PMID: 32149028 PMCID: PMC7049460 DOI: 10.7717/peerj.8647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies evaluating bacteria in insects can provide information about host-microorganism-environment interactions. The gut microbial community has a profound effect on different physiological functions of insects. Enterococcus spp. are part of the gut community in humans and other animals, as well as in insects. The presence and antimicrobial resistance profile of enterococci are well studied in different animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do not yet exist. Therefore, the aims of this study were to evaluate the distribution of enterococcal species, their antimicrobial resistance profile and virulence genes, and the genetic relationships between enterococci isolated from fecal samples from sibling and non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil. METHODS Three H. erato phyllis females were captured (two from a forest fragment and one from an urban area), and kept individually in open-air insectaries. Eggs were collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars, inoculated in selective medium, and 15 bacterial colonies were randomly selected from each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk diffusion antimicrobial susceptibility tests, and screened for resistance and virulence genes by PCR. The genetic relationships between the strains were determined using pulsed-field gel electrophoresis (PFGE). RESULTS A total of 178 enterococci strains were identified: E. casseliflavus (74.15%; n = 132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp. (3.37%; n = 6). High rates of resistance to rifampicin (56%) and erythromycin (31%) were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the enterococci into 22 patterns, four being composed of strains from sibling caterpillars. CONCLUSION Enterococcus casseliflavus was the dominant species in fecal samples of fifth-instar caterpillars. Resistant enterococci strains may be related to environmental pollution or the resistome. The PFGE analysis showed genetic relationships between some strains, suggesting that the enterococci isolated from fecal samples of the sibling caterpillars might have come from common sources, e.g., via diet (herbivory) and/or vertical transmission (through the egg surface). Further studies will be conducted to better understand the role of Enterococcus in the microbial community of the gastrointestinal tract of these insects, and the mechanisms involved in acquisition and maintenance of enterococci.
Collapse
Affiliation(s)
- Rosana Huff
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rebeca Inhoque Pereira
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Pissetti
- Department of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aldo Mellender de Araújo
- Institute of Biosciences, Genetic Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Alves d’Azevedo
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeverson Frazzon
- Food Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula GuedesFrazzon
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
|
22
|
Dharmarha V, Guron G, Boyer RR, Niemira BA, Pruden A, Strawn LK, Ponder MA. Gamma Irradiation Influences the Survival and Regrowth of Antibiotic-Resistant Bacteria and Antibiotic-Resistance Genes on Romaine Lettuce. Front Microbiol 2019; 10:710. [PMID: 31024491 PMCID: PMC6465624 DOI: 10.3389/fmicb.2019.00710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/21/2019] [Indexed: 02/01/2023] Open
Abstract
Contamination of romaine lettuce with human pathogens, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) occurs during production. Post-harvest interventions are emplaced to mitigate pathogens, but could also mitigate ARB and ARGs on vegetables. The objective of this research was to determine changes to lettuce phyllosphere microbiota, inoculated ARB, and the resistome (profile of ARGs) following washing with a sanitizer, gamma irradiation, and cold storage. To simulate potential sources of pre-harvest contamination, romaine lettuce leaves were inoculated with compost slurry containing antibiotic-resistant strains of pathogenic (Escherichia coli O157:H7) and representative of spoilage bacteria (Pseudomonas aeruginosa). Various combinations of washing with sodium hypochlorite (50 ppm free chlorine), packaging under modified atmosphere (98% nitrogen), irradiating (1.0 kGy) and storing at 4°C for 1 day versus 14 days were compared. Effects of post-harvest treatments on the resistome were profiled by shotgun metagenomic sequencing. Bacterial 16S rRNA gene amplicon sequencing was performed to determine changes to the phyllosphere microbiota. Survival and regrowth of inoculated ARB were evaluated by enumeration on selective media. Washing lettuce in water containing sanitizer was associated with reduced abundance of ARG classes that confer resistance to glycopeptides, β-lactams, phenicols, and sulfonamides (Wilcoxon, p < 0.05). Washing followed by irradiation resulted in a different resistome chiefly due to reductions in multidrug, triclosan, polymyxin, β-lactam, and quinolone ARG classes (Wilcoxon, p < 0.05). Irradiation followed by storage at 4°C for 14 days led to distinct changes to the β-diversity of the host bacteria of ARGs compared to 1 day after treatment (ANOSIM, R = 0.331; p = 0.003). Storage of washed and irradiated lettuce at 4°C for 14 days increased the relative abundance of Pseudomonadaceae and Carnobacteriaceae (Wilcoxon, p < 0.05), two groups whose presence correlated with detection of 10 ARG classes on the lettuce phyllosphere (p < 0.05). Irradiation resulted in a significant reduction (∼3.5 log CFU/g) of inoculated strains of E. coli O157:H7 and P. aeruginosa (ANOVA, p < 0.05). Results indicate that washing, irradiation and storage of modified atmosphere packaged lettuce at 4°C are effective strategies to reduce antibiotic-resistant E. coli O157:H7 and P. aeruginosa and relative abundance of various ARG classes.
