1
|
Infantino IR, Cubisino SAM, Nibali SC, Foti P, Tomasello MF, Boninelli S, Battiato G, Magrì A, Messina A, Romeo FV, Caggia C, De Pinto V, Reina S. Phenolic extract from olive mill wastewater sustains mitochondrial bioenergetics upon oxidative insult. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100234. [PMID: 39791008 PMCID: PMC11713508 DOI: 10.1016/j.fochms.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of olive fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.e. C and OPE extracts, respectively) that exhibited considerable anti-microbial and radical-scavenging activities in vitro. Based on these findings, the present study aimed to assess the impact of C and OPE samples on mitochondrial function and oxidative stress response in mouse fibroblast-like cells (NCTC). Accordingly, OMWW phenolic extracts proved to enhance mitochondrial biogenesis and to reduce cellular sensitivity to hydrogen peroxide. Moreover, high-resolution respirometry experiments first time revealed the efficiency of OMWW phenols recovered by selective resin extraction in preventing mitochondrial respiration failure upon oxidative insult. Collected data definitely demonstrate the bioactivity of our phenolic-rich fractions, supporting the advantages of reusing the olive mill wastewater to generate, at low-cost, high added value molecules that could be useful for the improvement of health and nutrition products.
Collapse
Affiliation(s)
| | | | | | - Paola Foti
- Council for Agricultural Research and Economics (CREA)– Research Centre for Olive, Fruit and Citrus Crops, Acireale, CT, Italy
- Dept. of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Silvia Boninelli
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
| | - Giuseppe Battiato
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
| | - Andrea Magrì
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Angela Messina
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Flora Valeria Romeo
- Council for Agricultural Research and Economics (CREA)– Research Centre for Olive, Fruit and Citrus Crops, Acireale, CT, Italy
| | - Cinzia Caggia
- Dept. of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Vito De Pinto
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Simona Reina
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| |
Collapse
|
2
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Effect of incorporation strategies of sesamol and chitosan nanoparticle-methylcellulose edible coating on the polycyclic aromatic hydrocarbon levels in deep-fried meatballs. Food Res Int 2025; 208:116210. [PMID: 40263845 DOI: 10.1016/j.foodres.2025.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the impact of incorporation of sesamol and chitosan nanoparticle-methylcellulose (CSNP-MC) edible coating on the moisture loss, oil uptake, lipid and protein oxidation, and polycyclic aromatic hydrocarbon (PAH) levels in deep-fried meatballs. Sesamol was added to meatballs at either 0 mg/kg (control) or 30 mg/kg meat by three methods, i.e., (i) mixing sesamol into the meat mince without coating (SE), (ii) mixing sesamol into meat mince and followed by coating of the meatballs with 1 % CSNP-MC (SE-CT), and (iii) dissolving sesamol in CSNP-MC and the meatballs were coated with the mixture (SE-M-CT). Due to the barrier properties of the edible coating, meatballs from the SE-CT and SE-M-CT groups had lower levels of moisture loss, oil uptake and lipid oxidation compared to the control (no sesamol and no coating) and SE groups (P < 0.05). In addition, the SE-CT treatment resulted in lower protein oxidation and benzo[a]pyrene (BaP) level, leading to reduced PAH4 levels and toxic equivalent quotient (TEQBaP) in the meatballs compared to the SE-M-CT treatment. These findings suggested that the incorporation of antioxidant of sesamol within the meat mince combined with edible coatings is an effective strategy to enhance the quality and safety of deep-fried meatballs by reducing oil uptake, and decreasing lipid and protein oxidation, PAH levels and the carcinogenic risk of PAHs by meatball consumption.
