1
|
Nardin R, Tamasi G, Baglioni M, Fattori G, Boldrini A, Esposito R, Rossi C. Combining Metal(loid) and Secondary Metabolite Levels in Olea europaea L. Samples for Geographical Identification. Foods 2024; 13:4017. [PMID: 39766960 PMCID: PMC11727026 DOI: 10.3390/foods13244017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
To fight counterfeits, and to protect the consumer, the interest in certifying the origin of agricultural goods has been growing in recent years. In this context and to increase the accuracy of zoning models, multiple analytical techniques must be combined via a multivariate approach. During the sampling campaign, leaves and fruits (olives or drupes) were collected from multiple orchards and farms. By means of HPLC-DAD, metabolite levels were evaluated and combined with the trace and ultra-trace metal/metalloid levels evaluated by ICP-MS (QqQ). The combined dataset was then used to develop a model for geographical traceability. Furthermore, the mineral content of the soil, evaluated by means of ICP-MS, was correlated with both the mineral content in the leaves and drupes and the metabolomic profiles to further investigate the connection between the orchard's location and characteristics of the final products.
Collapse
Affiliation(s)
- Raffaello Nardin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Fattori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Amedeo Boldrini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Rodolfo Esposito
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.B.); (G.F.); (A.B.); (R.E.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Oliveira ALS, Carvalho MJ, Silva P, Pintado M, Madureira AR. Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management. Antioxidants (Basel) 2023; 13:47. [PMID: 38247472 PMCID: PMC10812450 DOI: 10.3390/antiox13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Sugarcane straw (Saccharum officinarum) is a valuable coproduct renowned for its abundant polyphenolic content. However, extracting these polyphenols for natural ingredients faces challenges due to their inherent variability, influenced by biotic stress factors and plant characteristics. We explored the impact of five crucial factors on sugarcane straw polyphenolic diversity: (i) production area (Guariba, Valparaíso), (ii) borer insect (Diatraea saccharalis) infestation, (iii) plant age (first to seventh harvest), (iv) harvest season, and (v) plant variety. Response surface methodology (RSM) and artificial neural networks (ANN) were used to optimize polyphenol extraction conditions. A second-order polynomial model guided us to predict ideal sugarcane straw harvesting conditions for polyphenol-rich extracts. The analysis identified CU0618-variety straw, harvested in Guariba during the dry season (October 2020), at the seventh harvest stage, with 13.81% borer insect infection, as the prime source for high hydroxybenzoic acid (1010 µg/g), hydroxycinnamic acid (3119 µg/g), and flavone (573 µg/g) content and consequently high antioxidant capacity. The ANN model surpasses the RSM model, demonstrating superior predictive capabilities with higher coefficients of determination and reduced mean absolute deviations for each polyphenol class. This underscores the potential of artificial neural networks in forecasting and enhancing polyphenol extraction conditions, setting the stage for AI-driven advancements in crop management.
Collapse
Affiliation(s)
- Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (P.S.); (M.P.); (A.R.M.)
| | | | | | | | | |
Collapse
|
3
|
Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods 2022; 11:foods11050743. [PMID: 35267376 PMCID: PMC8909904 DOI: 10.3390/foods11050743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Olive leaves, one of the most abundant olive production by-products, have shown incredible potential for their characteristic bioactive compound composition, with unique compounds such as the polyphenol oleuropein. In order to evaluate the bioaccessibility of bioactive compounds present in an olive leaf extract, samples were submitted to an in vitro digestion process following INFOGEST protocol, and qualitative and quantitative characterization of the original extract and digestive samples at different times were carried out using HPLC-ESI-TOF-MS. The analyzed extract presented an abundance of phenolic compounds, such as secoiridoids, with oleuropein being the main identified compound. The in vitro digestion process showed an effect on the phenolic profile of the extract, with a lower recovery in the gastric phase and an increase at the beginning of the intestinal phase. Most of the studied compounds showed high bioaccessibility at the end of the digestion, with oleuropein, ligstroside, and quercetin-3-O-galactoside being among the ones with higher value. These findings show the potential for future use of olive leaf polyphenols. However, further research is needed in order to evaluate the absorption, delivery, and interaction of these compounds with the colon.