Collapse
Affiliation(s)
- Vaishali Dharmarha
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Giselle Guron
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Renee R. Boyer
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Brendan A. Niemira
- Food Safety and Intervention Technologies Research Unit, USDA-ARS Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Monica A. Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Yin M, Jiang Y, Qian C, Wu F, Ying Y, Wu C, Li P, Ying J, Li K, Xu T, Bao Q, Sun C. Molecular characteristics and comparative genomics analysis of a clinical Enterococcus casseliflavus with a resistance plasmid. Infect Drug Resist 2018; 11:2159-2167. [PMID: 30464559 PMCID: PMC6223339 DOI: 10.2147/idr.s180254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The aim of this work was to investigate the molecular characterization of a clinical Enterococcus casseliflavus strain with a resistance plasmid. Materials and methods En. casseliflavus EC369 was isolated from a patient in a hospital in southern China. The minimum inhibitory concentration was found by means of the agar dilution method to determine the antimicrobial susceptibilities of the strains. Whole-genome sequencing and comparative genomics analysis were performed to analyze the mechanism of antibiotic resistance and the horizontal gene transfer of the resistance gene-related mobile genetic elements. Results En. casseliflavus EC369 showed resistance to erythromycin, kanamycin, and streptomycin, but was susceptible to vancomycin, ampicillin, and streptothricin and other antimicrobials. There were six resistance genes (aph3′, ant6, bla, sat4, and two ermBs) carried by a transposon identified on the plasmid pEC369 and a complete resistance gene cluster of vancomycin and a tet (M) gene encoded on the chromosome. This is the first complete plasmid sequence reported in clinically isolated En. casseliflavus. The plasmid with the greatest sequence identity with pEC369 was the plasmid of Enterococcus sp. FDAARGOS_375, followed by the plasmids of Enterococcus faecium strains F12085 and pRE25, whereas the sequence with the greatest identity to the resistance genes carrying a transposon of pEC369 was on the chromosome of Staphylococcus aureus strain GD1677. Conclusion The resistance profiles of En. casseliflavus EC369 might contribute to the resistance genes encoded on the plasmid. The fact that the most similar sequence to the transposon carrying resistance genes of pEC369 was encoded in the chromosome of a S. aureus strain provides insights into the mechanism of dissemination of multidrug resistance between bacteria of different species or genera through horizontal gene transfer.
Collapse
Affiliation(s)
- Min Yin
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Yi Jiang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Changrui Qian
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Fei Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Yuanyuan Ying
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Chongyang Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Peizhen Li
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Jun Ying
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Kewei Li
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Teng Xu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Qiyu Bao
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Caixia Sun
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China,
| |
Collapse
|
24
|
Gekenidis MT, Schöner U, von Ah U, Schmelcher M, Walsh F, Drissner D. Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain. FEMS Microbiol Ecol 2018; 94:5067869. [PMID: 30101286 PMCID: PMC6138756 DOI: 10.1093/femsec/fiy149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/06/2018] [Indexed: 01/04/2023] Open
Abstract
Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.
