1
|
Cao YM, Zhang Y, Wang Q, Zhao R, Hou M, Yu ST, Wang KK, Chen YJ, Sun XQ, Liu S, Li JT. Skin hyperspectral imaging and machine learning to accurately predict the muscular poly-unsaturated fatty acids contents in fish. Curr Res Food Sci 2024; 9:100929. [PMID: 39628599 PMCID: PMC11612356 DOI: 10.1016/j.crfs.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
The polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are critical determinants of the nutritional quality of fish. To rapidly and non-destructively determine the muscular PUFAs in living fish, an accuracy technique is urgently needed. In this study, we combined skin hyperspectral imaging (HSI) and machine learning (ML) methods to assess the muscular PUFAs contents of common carp. Hyperspectral images of the live fish skin were acquired in the 400-1000 nm spectral range. The spectral data were preprocessed using Savitzky-Golay (SG), multivariate scattering correction (MSC), and standard normal variable (SNV) methods, respectively. The competitive adaptive reweighted sampling (CARS) method was applied to extract the optimal wavelengths. With the skin spectra of fish, five ML methods, including the extreme learning machine (ELM), random forest (RF), radial basis function (RBF), back propagation (BP), and least squares support vector machine (LS-SVM) methods, were used to predict the PUFAs and EPA + DHA contents. With the spectral data processed with the SG, the RBF model achieved outstanding performance in predicting the EPA + DHA and PUFAs contents, yielding coefficients of determination (R2 P) of 0.9914 and 0.9914, root mean square error (RMSE) of 0.3352 and 0.3346, and mean absolute error (MAE) of 0.2659 and 0.2660, respectively. Finally, the visualization distribution maps under the optimal model would facilitate the direct determination of the fillet PUFAs and EPA + DHA contents. The combination of skin HSI and the optimal ML method would be promising to rapidly select living fish having high muscular PUFAs contents.
Collapse
Affiliation(s)
- Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Mingxi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- Chinese Academy of Agricultural Sciences, Beijing, 100141, China
| | - Kai-Kuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying-Jie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shijing Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| |
Collapse
|
2
|
Feng Y, Dai G, Han X, Li M, Zhao D, Wu J, Wu Y, Wen Z. Feeding Laying Ducks Eucommia ulmoides oliv. Leaves Increases the n-3 Fatty Acids Content and Decreases the n-6: n-3 PUFA Ratio in Egg Yolk without Affecting Laying Performance or Egg Quality. Foods 2023; 12:foods12020287. [PMID: 36673379 PMCID: PMC9857631 DOI: 10.3390/foods12020287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The objective was to determine the effects of supplementing duck diets with Eucommia ulmoides oliv. leaf powder (EUL). Laying ducks (n = 480) were randomly allocated into 4 experimental treatments and fed diets containing 0, 1, 2, or 4% EUL. Dietary inclusion of EUL had no effect (p > 0.05) on laying performance or egg quality, but linearly increased (p < 0.05) total plasma protein, globulin, and HDL-C concentrations with concurrent reductions (p < 0.05) in plasma concentrations of cholesterol and LDL-C. Eggs laid by ducks receiving EUL had yolks with linearly higher phenolic concentrations (p < 0.05) but lower cholesterol concentrations (p < 0.05). EUL supplementation in duck diets significantly reduced n-6: n-3 PUFA ratio by enriching n-3 fatty acids in yolks (p < 0.05) with no changes in n-6 PUFA (p >0.05).
Collapse
Affiliation(s)
- Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Guotao Dai
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Meijuan Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Degang Zhao
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence: (D.Z.); (Z.W.); Tel.: +86-138-8501-2693 (D.Z.); +86-10-8210-6065 (Z.W.)
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yongbao Wu
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Beijing 100081, China
| | - Zhiguo Wen
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Beijing 100081, China
- Correspondence: (D.Z.); (Z.W.); Tel.: +86-138-8501-2693 (D.Z.); +86-10-8210-6065 (Z.W.)
| |
Collapse
|
3
|
Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516467 DOI: 10.1016/bs.afnr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.