Collapse
|
4
|
Kabbash EM, Ayoub IM, Gad HA, Abdel-Shakour ZT, El-Ahmady SH. Quality assessment of leaf extracts of 12 olive cultivars and impact of seasonal variation based on UV spectroscopy and phytochemcial content using multivariate analyses. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:932-941. [PMID: 33619785 DOI: 10.1002/pca.3036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Recently, focus has been made on the health-oriented uses of olive leaves, a byproduct of olive production, as a potential source of antioxidants. Oleuropein is one of the phenolic components in olive leaves known for its high antioxidant value. OBJECTIVE The main aim of the current study was constructing a model for the quality assessment of olive leaves and their potential phytochemical content and hence biological value as well. The phytochemical variation in olive leaves in both flowering (spring) and fruiting seasons (autumn) was also investigated. METHODS In this study, the leaves of 12 different olive cultivars from different geographical origins growing in Egypt were assessed for their oleuropein content, total flavonoid (TF) content and total polyphenol (Pph) content in spring and autumn via ultraviolet (UV) spectroscopy and high-performance liquid chromatography (HPLC) coupled to multivariate data analyses. The antioxidant activity of olive leaf extracts was assessed using 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay. RESULTS Higher levels of oleuropein, TF and Pph content were found in spring with the highest oleuropein content in the Spanish cultivar; Manzanillo, followed by the Italian cultivar Coratina and the Egyptian Agizi Okasi (218.94, 151.58 and 122.18 mg/100 g of dried leaf extract, respectively). UV spectra was also measured and the collected data were coupled to multivariate analyses showing clustering of cultivars with common geographical origin. CONCLUSION Our findings emphasised the influence of collection time and type of cultivar on the chemical profile of olive leaves. The model presented herein, serves for the quality assessment of olive leaves based on their phytochemical profile.
Collapse
Affiliation(s)
- Eman M Kabbash
- Phytochemistry Department, National Organisation for Drug Control and Research, Giza, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy A Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zeinab T Abdel-Shakour
- Phytochemistry Department, National Organisation for Drug Control and Research, Giza, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Phytochemical Characterization of Olea europaea L. Cultivars of Cilento National Park (South Italy) through NMR-Based Metabolomics. Molecules 2021; 26:molecules26133845. [PMID: 34202568 PMCID: PMC8270249 DOI: 10.3390/molecules26133845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Olea europaea germplasm is constituted by a huge number of cultivars, each one characterized by specific features. In this context, endemic cultivars evolved for a very long period in a precise local area, developing very specific traits. These characteristics include the production and accumulation of phytochemicals, many of which are also responsible for the nutraceutical value of the drupes and of the oils therefrom. With the aim of obtaining information on the phytochemical profile of drupes of autochthonous cultivars of Cilento, Vallo di Diano and Alburni National Park, a metabolomics-based study was carried out on 19 selected cultivars. Multivariate data analysis of 1H-NMR data and 2D NMR analyses allowed the rapid identification of metabolites that were qualitatively and/or quantitatively varying among the cultivars. This study allowed to identify the cultivars Racioppella, Guglia, Pizzulella, Oliva amara, and Racioppa as the richest in health-promoting phenolic compounds. Furthermore, it showed a significant variability among the different cultivars, suggesting the possibility of using metabolic fingerprinting approaches for cultivar differentiation, once that further studies aimed at assessing the influence of growing conditions and environmental factors on the chemical profiles of single cultivars are carried out.