Collapse
Affiliation(s)
- Maria-Theresia Gekenidis
- Microbiology of Plant Foods, Agroscope, Müller-Thurgau-Strasse 29, 8820 Waedenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Ulrich Schöner
- Mäder Kräuter AG, Buchserstrasse 2, 8113 Boppelsen, Switzerland
| | - Ueli von Ah
- Biotechnology, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Fiona Walsh
- Department of Biology, Maynooth University, W23F2H6 Maynooth, County Kildare, Ireland
| | - David Drissner
- Microbiology of Plant Foods, Agroscope, Müller-Thurgau-Strasse 29, 8820 Waedenswil, Switzerland
| |
Collapse
|
25
|
Maldonado NC, Ficoseco CA, Mansilla FI, Melián C, Hébert EM, Vignolo GM, Nader-Macías MEF. Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Xu S, Amarakoon ID, Zaheer R, Smith A, Sura S, Wang G, Reuter T, Zvomuya F, Cessna AJ, Larney FJ, McAllister TA. Dissipation of antimicrobial resistance genes in compost originating from cattle manure after direct oral administration or post-excretion fortification of antimicrobials. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:373-384. [PMID: 29215973 DOI: 10.1080/10934529.2017.1404337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Dissipation of antimicrobial resistance genes (ARG) during composting of cattle manure generated through fortification versus administration of antimicrobials in feed was compared. Manure was collected from cattle fed diets containing (kg-1) dry matter (DM): (1) 44 mg chlortetracycline (CTC), (2) a mixture of 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), (3) 11 mg tylosin (TYL) or (4) Control, no antimicrobials. Manures were composted for 30 d with a single mixing after 16 d to generate the second heating cycle. Quantitative PCR (qPCR) was used to measure 16S rDNA and tetracycline (tet), erythromycin (erm) and sulfamethazine (sul) genes. Temperature peaks ranged from 48 to 68°C across treatments in the first composting cycle, but except for the control, did not exceed 55°C in the second cycle. Copy numbers of 16S rDNA decreased (P < 0.05) during composting, but were not altered by antimcrobials. Except tet(L), all ARG decreased by 0.1-1.6 log10 g DM-1 in the first cycle, but some genes (tet[B], tet[L], erm[F], erm[X]) increased (P < 0.05) by 1.0-3.1 log10 g DM-1 in the second. During composting, levels of tet(M) and tet(W) in CTC, erm(A), erm(B) and erm(X) in TYL, and sul(1) in CTCSMZ remained higher (P < 0.05) in fed than fortified treatments. The dissipation of ARG during composting of manure fortified with antimicrobials differs from manure generated by cattle that are administered antimicrobials in feed, and does not always align with the dissipation of antimicrobial residues.
Collapse
Affiliation(s)
- Shanwei Xu
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Inoka D Amarakoon
- b Department of Soil Science , University of Manitoba , Winnipeg , Canada
| | - Rahat Zaheer
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Alanna Smith
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Srinivas Sura
- c Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - George Wang
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Tim Reuter
- d Alberta Agriculture and Forestry , Lethbridge , Canada
| | - Francis Zvomuya
- b Department of Soil Science , University of Manitoba , Winnipeg , Canada
| | - Allan J Cessna
- e Saskatoon Research and Development Centre , Agriculture and Agri-Food Canada , Saskatoon , Canada
| | - Francis J Larney
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Tim A McAllister
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| |
Collapse
|
27
|
Nguyen J, Hartnett ME. Successful management of post-traumatic vancomycin-resistant enterococcus endophthalmitis. Am J Ophthalmol Case Rep 2017; 5:117-118. [PMID: 28848938 PMCID: PMC5571869 DOI: 10.1016/j.ajoc.2016.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To highlight good visual outcome with intravitreal amikacin administered 18 days following trauma-inducing vancomycin resistant enterococcal endophthalmitis treated initially with vitrectomy and oral linezolid. OBSERVATIONS Despite initial vitrectomy, intravitreal vancomycin, ceftazidime and oral linezolid, smoldering vitreous infiltrates prompted treatment with intravitreal amikacin 18 days later and restored vision to 20/40 in a vancomycin-resistant traumatic endophthalmitis. CONCLUSIONS AND IMPORTANCE Good visual outcome was attained with intravitreal injection of amikacin 18 days following penetrating trauma and vancomycin resistant enterococcal endophthalmitis that smoldered following initial treatment of vitrectomy, intravitreal antibiotics and oral linezolid.