Collapse
|
4
|
Liu T, Long W, Hu Z, Guan Y, Lei G, He J, Yang X, Yang J, Fu H. Rapid identification of the geographical origin of Eucommia ulmoides by using excitation-emission matrix fluorescence combined with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121243. [PMID: 35468376 DOI: 10.1016/j.saa.2022.121243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Eucommia ulmoides is an important and valuable traditional Chinese medicine with various medical functions, and has been widely used as health food in China, Japan, South Korea and other Asian countries for many years. The efficacy and quality of E. ulmoides are closely associated with the geographical origin. In this work, the potential of excitation-emission matrix (EEMs) fluorescence coupled with chemometric methods was investigated for simple, rapid and accurate for identification E. ulmoides from different geographical origins. Parallel factor analysis (PARAFAC) was applied for characterizing the fluorescence fingerprints of E. ulmoides samples. Moreover, k-nearest neighbor (kNN), principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA) models were used for the classification of E. ulmoides samples according to their geographical origins. The results showed that kNN model was more suitable for identification of E. ulmoides samples from different provinces. The kNN model could identify E. ulmoides samples from eight different geographical origins with 100% accuracy on the training and test sets. Therefore, the proposed method was available for conveniently and accurately determining the geographical origin of E. ulmoides, which can expect to be an attractive alternative method for identifying the geographic origin of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jieling He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
5
|
GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach. Molecules 2021; 26:molecules26247676. [PMID: 34946757 PMCID: PMC8706644 DOI: 10.3390/molecules26247676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy's. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.
Collapse
|
6
|
Huirong Z, Huina Z, Nifeng C, Li L. Composition analysis and microencapsulation of Eucommia ulmoides seed oil. BMC Chem 2021; 15:49. [PMID: 34425885 PMCID: PMC8383431 DOI: 10.1186/s13065-021-00775-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eucommia ulmoides seed oil is a functional health oil with a high content of unsaturated fatty acids. However, excessively high content of unsaturated fatty acids can cause E. ulmoides seed oil to easily spoil. Microencapsulation technology can effectively encapsulate substances, thereby prolonging the spoilage time of oil products. METHODS In the present study, E. ulmoides seed oil from different manufacturers were analyzed by Agilent 7890B-5977A gas chromatography-mass spectrometry. Encapsulation efficiency, yield rate, and scanning electron microscopy results between microcapsules prepared use different wall materials and different methods (spray drying and complex coagulation) were compared to determine the best preparation process for microcapsules. The Wantong 892 professional oil oxidation stability tester was used to measure the induced oxidation time of the E. ulmoides seed oil and microcapsules. CONCLUSION E. ulmoides seed oil comprises > 80% unsaturated fatty acids with a high α-linolenic acid content, followed by linoleic acid. The most promising combination was chitosan:gum arabic at 1:8 as the wall material and complex coagulation. The best preparation had a wall material concentration, stirring speed, aggregation pH, and core-to-wall ratio of 2.5%, 500 rpm, 4.2, and 1:4, respectively. Microcapsules prepared under these conditions exhibited higher yield and encapsulation efficiency (94.0% and 73.3%, respectively). The induced oxidation time of the E. ulmoides seed oil and microcapsules were 3.8 h and 13.9 h, respectively, indicating that microencapsulation can increase the oxidation induction time of this oil.