Collapse
|
6
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Skodra C, Titeli VS, Michailidis M, Bazakos C, Ganopoulos I, Molassiotis A, Tanou G. Olive Fruit Development and Ripening: Break on through to the "-Omics" Side. Int J Mol Sci 2021; 22:ijms22115806. [PMID: 34071656 PMCID: PMC8198582 DOI: 10.3390/ijms22115806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
The olive tree (Olea europaea L. subsp. europaea) is the most important perennial crop in the Mediterranean region, producing table olives and oil, both appreciated for their nutraceutical value. Although olive oil quality traits have been extensively studied, much less attention has been paid to olive drupe. Olive drupe ripening is an extremely complex process involving numerous physiological and molecular changes that are unique in this fruit crop species. This review underlines the contribution of "-omics" techniques and of the recent advances in bioinformatics and analytical tools, notably next-generation sequencing and mass spectrometry, for the characterization of the olive ripening syndrome. The usage of high-dimensional datasets, such as transcriptomics, proteomics, and metabolomics, will provide a systematical description of the molecular-specific processes regulating olive fruit development and ripening. However, the incomplete sequence of the O. europaea L. reference genome has largely hampered the utilization of omics tools towards olive drupe research. Due to this disadvantage, the most reported -omics studies on fruit trees concern metabolomics and only a few transcriptomics and proteomics. In this review, up-to-date applications of -omics technologies towards olive drupe biology are addressed, and future perspectives in olive fruit research are highlighted.
Collapse
Affiliation(s)
- Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece; (C.S.); (V.S.T.); (M.M.); (A.M.)
| | - Vaia Styliani Titeli
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece; (C.S.); (V.S.T.); (M.M.); (A.M.)
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece; (C.S.); (V.S.T.); (M.M.); (A.M.)
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—‘Demeter’ (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece; (C.B.); (I.G.)
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—‘Demeter’ (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece; (C.B.); (I.G.)
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece; (C.S.); (V.S.T.); (M.M.); (A.M.)
| | - Georgia Tanou
- Institute of Soil and Water Resources, Hellenic Agricultural Organization—‘Demeter’ (ELGO-Demeter), 57001 Thessaloniki-Thermi, Greece
- Correspondence:
| |
Collapse
|
8
|
Asteggiano A, Franceschi P, Zorzi M, Aigotti R, Dal Bello F, Baldassarre F, Lops F, Carlucci A, Medana C, Ciccarella G. HPLC-HRMS Global Metabolomics Approach for the Diagnosis of "Olive Quick Decline Syndrome" Markers in Olive Trees Leaves. Metabolites 2021; 11:metabo11010040. [PMID: 33429872 PMCID: PMC7827768 DOI: 10.3390/metabo11010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Olive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants. The onset of this economically devastating disease has been associated with a Gram-negative plant pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution mass spectrometry detection is one the most widely applied technologies in metabolomics, as it provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the ability to identify metabolites. The purpose of this work is the development of a global metabolomics mass spectrometry assay able to identify OQDS molecular markers that could discriminate between healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds highly expressed in the OP group were annotated; results obtained by this metabolomic approach could be used as a fast and reliable method for the biochemical characterization of OQDS and to develop targeted MS approaches for OQDS detection by foliage analysis.
Collapse
Affiliation(s)
- Alberto Asteggiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Pietro Franceschi
- Unit of Computational Biology, IASMA Research and Innovation Centre, Fondazione Edmund Mach via E. Mach, 1, 38010 San Michele all’ Adige, Italy;
| | - Michael Zorzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Riccardo Aigotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Francesco Lops
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; (F.L.); (A.C.)
| | - Antonia Carlucci
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; (F.L.); (A.C.)
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
- Correspondence: (C.M.); (G.C.); Tel.: +39-011-670-5240 (C.M.); +39-083-231-9810 (G.C.)
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
- Correspondence: (C.M.); (G.C.); Tel.: +39-011-670-5240 (C.M.); +39-083-231-9810 (G.C.)
| |
Collapse
|
9
|
Abstract
The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.