Collapse
|
28
|
Liu S, Kilonzo-Nthenge A. Prevalence of Multidrug-Resistant Bacteria from U.S.-Grown and Imported Fresh Produce Retailed in Chain Supermarkets and Ethnic Stores of Davidson County, Tennessee. J Food Prot 2017; 80:506-514. [PMID: 28207293 DOI: 10.4315/0362-028x.jfp-16-178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to determine whether U.S.-grown and imported fresh produce retailed in ethnic stores and chain supermarkets was a reservoir of antibiotic-resistant bacteria. A total of 360 (129 imported and 231 U.S.-grown) samples of fresh produce were purchased from retail stores and analyzed for Enterobacteriaceae , including three pathogenic bacteria ( Escherichia coli O157:H7, Shigella , and Salmonella ), using standard methods. Presumptive pathogenic isolates were confirmed using PCR. The mean Enterobacteriaceae counts for imported produce were 6.87 ± 0.15 log CFU/g and 7.16 ± 0.11 log CFU/g in ethnic stores and chain supermarkets, respectively. For U.S.-grown produce, the contamination levels were at 8.35 ± 0.17 log CFU/g and 7.52 ± 0.13 log CFU/g in ethnic stores and chain supermarkets, respectively. Salmonella (0 and 0.3%), Shigella (1.7 and 0.6%), E. coli (3.1 and 1.4%), Enterobacter (9.4 and 8.6%), Klebsiella (6.7 and 0.6%), and Serratia (5.8 and 1.4%) were detected in produce from ethnic stores and chain supermarkets, respectively. None of the samples were positive for E. coli O157:H7. Regarding distribution by produce type, leafy vegetables had a significantly (P < 0.05) higher prevalence of Enterobacteriaceae (19.2%) than the other types, followed by root vegetables (6.4%), tomatoes (5.6%), and fruits (3.9%). Antibiotic-resistant Salmonella , Shigella , E. coli , Enterobacter , Klebsiella , and Erwinia bacteria were also isolated from fresh produce. The frequencies of vancomycin resistance (98.1 and 100%) were significantly higher (P < 0.05) than the frequencies of ampicillin resistance (42.3 and 72.9%) for imported and U.S.-grown produce, respectively. Despite the increased attention to the role of imported produce as a source of antimicrobial resistance, this study indicates that U.S.-grown produce is also contaminated with antibiotic-resistant bacteria. Good agricultural practices on the farms and washing of fresh produce before consumption are greatly recommended to avoid possible public health hazards.
Collapse
Affiliation(s)
- Siqin Liu
- Department of Family and Consumer Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, Tennessee 37209, USA
| | - Agnes Kilonzo-Nthenge
- Department of Family and Consumer Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, Tennessee 37209, USA
| |
Collapse
|
29
|
Molecular assessment of virulence determinants, hospital associated marker (IS16gene) and prevalence of antibiotic resistance in soil borne Enterococcus species. Microb Pathog 2017; 105:298-306. [PMID: 28258002 DOI: 10.1016/j.micpath.2017.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Enterococci, no more regarded as GRAS (Generally Recognized As Safe) organism, are emerging as an important source of nosocomial infections worldwide. The main contributors in pathogenesis of enterococci are the presence of various virulent factors and antibiotic resistance genes. We aimed to examine the prevalence, dissemination, antibiotic resistance and virulent factors associated with enterococci from bulk soil (BS). A total of 372 enterococci were isolated from 500 soil samples. PCR was used to identify the isolates up to species level and for carriage of 16 virulence genes including hospital associated marker (i.e. IS16). E. faecium (77%), E. faecalis (10%), E. hirae (4%) and E. casseliflavus (1%) were the major species isolated. The efaAfs was the most dominant gene (100%), followed by gelE (78.9%), sprE (76.3%) and esp (13%) in E. faecalis isolates. The E. faecium carried largely efaAfm (86.8%) and acm (50.3%) genes. Presence of entP (10%), entA (8.3%) and entB (6.9%) genes was detected mostly in E. faecium, while enlA (18%) and ef1097 (2.6%) was only detected in E. faecalis isolates. 50% E. faecalis and 2% E. faecium isolates harbored IS16, while five E. faecalis harbored both IS16 and espTIM genes providing strong evidence about the presence of espTIM gene on 64 Kb pathogenicity island. BOX and RAPD PCR analysis revealed high degree of genetic variation within the species. Degree of resistance against 12 major antibiotics showed chloramphenicol as the most effective and meropenom as the least effective antibiotic. Presence of multiple antibiotic resistant, virulent and hospital associated enterococci in bulk soil represents a potential source for further dissemination to humans and animals and poses potential impact on public health.