Collapse
Affiliation(s)
- Zun Wang
- School of Agriculture, Food, and Ecosystem Sciences, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food, and Ecosystem Sciences, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn Dorothy Warner
- School of Agriculture, Food, and Ecosystem Sciences, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Zhongxiang Fang
- School of Agriculture, Food, and Ecosystem Sciences, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Alfifi A, El-Hamid MIA, Abdel-Raheem SM, Al-Khalaifah HS, Youssef W, Khalil SS, Al-Nasser A, Elkhawaga E, Elmehrath EM, Nassar AH, Elsaid GA, El Oksh ASA, Ibrahim D. Combined modulatory effects of dietary arginine and olive leaf phenolic extract on growth performance and immune functions of broiler chickens, and meat antioxidant potential during frozen storage. BMC Vet Res 2025; 21:226. [PMID: 40165253 PMCID: PMC11956227 DOI: 10.1186/s12917-025-04663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Nowadays, broilers reared in intensive farming become more susceptible to oxidative stress, which impairs their performance and the quality of their products. Arginine (G) is a crucial amino acid for chickens and feeding on arginine beyond the recommended levels has been shown to positively impact the growth performance of broiler chickens and their immunity. Olive leaves phenolic extract (OLE) is a natural source of powerful antioxidants. The current study aimed to investigate the combined efficacy of these functional feed additives (G + OLE) in enhancing broilers' growth performance, immunity, and muscle development, as well as potentiating meat quality and antioxidant capacity during freezing. METHODS Broilers (n = 250) were randomly assigned into control (without supplementations) and four groups fed control diets plus 1.5 g/kg arginine alone (G) or with three different levels of OLE; 0.25%, 0.5% and 1% (G + OLEǀ, G + OLEǀǀǀ and G + OLEǀǀǀ, respectively). RESULTS During whole rearing periods, G + OLE inclusion boosted efficacy on body weight gain, and feed conversion ratio in a dose-dependent manner. The postmortem pH values at 0.5, and 24 h, drip loss, and cooking loss % of meat were considerably minimized in G + OLE-supplied groups, especially at high levels. Even after 4 weeks of frozen storage, G + OLEǀǀǀ, G + OLEǀǀ groups exhibited the most prominent increase in the breast meat scavenging ability for free radicals (2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing antioxidant power) with an inverse minimization in lipid peroxidation attributes (malondialdehyde). Total flavonoid, and phenolic contents, total antioxidant capacity, and antioxidant enzymes' activities in the breast meat were significantly improved by increasing the concentrations of dietary G + OLE. Concordantly, upregulation of genes encoding immunity (immunoglobulins A, G and M), antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, peroxiredoxin-1, heme oxygenase-1, NAD(P)H dehydrogenase quinone 1, xanthine oxidoreductase, and heme oxygenase 1), and muscle development (myogenic determination factor, myogenin and mammalian target of rapamycin), and downregulation of myostatin, were remarkably recognized in G + OLE-supplied groups. CONCLUSIONS The outcomes of the current study supported the usage of dietary G + OLE as an innovative feed supplement in the broilers industry to improve broilers` production, and meat quality during frozen storage.
Collapse
Affiliation(s)
- Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al- Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al- Ahsa, 31982, Saudi Arabia
| | - H S Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Wessam Youssef
- Department of Biotechnology, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Eman Elkhawaga
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Eman Mahmoud Elmehrath
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Arwa H Nassar
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Gamilat A Elsaid
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Amal S A El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
4
|
Negm MH, Aldhalmi AK, Ashour EA, Mohamed LA, Youssef IM, Kamal M, Elolimy AA, Mahgoub SA, Abd El-Hack ME, Swelum AA. Consequences of dietary olive leaf powder supplementation on growth performance, carcass traits, blood biochemical parameters and gut microbiota in broilers. Poult Sci 2025; 104:105087. [PMID: 40188625 PMCID: PMC12002778 DOI: 10.1016/j.psj.2025.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/08/2025] Open
Abstract
This experiment examined the potential of olive leaf powder (OLP) as a natural growth enhancer in broiler feed and its influences on growth performance, carcass characteristics, blood parameters, and intestinal bacterial count. A total of 210 one-day-old Arbor Acres chicks were randomly allocated into three groups. The control group was given a basal diet only, the 2nd and 3rd groups were given basal diet supplemented with 1 g OLP and 2 g OLP/kg diet, respectively. Each group consisted of seven replicates with 10 unsexed chicks each. The experimental trial lasted for thirty-one days. Results showed that, the OLP2 group exhibited a significant increase in live body weight (LBW) at days 14 and 21 of age, whereas the OLP1 group experienced a considerable rise in body weight gain (BWG) between days 29 and 31 of age. Average daily feed intake (ADFI) considerably decreased during the first 8-14 days of the trial, but increased during the next 29-31 days throughout the entire duration (1-31 days). While, Feed conversion ratio (FCR) was improved in OLP groups during the 15-31 days of trial. Carcass and breast yields improved significantly with OLP supplementation, while abdominal fat content was reduced. Blood analysis revealed considerable enhances in total protein, albumin, and globulin levels in both OLP groups, while alanine transaminase (ALT), creatinine, total cholesterol (TC), triglycerides (TG), and very low-density lipoprotein (VLDL) levels were considerably reduced. Notably, immunity and antioxidant markers showed significant improvement with 2 g OLP supplementation. Due to OLP supplementation, the number of beneficial bacteria such as Lactobacillus rose while the number of all harmful bacteria (E. coli and Clostridium) in caecal samples declined. In conclusion, OLP supplementation at 1 g and 2 g per kg of feed demonstrated a significant positive impact on broiler growth performance, carcass quality, lipid profile, immunity, antioxidant status, and raised the number of beneficial bacteria in the caecal contents of the broiler chickens, making it a promising natural growth promoter in poultry production.