Collapse
|
10
|
Jin L, Sun J, Jin M, Jin C, Diao S, Zhou W, Li G. Chemical constituents from Syringa reticulata (Bl.) Hara. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.103986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
12
|
Orak HH, Karamać M, Amarowicz R, Orak A, Penkacik K. Genotype-Related Differences in the Phenolic Compound Profile and Antioxidant Activity of Extracts from Olive ( Olea europaea L.) Leaves. Molecules 2019; 24:molecules24061130. [PMID: 30901940 PMCID: PMC6471253 DOI: 10.3390/molecules24061130] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The phenolic compound contents and antioxidant activities of the leaf extracts of nine olive genotypes were determined, and the obtained data were analysed using chemometric techniques. In the crude extracts, 12 compounds belonging to the secoiridoids, phenylethanoids, and flavonoids were identified. Oleuropein was the primary component for all genotypes, exhibiting a content of 21.0 to 98.0 mg/g extract. Hydroxytyrosol, verbascoside, luteolin 7-O-glucoside, and luteolin 4'-O-glucoside were also present in noticeable quantities. Genotypes differed to the greatest extent in the content of verbascoside (0.45⁻21.07 mg/g extract). The content of hydroxytyrosol ranged from 1.33 to 4.03 mg/g extract, and the aforementioned luteolin glucosides were present at 1.58⁻8.67 mg/g extract. The total phenolic content (TPC), DPPH• and ABTS•+ scavenging activities, ferric reducing antioxidant power (FRAP), and ability to inhibit the oxidation of -carotene-linoleic acid emulsion also varied significantly among genotypes. A hierarchical cluster analysis enabled the division of genotypes into three clusters with similarity above 60% in each group. GGE biplot analysis showed olive genotypes variability with respect to phenolic compound contents and antioxidant activities. Significant correlations among TPC, FRAP, the values of both radical scavenging assays, and the content of oleuropein were found. The contents of 7-O-glucoside and 4'-O-glucoside correlated with TPC, TEAC, FRAP, and the results of the emulsion oxidation assay.
Collapse
Affiliation(s)
- Hakime Hülya Orak
- Department of Food Technology, Vocational School of Technical Sciences, Namik Kemal University, 59030 Tekirdağ, Turkey.
| | - Magdalena Karamać
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Adnan Orak
- Field Crops Department, Agricultural Faculty, Namik Kemal University, 59030 Tekirdağ, Turkey.
| | - Kamila Penkacik
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
13
|
Medina S, Pereira JA, Silva P, Perestrelo R, Câmara JS. Food fingerprints - A valuable tool to monitor food authenticity and safety. Food Chem 2018; 278:144-162. [PMID: 30583355 DOI: 10.1016/j.foodchem.2018.11.046] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
In recent years, food frauds and adulterations have increased significantly. This practice is motivated by fast economical gains and has an enormous impact on public health, representing an important issue in food science. In this context, this review has been designed to be a useful guide of potential biomarkers of food authenticity and safety. In terms of food authenticity, we focused our attention on biomarkers reported to specify different botanical or geographical origins, genetic diversity or production systems, while at the food safety level, molecular evidences of food adulteration or spoilage will be highlighted. This report is the first to combine results from recent studies in a format that allows a ready overview of metabolites (<1200 Da) and potentially molecular routes to monitor food authentication and safety. This review has therefore the potential to unveil important aspects in food adulteration and safety, contributing to improve the current regulatory frameworks.