Collapse
Affiliation(s)
- Zhang Huirong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Beijing Key Laboratory of Plants Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhang Huina
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Beijing Key Laboratory of Plants Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Chen Nifeng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Beijing Key Laboratory of Plants Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China. .,Beijing Key Laboratory of Plants Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
7
|
Zhu S, Li J, Liu Y, Chen L. Formation and stability of Eucommia ulmoides Oliver seed oil-loaded inverse microemulsion formed by food-grade ingredients and its antioxidant activities. J Food Sci 2020; 85:1489-1499. [PMID: 32282076 DOI: 10.1111/1750-3841.15103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
Abstract
Eucommia ulmoides Oliver seed oil (E.u oil) as a functional oil is rich in many natural active components such as α-linolenic acid (56% to 63%), vitamin E, aucubin, and so on. In this study, water-in-oil (W/O) microemulsions composed of Eucommia ulmoides Oliver seed oil, distilled water, a blend of Sorbitan monooleate 80 (Span 80) and Polysorbate (20) sorbitan monooleate (Tween 80), and propylene glycol were prepared for improving the compatibility of Eucommia ulmoides Oliver seed oil. Pseudoternary phase diagrams were built to illustrate the phase behavior of the microemulsions, based on hydrophilic-lipophilic balance values, cosurfactant type, the proportion of cosurfactant, and the changing environmental stress. Dynamic light scattering, transmission electron microscopy, and electrical conductivity measurements were performed to characterize the microstructural aspects. The optimum process conditions at which the Eucommia ulmoides Oliver seed oil-loaded microemulsion had good tolerance to pH and salinity were: Propylene glycol served as cosurfactant, water-Propylene glycol, and Span 80-Tween 80 ratios separately kept constant at 1:1 and 6:4. These microemulsions with narrow size distribution, nanoscale particle size (below 60 nm), transparent appearance had a wide range of oil phase content and free-radical scavenging capacity toward DPPH and ABTS radicals with half-maximal inhibitory concentration (IC50 ) values of 49.20 and 33.43 mg/mL, respectively. PRACTICAL APPLICATION: This nanostructure, environmental stability, and antioxidant activity of microemulsions containing Eucommia ulmoides Oliver seed oil is a potential delivery system as an alternative to α-linolenic acid and can be used for the delivery of peptides, proteins, antioxidants, and water-soluble nutrients.
Collapse
Affiliation(s)
- Shiye Zhu
- National & Local United Engineering Laboratory of Integrative Utilization Technology of Eucommiaulmoides, Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, PR China
| | - Jiaxing Li
- National & Local United Engineering Laboratory of Integrative Utilization Technology of Eucommiaulmoides, Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, PR China.,Institute of Food Science, Jishou University, Jishou, 416000, PR China
| | - Yating Liu
- Institute of Food Science, Jishou University, Jishou, 416000, PR China
| | - Liang Chen
- National & Local United Engineering Laboratory of Integrative Utilization Technology of Eucommiaulmoides, Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, PR China
| |
Collapse
|
8
|
Wang S, Wang X, Liu M, Zhang L, Ge Z, Zhao G, Zong W. Preparation and characterization of Eucommia ulmoides seed oil O/W nanoemulsion by dynamic high-pressure microfluidization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Fatty Acid Composition, Phytochemistry, Antioxidant Activity on Seed Coat and Kernel of Paeonia ostii from Main Geographic Production Areas. Foods 2019; 9:foods9010030. [PMID: 31905710 PMCID: PMC7022864 DOI: 10.3390/foods9010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/08/2019] [Accepted: 12/14/2019] [Indexed: 12/29/2022] Open
Abstract
Paeonia ostii is an important woody oil plant cultivated in China on a large scale. Its seed oil is enriched with unsaturated fatty acids and a high content of alpha-linolenic acid (ALA), which are beneficial to human health. The aim of this research is to determine the qualitative traits characteristic of P. ostii seed from various production areas in China. In this study, seed quality traits were evaluated on the basis of proximate composition, content of fatty acids, tocopherol, secondary metabolites, and the antioxidant activity of seed coat (PSC) and kernel (PSK). A high content of total fatty acids (298.89–399.34 mg g−1), crude protein (16.91%–22.73%), and total tocopherols (167.83–276.70 μg g−1) were obtained from PSK. Significant differences were found in the content of palmitic acids (11.31–14.27 mg g−1), stearic acids (2.42–4.24 mg g−1), oleic acids (111.25–157.63 mg g−1), linoleic acids (54.39–83.59 mg g−1), and ALA (99.85–144.71 mg g−1) in the 11 main production areas. Eight and seventeen compounds were detected in PSC and PSK, respectively. A significantly higher content of total phenols was observed in PSC (139.49 mg g−1) compared with PSK (3.04 mg g−1), which was positively related to antioxidant activity. This study indicates that seeds of P. ostii would be a good source of valuable oil and provides a basis for seed quality evaluation for the production of edible oil and potential ALA supplements from the promising woody oil plant.