Collapse
|
30
|
Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG. Bacteriophages and its applications: an overview. Folia Microbiol (Praha) 2016; 62:17-55. [PMID: 27718043 DOI: 10.1007/s12223-016-0471-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/12/2016] [Indexed: 01/21/2023]
Abstract
Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d'Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.
Collapse
Affiliation(s)
- Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | | | | | - Rishika Prasad
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
- School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | | | - Mohan G Vairale
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| |
Collapse
|
31
|
Micallef SA, Callahan MT, Pagadala S. Occurrence and Dispersal of Indicator Bacteria on Cucumbers Grown Horizontally or Vertically on Various Mulch Types. J Food Prot 2016; 79:1663-1672. [PMID: 28221845 DOI: 10.4315/0362-028x.jfp-16-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
No data exist on the impact of cultivation practices on food safety risks associated with cucumber. Cucumbers are typically grown horizontally over a mulch cover, with fruit touching the ground, but this vining plant grows well in vertical systems. To assess whether production system affects bacterial dispersal onto plants, field trials were conducted over 2 years. Cucumber cultivar 'Marketmore 76' was grown horizontally on plastic, straw, or bare ground or vertically on trellises installed on bare ground in soil previously amended with raw dairy manure. Fruit, flower, leaf, and soil samples were collected to quantify Escherichia coli , thermotolerant coliforms, and enterococci by direct plating. E. coli isolates were characterized by BOX-PCR to evaluate relatedness among strains. Although thermotolerant coliforms and enterococci were significantly less abundant on fruit in year 1 (P < 0.05), this result was not seen in year 2 when more rain was recorded. Instead, fruit from straw-mulched beds had higher levels of enterococci compared with fruit grown on bare ground (P < 0.05). Leaves on bare ground occasionally had more bacteria than did leaves on plastic mulch beds (P < 0.05). Production system did not impact flower-associated bacterial levels. E. coli isolates (n =127) were genotyped, generating 21 distinct fingerprints. Vertical production did not appear to be a barrier for E. coli dispersal to the crop, as suggested by numerous related isolates from soil and flowers on bare ground, straw-mulched, and trellised beds (subcluster B1). None of the isolates from soil and flowers in this subcluster were related to isolates recovered from fruit, showing that flower colonization does not necessarily lead to fruit colonization. One cluster of isolates contained those from flowers and fruits but not soil, indicating a source other than manure-amended soil. Straw may be a source of E. coli ; a number of closely related E. coli isolates were retrieved from soil and fruits from straw-mulched beds. Our approach revealed E. coli dispersal patterns and could be used to assess bacterial transmission in other production systems.
Collapse
Affiliation(s)
- Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Sivaranjani Pagadala
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
32
|
Xu A, Buchanan RL, Micallef SA. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation. Int J Food Microbiol 2016; 224:28-39. [PMID: 26938806 DOI: 10.1016/j.ijfoodmicro.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/11/2015] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
Abstract
In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci levels under straw in fall 2014 (p<0.05). This study demonstrates that mulches used in lettuce production may impact the fate of enteric bacteria in soil or on lettuce, most likely in relation to soil moisture retention, and other weather-related factors, such as temperature and rainfall. The data suggest that the time between exposure to a source of enteric bacteria and harvesting of the crop is season dependent, which has implications for determining best harvest times.
Collapse
Affiliation(s)
- Aixia Xu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
33
|
Carey SA, Goldstein RER, Gibbs SG, Claye E, He X, Sapkota AR. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation. ENVIRONMENTAL RESEARCH 2016; 147:350-5. [PMID: 26942838 PMCID: PMC8223762 DOI: 10.1016/j.envres.2016.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 05/20/2023]
Abstract
Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray irrigation sites; however, resistance to other antimicrobial classes is more prevalent, particularly among non-E. faecalis isolates.