Collapse
Affiliation(s)
- Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Jorge A Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
14
|
Cheurfa M, Abdallah HH, Allem R, Noui A, Picot-Allain CMN, Mahomoodally F. Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province, Algeria using in vitro, in vivo and in silico approaches. Food Chem Toxicol 2018; 123:98-105. [PMID: 30292622 DOI: 10.1016/j.fct.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/31/2023]
Abstract
Aqueous and ethanol extracts prepared from leaves of Olea europaea L. were evaluated for in vitro antioxidant and in vivo hypocholesterolemic effect. The result of administration of O. europaea leaf extracts on serum total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in hypercholesterolaemic mice was evaluated. In addition, rutin and luteolin, reported to occur naturally in O. europaea leaves, were docked against HMG-CoA reductase, the rate-limiting enzyme in cholesterol metabolism. Mice treated with both extracts showed reduced total cholesterol (246.6 and 163.4 mg/dl, for mice groups treated with respective extracts) and LDL (150.16 and 81.28 mg/dl, for mice groups treated with respective extracts) levels as compared to the hypercholesterolaemic group (total cholesterol 253.00 mg/dl and LDL 160.00 mg/dl). Mice treated with aqueous extract (200 mg/kg body weight) showed significantly reduced triglyceride and VLDL levels as compared to the group treated with atorvastatine. HDL level of mice administered with O. europaea aqueous extract was comparable to the atorvastatine-treated group. The ethanol extract of O. europeae leaves was a potent antioxidant (IC50 69.15 mg/ml, % inhibition 54.98, 82.63 mg ascorbic acid equivalent/g extract, 7.53 mol of Fe2+/g extract, and % inhibition 49.71, for the DPPH, β-carotene bleaching, total antioxidant capacity, FRAP, and ferric thiocyanate assays, respectively). Docking studies revealed that rutin showed higher binding affinity with HMG-CoA reductase as compared to luteolin. Data gathered from this study support the development of a prophylactic biomedicine from O. europaea leaves for the management of hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- M Cheurfa
- Département de biologie, Faculté des sciences de la nature et de la vie et sciences de la terre, Université Djilali-Bounaama-Khemis-Miliana, Algeria; Laboratoire de Bio ressources Naturelles, Faculté des Sciences de la nature et de la vie, Département de Biologie, Université H.B.Chlef, Bp 151, Chlef, 02000, Algeria.
| | - H H Abdallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, 11800, Malaysia; Chemistry Department, College of Education, Salahaddin University, Erbil, Iraq
| | - R Allem
- Laboratoire de Bio ressources Naturelles, Faculté des Sciences de la nature et de la vie, Département de Biologie, Université H.B.Chlef, Bp 151, Chlef, 02000, Algeria
| | - A Noui
- Laboratoire de Bio ressources Naturelles, Faculté des Sciences de la nature et de la vie, Département de Biologie, Université H.B.Chlef, Bp 151, Chlef, 02000, Algeria
| | - C M N Picot-Allain
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius.
| |
Collapse
|
15
|
Ben Mohamed M, Guasmi F, Ben Ali S, Radhouani F, Faghim J, Triki T, Kammoun NG, Baffi C, Lucini L, Benincasa C. The LC-MS/MS characterization of phenolic compounds in leaves allows classifying olive cultivars grown in South Tunisia. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
|
17
|
Romero C, Medina E, Mateo MA, Brenes M. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1725-1732. [PMID: 27447942 DOI: 10.1002/jsfa.7920] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. RESULTS The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg-1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg-1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. CONCLUSION Olive leaves can contain up to 70 g kg-1 phenolic compounds and 20 g kg-1 triterpenic acids, and olive fruit can contain up to 35 g kg-1 of the former and 3 g kg-1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), Campus University Pablo de Olavide, Ctra. Utrera km 1, 41013, Seville, Spain
| | - Eduardo Medina
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), Campus University Pablo de Olavide, Ctra. Utrera km 1, 41013, Seville, Spain
| | - Mª Antonia Mateo
- Jaencoop SCA, Avda. de Valencia s/n, 23330-Villanueva del Arzobispo, Jaén, Spain
| | - Manuel Brenes
- Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), Campus University Pablo de Olavide, Ctra. Utrera km 1, 41013, Seville, Spain
| |
Collapse
|
18
|
Sánchez-Barrionuevo L, González-Benjumea A, Escobar-Niño A, García MT, López Ó, Maya I, Fernández-Bolaños JG, Cánovas D, Mellado E. A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria. PLoS One 2016; 11:e0166561. [PMID: 27855214 PMCID: PMC5113952 DOI: 10.1371/journal.pone.0166561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
The chemical synthesis of new lipophilic polyphenols with improved properties presents technical difficulties. Here we describe the selection, isolation and identification of lipolytic bacteria from food-processing industrial wastes, and their use for tailoring a new set of compounds with great interest in the food industry. These bacteria were employed to produce lipolytic supernatants, which were applied without further purification as biocatalysts in the chemoselective and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols. The chemoselectivity of polyphenols acylation/deacylation was analyzed, revealing the preference of the lipases for phenolic hydroxyl groups and phenolic esters. In addition, the alcoholysis of peracetylated 3,4-dihydroxyphenylglycol resulted in a series of lipophilic 2-alkoxy-2-(3,4-dihydroxyphenyl)ethyl acetate through an unexpected lipase-mediated etherification at the benzylic position. These new compounds are more lipophilic and retained their antioxidant properties. This approach can provide access to unprecedented derivatives of 3,4-dihydroxyphenylglycol with improved properties.