Collapse
|
10
|
Hu K, Huyan Z, Sherazi STH, Yu X. Authentication of Eucommia ulmoides Seed Oil Using Fourier Transform Infrared and Synchronous Fluorescence Spectroscopy Combined with Chemometrics. J Oleo Sci 2019; 68:1073-1084. [PMID: 31611515 DOI: 10.5650/jos.ess19160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eucommia ulmoides is a traditional Chinese herb whose seeds can be used to produce edible oils. Fourier transform infrared (FTIR) and synchronous fluorescence spectroscopic (SyFS) spectra of Eucommia ulmoides seed oil (EUSO) are lacking. The relevant functional and fluorescent groups were determined by FTIR and SyFS techniques for discriminating adulteration of EUSO, respectively. FTIR and SyFS spectra of EUSO and six common-used vegetable oils were recorded from 4000-400 cm-1 and 250-700 nm at wavelength interval of 60 nm, respectively. Principal component analysis (PCA), linear discriminant analysis (LDA), cluster analysis (CA) and partial least square (PLS) regression was used for qualitative and quantitative calibration of EUSO adulteration. The FTIR spectral regions of 1429-1377 cm-1 and 1128-1110 cm-1 based on PCA, LDA, and CA, and the PCA of SyFS spectral regions of 600-700 nm and 300-500 nm were evaluated for qualitative differentiation of EUSO adulteration. The recognition rate of PCA validation was found to be 100% by FTIR regions. PLS calibration was optimal by the spectral normalization vector treatment in the two FTIR spectral regions and SyFS spectra were combined with characteristic absorption peak area, which can achieve quantitative detection of EUSO adulteration. The two techniques are useful for EUSO adulteration detection at levels down to 1% and 0.48% (w/w), respectively. The results indicated that spectral information obtained by FTIR and SyFS of EUSO can be used for qualitative and quantitative analysis of EUSO adulteration with the advantages of high sensitivity, simplicity, and rapidness.
Collapse
Affiliation(s)
- Keqing Hu
- College of Food Science and Engineering, Northwest A&F University
| | - Zongyao Huyan
- College of Food Science and Engineering, Northwest A&F University
| | | | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University
| |
Collapse
|
11
|
Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Fatty Acids Variation in Seed of Eucommia ulmoides Populations Collected from Different Regions in China. FORESTS 2018. [DOI: 10.3390/f9090505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruits of 240 Eucommia ulmoides Oliver individuals were collected from 12 different geographical regions across a wide area of China. The seed oil content ranged from 28.54% in Guilin and Lueyang to 31.35% in Chaoyang. Gas chromatography–mass spectrometry analysis of the seed oil revealed that linolenic acid (56.68–60.70%), oleic acid (16.31–17.80%), and linoleic acid (11.02–13.32%) were the major components, and the oil showed good potential for the food and health care industries. Three levels (high, medium, and low) of linolenic acid and oil content were observed among the 12 populations according to principal component analysis. Canonical correspondence analysis showed that environmental factors had a large influence on oil content and fatty acids composition and explained 89.33% of the total variance. Latitude and precipitation were key environmental factors and were significantly correlated with the fatty acid composition of E. ulmoides seeds.
Collapse
|
13
|
Zhu MQ, Sun RC. Eucommia ulmoides Oliver: A Potential Feedstock for Bioactive Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5433-5438. [PMID: 29745662 DOI: 10.1021/acs.jafc.8b01312] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eucommia ulmoides Oliver (EUO), a traditional Chinese herb, contains a variety of bioactive chemicals, including lignans, iridoids, phenolics, steroids, terpenoids, flavonoids, etc. These bioactive chemicals possess the effective function in nourishing the liver and kidneys and regulating blood pressure. The composition of bioactive chemicals extracted from EUO vary in the different functional parts (leaves, seeds, bark, and staminate flower) and planting models. The bioactive parts of EUO are widely used as raw materials for medicine and food, powdery extracts, herbal formulations, and tinctures. These capabilities hold potential for future development and commercial exploitation of the bioactive products from EUO.
Collapse
Affiliation(s)
- Ming-Qiang Zhu
- Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , People's Republic of China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , People's Republic of China
| |
Collapse
|
14
|
A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Zhang ZS, Liu YL, Che LM. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil. J Oleo Sci 2018; 67:255-263. [PMID: 29459511 DOI: 10.5650/jos.ess17153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Supercritical carbon dioxide extraction (SC-CO2) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO2 technology is an effective technique for extracting oil from E. ulmoides seed.