Collapse
Affiliation(s)
- Stephanie Ann Carey
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Rachel E Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Shawn G Gibbs
- Department of Environmental Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Emma Claye
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
34
|
Ben Said L, Klibi N, Dziri R, Borgo F, Boudabous A, Ben Slama K, Torres C. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1627-1633. [PMID: 25988398 DOI: 10.1002/jsfa.7264] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/07/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The objective of this study was to determine the species, clonal diversity, antibiotic resistance and virulence of enterococci in different environments. Seventy-one samples of farm origin (34 of food vegetables, 27 of soil and ten of irrigation water) and 19 samples of vegetables from five markets, were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. RESULTS Enterococci were obtained from 72.2% of tested samples in SB media (food vegetables from farms, 88.2%; soil and irrigation water, 51%; food vegetables from markets, 84.2%), and 65 enterococcal isolates were obtained. Enterococcus faecium was the most prevalent species (52.3%), followed by E. hirae (35.4%), E. faecalis (6.15%), and E. casseliflavus (6.15%). Antibiotic resistance detected among these enterococci was as follows (percentage/detected gene): ciprofloxacin (60%), erythromycin (18.4%/erm(B)), tetracycline (15.4%/tet(M)-tet(L)), kanamycin (15.4%/aph(3')-III), chloramphenicol (7.7%), streptomycin (3%/ant(6)), vancomycin (6.15%/vanC2)), teicoplanin (0%) and ampicillin (0%). High-level gentamicin-resistant (HLR-G) enterococci were detected in SB-Gen plates in 14 of 90 tested samples (15.5%), and 15 isolates were characterized: ten E. faecalis, four E. faecium and one E. hirae. All HLR-G enterococci carried the aac(6')-aph(2″), erm(B) and tet(M) genes, among other resistance genes. The HLR-G isolates showed high genetic diversity (ten different PFGE profiles), and were ascribed to the sequence types ST2, ST16, ST28 and new ST528 (in E. faecalis), and ST56, new ST885 and new ST886 (in E. faecium). CONCLUSION Food vegetables in the farm or market settings are frequently contaminated by HLR-G enterococci, and these microorganisms could reach the human intestine through the food chain, if hygienic conditions are not followed. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leila Ben Said
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Naouel Klibi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Raoudha Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Francesca Borgo
- Department of Health Sciences, Università degli Studi di Milano, I-20142, Milan, Italy
| | - Abdellatif Boudabous
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, E-26006, Logroño, Spain
| |
Collapse
|
35
|
Xu S, Sura S, Zaheer R, Wang G, Smith A, Cook S, Olson AF, Cessna AJ, Larney FJ, McAllister TA. Dissipation of Antimicrobial Resistance Determinants in Composted and Stockpiled Beef Cattle Manure. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:528-536. [PMID: 27065400 DOI: 10.2134/jeq2015.03.0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Windrow composting or stockpiling reduces the viability of pathogens and antimicrobial residues in manure. However, the impact of these manure management practices on the persistence of genes coding for antimicrobial resistance is less well known. In this study, manure from cattle administered 44 mg of chlortetracycline kg feed (dry wt. basis) (CTC), 44 mg of CTC and 44 mg of sulfamethazine kg feed (CTCSMZ), 11 mg of tylosin kg feed (TYL), and no antimicrobials (control) were composted or stockpiled over 102 d. Temperature remained ≥55°C for 35 d in compost and 2 d in stockpiles. Quantitative PCR was used to measure levels of 16S rRNA genes and tetracycline [(B), (C), (L), (M), (W)], erythromycin [(A), (B), (F), (X)], and sulfamethazine [(1), (2)] resistance determinants. After 102 d, 16S rRNA genes and all resistance determinants declined by 0.5 to 3 log copies per gram dry matter. Copies of 16S rRNA genes were affected ( < 0.05) by antimicrobials with the ranking of control > CTC = TYL > CTCSMZ. Compared with the control, antimicrobials did not increase the abundance of resistance genes in either composted or stockpiled manure, except (M) and (2) in CTCSMZ ( < 0.05). The decline in 16S rRNA genes and resistance determinants was higher ( < 0.05) in composted than in stockpiled manure. We conclude that composting may be more effective than stockpiling in reducing the introduction of antimicrobial resistance genes into the environment before land application of manure.
Collapse
|
36
|
Molale LG, Bezuidenhout CC. Virulence determinants and production of extracellular enzymes in Enterococcus spp. from surface water sources. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:1817-1824. [PMID: 27120635 DOI: 10.2166/wst.2016.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Virulence factors in Enterococcus may be indicative of potential pathogenicity. The aim of this study was to determine the relationship between the presence of clinically relevant virulence genes, in Enterococcus spp. from environmental water, and their in vitro expression. One hundred and twenty-four Enterococcus isolates (seven species), from five surface water systems in the North West Province, South Africa, were screened for the presence of asa1, cylA, esp, gelE and hyl using polymerase chain reaction. The expression of cylA, hyl and gelE was determined by phenotypic assessments. Sixty-five percent of the isolates were positive for one virulence gene and 13% for two or more. Most frequently detected genes were gelE (32%) and cylA (28%). Enterococcal surface protein was absent in all isolates screened. The presence of virulence genes was correlated with their extracellular enzyme production. The results show that a large percentage of these environmental Enterococcus spp. possess virulence factors that could be expressed in vitro. This is a cause for concern and could have implications for individuals using this water for recreational and cultural purposes. Further investigation is required into the sources of these potential pathogenic Enterococcus isolates and measures to minimize their presence in water sources.