Collapse
Affiliation(s)
- Leyre Sánchez-Barrionuevo
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Almudena Escobar-Niño
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - María Teresa García
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Encarnación Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
19
|
Taverna D, Di Donna L, Mazzotti F, Tagarelli A, Napoli A, Furia E, Sindona G. Rapid discrimination of bergamot essential oil by paper spray mass spectrometry and chemometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:761-767. [PMID: 27460885 DOI: 10.1002/jms.3820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A novel approach for the rapid discrimination of bergamot essential oil from other citrus fruits oils is presented. The method was developed using paper spray mass spectrometry (PS-MS) allowing for a rapid molecular profiling coupled with a statistic tool for a precise and reliable discrimination between the bergamot complex matrix and other similar matrices, commonly used for its reconstitution. Ambient mass spectrometry possesses the ability to record mass spectra of ordinary samples, in their native environment, without sample preparation or pre-separation by creating ions outside the instrument. The present study reports a PS-MS method for the determination of oxygen heterocyclic compounds such as furocoumarins, psoralens and flavonoids present in the non-volatile fraction of citrus fruits essential oils followed by chemometric analysis. The volatile fraction of Bergamot is one of the most known and fashionable natural products, which found applications in flavoring industry as ingredient in beverages and flavored foodstuff. The development of the presented method employed bergamot, sweet orange, orange, cedar, grapefruit and mandarin essential oils. PS-MS measurements were carried out in full scan mode for a total run time of 2 min. The capability of PS-MS profiling to act as marker for the classification of bergamot essential oils was evaluated by using multivariate statistical analysis. Two pattern recognition techniques, linear discriminant analysis and soft independent modeling of class analogy, were applied to MS data. The cross-validation procedure has shown excellent results in terms of the prediction ability because both models have correctly classified all samples for each category. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Domenico Taverna
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Leonardo Di Donna
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Fabio Mazzotti
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Antonio Tagarelli
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Anna Napoli
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Emilia Furia
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Giovanni Sindona
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| |
Collapse
|
20
|
Talhaoui N, Taamalli A, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.09.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Di Donna L, Benabdelkamel H, Taverna D, Indelicato S, Aiello D, Napoli A, Sindona G, Mazzotti F. Determination of ketosteroid hormones in meat by liquid chromatography tandem mass spectrometry and derivatization chemistry. Anal Bioanal Chem 2015; 407:5835-42. [PMID: 26014285 DOI: 10.1007/s00216-015-8772-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022]
Abstract
A method for the determination and quantification of ketosteroid hormones in meat by mass spectrometry, based on the derivatization of the carbonyl moiety of steroids by O-methylhydroxylamine, is presented. The quantitative assay is performed by means of multiple-reaction-monitoring (MRM) scan mode and using the corresponding labelled species, obtained by reaction with d 3-methoxylamine, as internal standard. The accuracy of the method was established by evaluating artificially spiked samples, obtaining values in the range 90-110%. Recovery tests were performed on blank matrix samples spiked with non-natural steroids including trenbolone and melengestrol acetate. The latter experiment revealed that the yield of the extraction processes was approximately 60%. Good values of LOQ and LOD were achieved, making this method competitive with current hormone assay methods.