Collapse
Affiliation(s)
- Zhen-Shan Zhang
- College of Food Science and Technology, Henan University of Technology
| | - Yu-Lan Liu
- College of Food Science and Technology, Henan University of Technology
| | - Li-Ming Che
- Department of Chemical and Biochemical Engineering, Xiamen University
| |
Collapse
|
16
|
Dou X, Mao J, Zhang L, Xie H, Chen L, Yu L, Ma F, Wang X, Zhang Q, Li P. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers. Molecules 2018; 23:molecules23020241. [PMID: 29370131 PMCID: PMC6017810 DOI: 10.3390/molecules23020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022] Open
Abstract
Adulteration of edible oils has attracted attention from more researchers and consumers in recent years. Complex multispecies adulteration is a commonly used strategy to mask the traditional adulteration detection methods. Most of the researchers were only concerned about single targeted adulterants, however, it was difficult to identify complex multispecies adulteration or untargeted adulterants. To detect adulteration of edible oil, identification of characteristic markers of adulterants was proposed to be an effective method, which could provide a solution for multispecies adulteration detection. In this study, a simple method of multispecies adulteration detection for camellia oil (adulterated with soybean oil, peanut oil, rapeseed oil) was developed by quantifying chemical markers including four isoflavones, trans-resveratrol and sinapic acid, which used liquid chromatography tandem mass spectrometry (LC-MS/MS) combined with solid phase extraction (SPE). In commercial camellia oil, only two of them were detected of daidzin with the average content of 0.06 ng/g while other markers were absent. The developed method was highly sensitive as the limits of detection (LODs) ranged from 0.02 ng/mL to 0.16 ng/mL and the mean recoveries ranged from 79.7% to 113.5%, indicating that this method was reliable to detect potential characteristic markers in edible oils. Six target compounds for pure camellia oils, soybean oils, peanut oils and rapeseed oils had been analyzed to get the results. The validation results indicated that this simple and rapid method was successfully employed to determine multispecies adulteration of camellia oil adulterated with soybean, peanut and rapeseed oils.
Collapse
Affiliation(s)
- Xinjing Dou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China.
| | - Huali Xie
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Lin Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
17
|
Yang Y, Yin B, Lv L, Wang Z, He J, Chen Z, Wen X, Zhang Y, Sun W, Li Y, Zhao Y. Gastroprotective effect of aucubin against ethanol-induced gastric mucosal injury in mice. Life Sci 2017; 189:44-51. [DOI: 10.1016/j.lfs.2017.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/10/2023]
|
18
|
Feng Y, Zhang L, Fu J, Li F, Wang L, Tan X, Mo W, Cao H. Characterization of Glycolytic Pathway Genes Using RNA-Seq in Developing Kernels of Eucommia ulmoides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3712-3731. [PMID: 27074598 DOI: 10.1021/acs.jafc.5b05918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eucommia ulmoides Oliver, the only member of the Eucommiaceae family, is a rare and valuable tree used to produce a highly valued traditional Chinese medicine and contains α-linolenic acid (ALA) up to 60% of the total fatty acids in the kernels (embryos). Glycolysis provides both cellular energy and the intermediates for other biosynthetic processes. However, nothing was known about the molecular basis of the glycolytic pathway in E. ulmoides kernels. The purposes of this study were to identify novel genes of E. ulmoides related to glycolytic metabolism and to analyze the expression patterns of selected genes in the kernels. Transcriptome sequencing based on the Illumina platform generated 96,469 unigenes in four cDNA libraries constructed using RNAs from 70 and 160 days after flowering kernels of both low- and high-ALA varieties. We identified and characterized the digital expression of 120 unigenes coding for 24 protein families involved in kernel glycolytic pathway. The expression levels of glycolytic genes were generally higher in younger kernels than in more mature kernels. Importantly, several unigenes from kernels of the high-ALA variety were expressed more than those from the low-ALA variety. The expression of 10 unigenes encoding key enzymes in the glycolytic pathway was validated by qPCR using RNAs from six kernel stages of each variety. The qPCR data were well consistent with their digital expression in transcriptomic analyses. This study identified a comprehensive set of genes for glycolytic metabolism and suggests that several glycolytic genes may play key roles in ALA accumulation in the kernels of E. ulmoides.