Collapse
Affiliation(s)
- Mohamed H Negm
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed K Aldhalmi
- College of Pharmacy, Al- Mustaqbal University, 51001 Babylon, Iraq
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Laila A Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Youssef
- Animal Production Systems Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates.
| | - Samir A Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), P.O. Box 77, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
5
|
Yang J, Park MJ. Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules 2025; 30:833. [PMID: 40005143 PMCID: PMC11858331 DOI: 10.3390/molecules30040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Essential oils from citrus cultivars are widely used in food, cosmetic, and pharmaceutical industries, and they have been extensively studied in the last decades. This study investigates the antioxidant activities of essential oils from 21 citrus cultivars and the active antioxidant constituents of the oils. Essential oils are extracted from the peels of citrus cultivars via hydrodistillation, and their chemical compositions are analyzed by gas-chromatography-mass-spectroscopy. The antioxidant activities of the citrus cultivars are determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric-reducing antioxidant potential (FRAP) assays. Based on the results, the major constituent of the oils is d-limonene (50.88-97.19%). The essential oil from Citrus junos shows the highest phenolic content (360.04 ± 24.75 mg GAE/100 g), followed by that from Citrus × latifolia (339.42 ± 31.14 mg GAE/100 g), [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata (327.05 ± 14.29 mg GAE/100 g), and [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata (322.92 ± 21.43 mg GAE/100 g). The essential oil from [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata shows the highest DPPH and ABTS radical scavenging activity, with an EC50 of 86.17 ± 4.87 and 0.16 ± 0.06 mg/mL, respectively. The essential oil from Citrus reticulata and [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata shows the highest ferric-reducing activities (2302.55 ± 237.26 and 2213.12 ± 35.54 mg/100 g, respectively). These results indicate that the essential oil from [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata has a higher antioxidation effect than that from other cultivars. By comparing the chemical compositions of the essential oils, 12 compounds are selected as the major contributors to the antioxidant activities of the oils, and α-phellandrene and α-terpinene are the most active constituents of the oils.
Collapse
Affiliation(s)
- Jiyoon Yang
- Division of Wood Industry, Department of Forest Products and Industry, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Mi-Jin Park
- Division of Forest Industrial Materials, Department of Forest Products and Industry, National Institute of Forest Science, Seoul 02455, Republic of Korea
| |
Collapse
|
6
|
Bai T, Wang X, Du W, Cheng J, Zhang J, Zhang Y, Klinjapo R, Asavasanti S, Yasurin P. Recent Advances, Challenges, and Functional Applications of Natural Phenolic Compounds in the Meat Products Industry. Antioxidants (Basel) 2025; 14:138. [PMID: 40002324 PMCID: PMC11851614 DOI: 10.3390/antiox14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Natural phenolic compounds (NPCs) have been proven to effectively extend the storage time of meat products in recent years. To promote the discovery of more NPCs and their applications, this review examines recent progress in the classification, antioxidant, and antibacterial mechanisms of NPCs used in meat products. These compounds are found in both edible and inedible parts of plants, including fruits, vegetables, and trees. The recycling of agricultural by-products aligns with green agricultural trends and serves as a guideline for developing new sources of natural additives. Studies on the application of NPCs in various livestock and poultry products, either directly mixed into the matrix or indirectly contacted by preparation into bioactive films and packaging materials, has highlighted the great potential of NPCs. The pro-oxidative effects of NPCs on proteins and their interactions with biological macromolecules, such as proteins, provide new ideas for in-depth research on antioxidant and antibacterial mechanisms.
Collapse
Affiliation(s)
- Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Xiulian Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenqing Du
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Roungdao Klinjapo
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Suvaluk Asavasanti
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Patchanee Yasurin
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| |
Collapse
|
7
|
D’Alessandro AG, Di Luca A, Desantis S, Martemucci G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals (Basel) 2025; 15:308. [PMID: 39943078 PMCID: PMC11816074 DOI: 10.3390/ani15030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Phenolic antioxidant intake is encouraged to prevent oxidative damage, and antioxidant synergy is considered an advantage in adding polyphenols from varied plants. This study investigated the antioxidant and synergistic interactions among olive leaf (OL), bay laurel (BL), and rosemary (RL) leaf powder mixture (LPM: OL + BL + RL), using in vitro chemical tests [TPC, ORAC, TEAC-ABTS, FRAP; combination index (CI)], and in vivo validation on blood oxidative status, metabolic profile, and intestinal histomorphology in laying hens. The in vitro study indicated a whole higher antioxidant capacity for the LPM than respective single/double-leave combinations. The LPM CI value (IC50, 0.60) indicated a synergistic effect compared to the binary combinations. Thus, the LPM was validated in vivo through dietary supplementation on sixty Lohmann Brown hens (30 weeks old), reared in an indoor-outdoor rearing system divided. The hens were allocated into two experimental groups (n. 30): basal control diet group; and diet supplemented group with 6 g/kg feed of LPM) containing OL, BL, and RL (respectively, at 65.7%:18.9%:15.4%), for 60 days. The LPM improved (p < 0.05) the oxidative status (TAS, FRAP; ROMs, TBARs) and vitamin E level, metabolic and immunological profiles, and it induced region-specific changes in the morphology and carbohydrate composition of mucins along intestinal tracts of the animals. These findings could provide a valuable strategy for identifying synergistic combinations in functional feed formulations for laying hens.