Collapse
Affiliation(s)
- Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, 87036, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Donna LD, Mazzotti F, Taverna D, Napoli A, Sindona G. Structural characterisation of malonyl flavonols in leek (Allium porrum L.) using high-performance liquid chromatography and mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:207-212. [PMID: 24375682 DOI: 10.1002/pca.2493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Vegetables contain a variety of phytochemicals that have the ability to modify enzymatic and chemical reactions, and therefore may have a positive influence on human health. In particular kaempferol is known to possess anti-carcinogenic activity. OBJECTIVE The purpose of this work was to determine the structure of glycosylated kaempferol derivatives, acylated with malonic acid on the sugar portion. METHODS A methanolic extract of the leaves of Allium porrum L. was submitted to fractionation procedures through semi-preparative HPLC/UV-MS techniques. The collected fractions were evaluated by accurate tandem mass spectrometry experiments using an electrospray ionisation (ESI) quadrupole time-of-flight instrument. Isolated compounds were hydrolysed in order to obtain information on the ester moieties. RESULTS The structures of five compounds not previously reported in leek were determined. The molecules are mono-hexose, di-hexose and coumaroyl, feruloyl and caffeoyl acylated di-hexose derivatives of kaempferol. The common characteristic of the structures relies on the presence of the malonyl moiety on the primary alcoholic function of the sugar immediately linked to the aglycone. Accurate tandem MS experiments and basic hydrolysis treatments revealed a sequence of the acylated glycosidic moieties. CONCLUSION A set of secondary metabolites of the aerial part of Allium porrum L. (leek) was identified and characterised by ESI/MS(2) . Knowledge of the presence of these first-reported compounds in leek could provide the means for fully understanding of the metabolism of this plant in relation to the biosynthesis of the phenolics.
Collapse
Affiliation(s)
- Leonardo Di Donna
- Dipartimento di Chimica, Università della Calabria, Via P. Bucci, cubo 12/C, I-87030, Arcavacata di Rende (CS), Italy
| | | | | | | | | |
Collapse
|
24
|
Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 2013; 38:52-8. [PMID: 24558311 PMCID: PMC3915324 DOI: 10.1016/j.jgr.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.
Collapse
|
25
|
Comprehensive assay of flavanones in citrus juices and beverages by UHPLC–ESI-MS/MS and derivatization chemistry. Food Chem 2013; 141:2328-33. [DOI: 10.1016/j.foodchem.2013.05.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022]
|
26
|
Identification and assay of underivatized urinary acylcarnitines by paper spray tandem mass spectrometry. Anal Bioanal Chem 2013; 405:8267-76. [DOI: 10.1007/s00216-013-7232-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
|
27
|
Taverna D, Di Donna L, Mazzotti F, Policicchio B, Sindona G. High-throughput determination of Sudan Azo-dyes within powdered chili pepper by paper spray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:544-547. [PMID: 23674278 DOI: 10.1002/jms.3181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 06/02/2023]
Abstract
A high-throughput mass spectrometric method is presented for the simultaneous detection of Sudan I, II, III, IV and Para-Red azo-dyes in foodstuff. The method is based on the use of paper spray mass spectrometry (MS) and deuterium-labeled internal standards on a triple-quadrupole instrument. A detailed assay of each azo-dye was performed by the isotope dilution method, through the precursor ion scan approach, using deuterium-labeled internal standards. The gas-phase breakdown pattern of each labeled and unlabeled analogue displays the naphthoic moiety as a common fragment. Sudan dyes can be determined above the threshold of 1 ppm. Paper spray allows for a wide range of analytes and samples to be investigated by MS in the open air and without sample preparation and bypassing chromatography.
Collapse
Affiliation(s)
- Domenico Taverna
- Dipartimento di Chimica, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende (CS), Italy
| | | | | | | | | |
Collapse
|
28
|
Quirantes-Piné R, Lozano-Sánchez J, Herrero M, Ibáñez E, Segura-Carretero A, Fernández-Gutiérrez A. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:213-223. [PMID: 22987739 DOI: 10.1002/pca.2401] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/30/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. OBJECTIVE To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). METHOD Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. RESULTS This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. CONCLUSION The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices.