Collapse
Affiliation(s)
- Yanzhi Feng
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Jianmin Fu
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Fangdong Li
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Lu Wang
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Wenjuan Mo
- Forestry Experiment Center of North China, Chinese Academy of Forestry , Beijing 102300, China
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| |
Collapse
|
19
|
Health-Promoting Properties of Eucommia ulmoides: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5202908. [PMID: 27042191 PMCID: PMC4793136 DOI: 10.1155/2016/5202908] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 01/11/2023]
Abstract
Eucommia ulmoides (EU) (also known as “Du Zhong” in Chinese language) is a plant containing various kinds of chemical constituents such as lignans, iridoids, phenolics, steroids, flavonoids, and other compounds. These constituents of EU possess various medicinal properties and have been used in Chinese Traditional Medicine (TCM) as a folk drink and functional food for several thousand years. EU has several pharmacological properties such as antioxidant, anti-inflammatory, antiallergic, antimicrobial, anticancer, antiaging, cardioprotective, and neuroprotective properties. Hence, it has been widely used solely or in combination with other compounds to treat cardiovascular and cerebrovascular diseases, sexual dysfunction, cancer, metabolic syndrome, and neurological diseases. This review paper summarizes the various active ingredients contained in EU and their health-promoting properties, thus serving as a reference material for the application of EU.
Collapse
|
20
|
Sun X, Zhang L, Li P, Xu B, Ma F, Zhang Q, Zhang W. Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhang L, Li P, Sun X, Mao J, Ma F, Ding X, Zhang Q. One-class classification based authentication of peanut oils by fatty acid profiles. RSC Adv 2015. [DOI: 10.1039/c5ra07329d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the authenticity identification model was built by the one-class partial least squares (OCPLS) classifier for peanut oils, which could effectively detect adulterated oils at the adulteration level of more than 4%.
Collapse
Affiliation(s)
- Liangxiao Zhang
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)
| | - Peiwu Li
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Key Laboratory of Detection for Mycotoxins
| | - Xiaoman Sun
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Quality Inspection and Test Center for Oilseeds Products
| | - Jin Mao
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Quality Inspection and Test Center for Oilseeds Products
| | - Fei Ma
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
| | - Xiaoxia Ding
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)
| | - Qi Zhang
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
| |
Collapse
|
22
|
Zhang L, Li P, Sun X, Wang X, Xu B, Wang X, Ma F, Zhang Q, Ding X. Classification and adulteration detection of vegetable oils based on fatty acid profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8745-51. [PMID: 25078260 DOI: 10.1021/jf501097c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The detection of adulteration of high priced oils is a particular concern in food quality and safety. Therefore, it is necessary to develop authenticity detection method for protecting the health of customers. In this study, fatty acid profiles of five edible oils were established by gas chromatography coupled with mass spectrometry (GC/MS) in selected ion monitoring mode. Using mass spectral characteristics of selected ions and equivalent chain length (ECL), 28 fatty acids were identified and employed to classify five kinds of edible oils by using unsupervised (principal component analysis and hierarchical clustering analysis), supervised (random forests) multivariate statistical methods. The results indicated that fatty acid profiles of these edible oils could classify five kinds of edible vegetable oils into five groups and are therefore employed to authenticity assessment. Moreover, adulterated oils were simulated by Monte Carlo method to establish simultaneous adulteration detection model for five kinds of edible oils by random forests. As a result, this model could identify five kinds of edible oils and sensitively detect adulteration of edible oil with other vegetable oils about the level of 10%.