Collapse
Affiliation(s)
- Lesego Gertrude Molale
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| |
Collapse
|
37
|
Bhutani N, Muraleedharan C, Talreja D, Rana SW, Walia S, Kumar A, Walia SK. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption. BIOMED RESEARCH INTERNATIONAL 2015; 2015:547547. [PMID: 26064922 PMCID: PMC4433657 DOI: 10.1155/2015/547547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the bla SHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to bla SHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health.
Collapse
Affiliation(s)
- Natasha Bhutani
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| | - Chithra Muraleedharan
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| | - Deepa Talreja
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Sonia Walia Rana
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Sandeep Walia
- Department of Gastroenterology, Henry Ford Health System, Detroit, MI 48208, USA
| | - Ashok Kumar
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Satish K. Walia
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| |
Collapse
|
38
|
Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3805-3822. [PMID: 25856120 DOI: 10.1021/acs.jafc.5b00778] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
39
|
Fang H, Wang H, Cai L, Yu Y. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1095-104. [PMID: 25514174 DOI: 10.1021/es504157v] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs pose a high risk to soil ecology and public health. Here, we used a metagenomic approach to investigate their diversity and abundance in chicken manures and greenhouse soils collected from Guli, Pulangke, and Hushu vegetable bases with different greenhouse planting years in Nanjing, Eastern China. There was a positive correlation between the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and greenhouse soils. In total, 156.2–5001.4 μg/kg of antibiotic residues, 22 classes of ARGs, 32 HPB species, and 46 species of HPB carrying ARGs were found. The highest relative abundance was tetracycline resistance genes (manures) and multidrug resistance genes (greenhouse soils). The dominant HPB and HPB carrying ARGs in the manures were Bacillus anthracis, Bordetella pertussis, and B. anthracis (sulfonamide resistance gene, sul1), respectively. The corresponding findings in greenhouse soils were Mycobacterium tuberculosis and M. ulcerans, M. tuberculosis (macrolide-lincosamide-streptogramin resistance protein, MLSRP), and B. anthracis (sul1), respectively. Our findings confirmed high levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in the manured greenhouse soils compared with those in the field soils, and their relative abundance increased with the extension of greenhouse planting years.
Collapse
|
40
|
Gibson KE. Tracking Pathogens in the Environment. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Pérez Pulido R, Toledo J, Grande MJ, Gálvez A, Lucas R. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. Int J Food Microbiol 2014; 196:62-9. [PMID: 25528726 DOI: 10.1016/j.ijfoodmicro.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/22/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
Abstract
In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial inactivation achieved by the combined treatment with enterocin and HHP reduced the levels of viable cells below detectable limits at days 0 and 1, and survivors recovered on TSA at day 7 were represented in >99% by B. firmus OTU. OTUs from endosporeformers were no longer detected during prolonged incubation, displaced by Pantoea spp., Erwinia billingiae and leuconostocs. Results from the present study indicate that HHP in combination with enterocin AS-48 is more effective in preserving the microbiological quality of cherimoya pulp during storage than the single HHP treatment.