Collapse
Affiliation(s)
- Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, c/ Fuentenueva s/n, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Bilgin M, Şahin S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Benabdelkamel H, Di Donna L, Mazzotti F, Naccarato A, Sindona G, Tagarelli A, Taverna D. Authenticity of PGI "Clementine of Calabria" by multielement fingerprint. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3717-3726. [PMID: 22458691 DOI: 10.1021/jf2050075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Clementine is a citrus fruit that has found a peculiar habitat in specific areas of Calabria, a region located in southern Italy. Due to its peculiar characteristics it was recently awarded with protected geographical indications (PGI) from the European Union. In this work, stepwise linear discriminant analysis (S-LDA), soft independent modeling of class analogy (SIMCA), and partial least-squares discriminant analysis (PLS-DA) were used to build chemometric models able to protect PGI Clementine from others of different origin. Accordingly, the concentration of 24-26 elements was determined in peel and juice samples, respectively, obtained from Calabrian PGI clementine and from fruits cultivated in Algeria, Tunisia, and Spain. A cross-validation procedure has shown very satisfactory values of prediction ability for both S-LDA (96.6% for juice samples and 100% for peel samples) and SIMCA (100% for both peel and juice samples). PLS-DA models also yielded satisfactory results.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Scognamiglio M, D'Abrosca B, Pacifico S, Fiumano V, De Luca PF, Monaco P, Fiorentino A. Polyphenol characterization and antioxidant evaluation of Olea europaea varieties cultivated in Cilento National Park (Italy). Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Discrimination of five Tunisian cultivars by Mid InfraRed spectroscopy combined with chemometric analyses of olive Olea europaea leaves. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Roitman JN, Merrill GB, Beck JJ. Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:934-942. [PMID: 21384363 DOI: 10.1002/jsfa.4268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND California is the second largest cultivator of pistachios, producing over 375 million pounds and a revenue of $787 million in 2009. Despite the agricultural and economic importance of pistachios, little is known regarding their actual volatile emissions, which are of interest owing to their potential roles as semiochemicals to insect pests. RESULTS The ex situ volatile analysis of leaves from Pistacia atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus, P. vera and P. weimannifolia demonstrated emission differences between species as well as between female and male leaves. Leaves from the female P. vera cultivars Bronte, Damghan, II, III, Kerman and Ohadi as well as fruits of P. atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus and P. vera (cultivars II, III, Kaleh, Kerman, Momtaz and Ohadi) showed differences in the composition and relative quantity of major volatiles. The compounds in highest relative quantities from the various analyses were sabinene, Δ(3)-carene, β-myrcene, α-phellandrene, limonene, (Z)-ocimene, (E)-β-ocimene and α-terpinolene. CONCLUSION This is the first ex situ survey of fruit and leaf volatile emissions from California-grown Pistacia species and a number of corresponding cultivars. The study provides an overview of the major and minor volatile emissions and also offers evidence of chemotypes based on monoterpenes. The results highlight the dissimilarity of major components detected between ex situ volatile collection and essential oil analysis.
Collapse
Affiliation(s)
- James N Roitman
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Plant Mycotoxin Research, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | |
Collapse
|
34
|
Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A. Review: multistage mass spectrometry in quality, safety and origin of foods. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:1-31. [PMID: 21625027 DOI: 10.1255/ejms.1114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quality and safety control and the validation of origin are hot issues in the production of food and its distribution, and are of primary concern to food and agriculture organization. Modern mass spectrometry (MS) provides unique, reliable and affordable methodologies to approach with a high degree of scientificity any problem which may be posed in this field. In this review the contribution of mass spectrometry to food analysis is presented aiming at providing clues on the fundamental role of the basic principles of gas-phase ion chemistry in applied research fields. Applications in proteomics, allergonomics, glycomics, metabolomics, lipidomics, food safety and traceability have been surveyed. The high level of specificity and sensitivity of the MS approach allows the characterization of food components and contaminants present at ultra-trace levels, providing a distinctive and safe validation of the products.
Collapse
Affiliation(s)
- Donatella Aiello
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|