Collapse
Affiliation(s)
- Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Untargeted fatty acid profiles based on the selected ion monitoring mode. Anal Chim Acta 2014; 839:44-50. [DOI: 10.1016/j.aca.2014.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 11/19/2022]
|
24
|
Ai FF, Bin J, Zhang ZM, Huang JH, Wang JB, Liang YZ, Yu L, Yang ZY. Application of random forests to select premium quality vegetable oils by their fatty acid composition. Food Chem 2014; 143:472-8. [DOI: 10.1016/j.foodchem.2013.08.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/24/2022]
|
25
|
He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:78-92. [PMID: 24296089 DOI: 10.1016/j.jep.2013.11.023] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv. (Family Eucommiaceae), also known as Dù-zhòng (Chinese: ), Tuchong (in Japanese), is the sole species of the genus Eucommia. The leaf, stem, and bark as well as staminate flower of Eucommia ulmoides have been traditionally used to cure many diseases in China, Japan, Korea, among others. The aim of this review is to comprehensively outline the botanical description, ethnopharmacology, phytochemistry, biological activities, and toxicology of Eucommia ulmoides and to discuss possible trends for further study of Eucommia ulmoides. MATERIALS AND METHODS Information on Eucommia ulmoides was gathered via the internet (using Pub Med, Elsevier, Baidu Scholar, Google Scholar, Medline Plus, ACS, CNKI, and Web of Science) and from books in local libraries. RESULTS One-hundred twelve compounds of Eucommia ulmoides, including the main active constituents, lignans and iridoids, have been isolated and identified. In vitro and in vivo studies indicated that monomer compounds and extracts from Eucommia ulmoides possess wide-ranging pharmacological actions, especially in treating hypertension, hyperlipemia, diabetes, obesity, sexual dysfunction, osteoporosis, Alzheimer's disease, aging, lupus-like syndrome, and immunoregulation. CONCLUSIONS Eucommia ulmoides has been used as a source of traditional medicine and as a beneficial health food. Phytochemical and pharmacological studies of Eucommia ulmoides have received much interest, and extracts and active compounds continue to be isolated and proven to exert various effects. Further toxicity and clinical studies are warranted to establish more detailed data on crude extracts and pure compounds, enabling more convenient preparations for patients. Therefore, this review on the ethnopharmacology, phytochemistry, biological activities, and toxicity of Eucommia ulmoides will provide helpful data for further studies as well as the commercial exploitation of this traditional medicine.
Collapse
Affiliation(s)
- Xirui He
- Hong-Hui Hospital, Xi'an Jiaotong University Medical College, Xi'an 710054, PR China
| | - Jinhui Wang
- University Hospital of Gansu Traditional Medicine, Lanzhou 730020, PR China
| | - Maoxing Li
- University Hospital of Gansu Traditional Medicine, Lanzhou 730020, PR China; Department of Pharmacy, Lanzhou General Hospital of PLA, Lanzhou 730050, PR China.
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University Medical College, Xi'an 710054, PR China
| | - Yan Yang
- Xi'an Hospital, Aviation Industry Corporation of China, Xi'an 710077, PR China
| | - Chunling Zhang
- Hong-Hui Hospital, Xi'an Jiaotong University Medical College, Xi'an 710054, PR China
| | - Rui He
- Hong-Hui Hospital, Xi'an Jiaotong University Medical College, Xi'an 710054, PR China
| | - Rui Tao
- Department of Pharmacy, Lanzhou General Hospital of PLA, Lanzhou 730050, PR China
| |
Collapse
|
26
|
Zhang L, Tang C, Cao D, Zeng Y, Tan B, Zeng M, Fan W, Xiao H, Liang Y. Strategies for structure elucidation of small molecules using gas chromatography-mass spectrometric data. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
He M, Li Y, Yan J, Cao D, Liang Y. Analysis of Essential Oils and Fatty Acids from Platycodi Radix using Chemometric Methods and Retention Indices. J Chromatogr Sci 2012; 51:318-30. [DOI: 10.1093/chromsci/bms143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Zhang S, You J, Zhou G, Li C, Suo Y. Analysis of free fatty acids in Notopterygium forbesii Boiss by a novel HPLC method with fluorescence detection. Talanta 2012; 98:95-100. [DOI: 10.1016/j.talanta.2012.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 01/24/2023]
|
29
|
Neutral losses: A type of important variables in prediction of branching degree for acyclic alkenes from mass spectra. Anal Chim Acta 2012; 720:16-21. [DOI: 10.1016/j.aca.2011.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 11/20/2022]
|
30
|
Zhang L, Tan B, Zeng M, Lu H, Liang Y. Establishment of reliable mass spectra and retention indices library: Identification of fatty acids in human plasma without authentic standards. Talanta 2012; 88:311-7. [DOI: 10.1016/j.talanta.2011.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/14/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
|
31
|
Determination of polar impurities in biodiesels using solid-phase extraction and gas chromatography-mass spectrometry. J Sep Sci 2011; 34:409-21. [DOI: 10.1002/jssc.201000533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 11/24/2010] [Accepted: 12/02/2010] [Indexed: 11/07/2022]
|