Collapse
Affiliation(s)
- Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Julia Toledo
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - M José Grande
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - Rosario Lucas
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
42
|
Occupational exposure to Staphylococcus aureus and Enterococcus spp. among spray irrigation workers using reclaimed water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4340-55. [PMID: 24747541 PMCID: PMC4025025 DOI: 10.3390/ijerph110404340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
As reclaimed water use expands, it is important to evaluate potential occupational health risks from exposure to this alternative water source. We compared odds of colonization with methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus (MSSA), vancomycin-resistant enterococci (VRE), and vancomycin-susceptible enterococci (VSE) between spray irrigation workers using reclaimed water and office worker controls. Nasal and dermal swabs from 19 spray irrigation workers and 24 office worker controls were collected and analyzed for MRSA, MSSA, VRE, and VSE. Isolates were confirmed using standard biochemical tests and polymerase chain reaction assays. Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Data were analyzed by two-sample proportion, chi-square, Fisher’s exact tests, and logistic regression. No MRSA or VRE were detected in any samples. MSSA was detected in 26% and 29% of spray irrigators and controls, respectively. VSE was detected in 11% and 0% of spray irrigation workers and controls, respectively. The adjusted odds of MSSA, multidrug-resistant MSSA, and either MSSA or VSE colonization were greater among spray irrigation workers, however results were not statistically significant. Future studies with larger sample sizes are needed to further evaluate this relationship.
Collapse
|
43
|
Goldstein RER, Micallef SA, Gibbs SG, George A, Claye E, Sapkota A, Joseph SW, Sapkota AR. Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:404-11. [PMID: 23933428 PMCID: PMC8259341 DOI: 10.1016/j.scitotenv.2013.07.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Vancomycin-resistant enterococci (VRE), a leading cause of hospital-acquired infections, can occur in wastewater. However, to date, no previous studies have evaluated the occurrence of VRE at wastewater treatment plants (WWTPs) that send their treated effluent to reuse sites. We evaluated the occurrence, concentration, and antimicrobial resistance patterns of VRE at U.S. WWTPs associated with reuse sites. We collected 44 wastewater samples, representing treatment steps from influent to effluent, from two Mid-Atlantic and two Midwest WWTPs between October 2009 and October 2010. Samples were analyzed for total enterococci and VRE using membrane filtration. Isolates were confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was performed by Sensititre microbroth dilution. Data were analyzed by two-sample proportion tests and analysis of variance. We detected VRE in 27% (12/44) of all wastewater samples collected and VRE represented 3% of total enterococci detected at all WWTPs. More samples were VRE-positive from the Mid-Atlantic compared to the Midwest WWTPs (p=0.008). VRE concentrations decreased as treatment progressed at all WWTPs, except at Mid-Atlantic WWTP1 where there was an increase in VRE concentrations in activated sludge reactor samples. VRE were not detected in chlorinated effluent, but were detected in one un-chlorinated effluent sample. All unique VRE isolates were multidrug resistant. Fifty-five percent (12/22) of the isolates displayed high-level aminoglycoside resistance. Our findings show that chlorination reduces the occurrence of VRE in wastewater. However, WWTP workers could be exposed to VRE during wastewater treatment. Our data also raise potential concerns about VRE exposure among individuals who come into contact with un-chlorinated reclaimed water.
Collapse
Affiliation(s)
- Rachel E. Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Shirley A. Micallef
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
- Department of Plant Science and Landscape Architecture and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Shawn G. Gibbs
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ashish George
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Emma Claye
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Sam W. Joseph
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
- Corresponding Author: Amy R. Sapkota, Ph.D., M.P.H, University of Maryland School of Public Health, Maryland Institute for Applied Environmental Health, 2234P SPH Building, College Park, MD 20742, Phone: 301-405-1772, Fax: 301-314-1012,
| |
Collapse
|
44
|
Abstract
Interest in using bacteriophages to control the growth and spread of bacterial pathogens is being revived in the wake of widespread antibiotic resistance. However, little is known about the ecological effects that high concentrations of phages in the environment might have on natural microbial communities. We review the current evidence suggesting phage-mediated environmental perturbation, with a focus on agricultural examples, and describe the potential implications for human health and agriculture. Specifically, we examine the known and potential consequences of phage application in certain agricultural practices, discuss the risks of evolved bacterial resistance to phages, and question whether the future of phage therapy will emulate that of antibiotic treatment in terms of widespread resistance. Finally, we propose some basic precautions that could preclude such phenomena and highlight existing methods for tracking bacterial resistance to phage therapeutic agents.
Collapse
Affiliation(s)
- Sean Meaden
- College of Life and Environmental Sciences, University of ExeterPenryn, UK
| | | |
Collapse
|
45
|
Burgos MJG, Aguayo MCL, Pulido RP, Gálvez A, López RL. Multilocus sequence typing and antimicrobial resistance in Enterococcus faecium isolates from fresh produce. Antonie van Leeuwenhoek 2013; 105:413-21. [DOI: 10.1007/s10482-013-0073-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023]
|