Collapse
Affiliation(s)
- Angela Gabriella D’Alessandro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Martemucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| |
Collapse
|
8
|
Ben Hassena A, Abidi J, Miled N, Kulinowski Ł, Skalicka‐Woźniak K, Bouaziz M. New Insights into the Antibacterial Activity of Hydroxytyrosol Extracted from Olive Leaves: Molecular Docking Simulations of its Antibacterial Mechanisms. Chem Biodivers 2025; 22:e202401714. [PMID: 39294100 PMCID: PMC11741148 DOI: 10.1002/cbdv.202401714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
This study investigated the biological activities of a hydroxytyrosol-rich extract from Olea europaea leaves, particularly its ability to eradicate severe pathogenic bacteria producing Extended-Spectrum Beta-Lactamases (ESBLs). The latter bacteria are emerging microorganisms that pose significant challenges due to their resistance to a broad range of potent therapeutic drugs. The extract was prepared through an accessible acid hydrolysis method. In vitro and In silico analyses through MIC, MBC analysis and molecular docking were conducted to evaluate the antibacterial properties. The extract showed remarkable antioxidant activity and significant antibacterial potential against reference species and ESBL bacteria. MIC and MBC calculations confirmed the extract's capacity to kill bacteria rather than just inhibit their growth. Further in silico analyzes demonstrated the high binding affinity of HT to the active sites of the gyrase B subunit and the peptidoglycan DD-transpeptidase domain from proteins located in the cytoplasm and the cell wall of the bacteria, respectively. Results confirmed the structure-activity relationship and the ability of HT to disrupt essential bacterial functions. This study validates the debated antimicrobial potential of HT and highlights its importance as a potential therapeutic agent against resistant bacteria, which is a critical area of research given the global challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Amal Ben Hassena
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
| | - Jihen Abidi
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
| | - Nabil Miled
- College of ScienceDepartment of Biological SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Łukasz Kulinowski
- Department of Natural Products ChemistryMedical University of Lublin1 Chodzki Street20-093LublinPoland
| | - Krystyna Skalicka‐Woźniak
- Department of Natural Products ChemistryMedical University of Lublin1 Chodzki Street20-093LublinPoland
| | - Mohamed Bouaziz
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
- Higher Institute of Biotechnology of SfaxUniversity of Sfax, BP 1175Sfax3038Tunisia
| |
Collapse
|
9
|
Li ZR, Jia RB, Mo Y, Wang H, Luo D, Zhou C, Zhao M. Comparative Study on the Antioxidative Effects and α-Glucosidase Inhibitory Potential In Vitro among Ellagic Acid and Its Metabolites Urolithins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565047 DOI: 10.1021/acs.jafc.4c06542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The current study compared the radical scavenging and α-glucosidase inhibition potentials of ellagic acid (EA) and its metabolites, urolithins (Uros), and further explored the structure-activity relationship. The outcomes indicated that urolithin M5 (Uro-M5), EA, and urolithin M6 (Uro-M6) exhibited superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity; EA and urolithin D (Uro-D) expressed better ABTS scavenging ability, and EA and Uro-M5 showed preferable α-glucosidase inhibition activity. The results of CD spectra and fluorescence spectral analysis explained the interaction between Uros and α-glucosidase. Correlation analysis indicated that hydroxyl groups were crucial for the antioxidative effect, while C-8 OH contributed greatly to the α-glucosidase inhibition activity. Quantum mechanical analysis showed that both EA and Uros exhibited strong electrophilic properties. These comparative results showed a biological discrepancy between Uros and provided essential information for exploring the bioactive application of EA as a functional ingredient or dietary supplement.
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yurong Mo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haozheng Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
10
|
Wirwis A, Sadowski Z. Guide for Optimization of Olive Leaf Extraction and Silver Nanoparticles Biosynthesis as an Initial Step for Pilot Plant Design. ACS OMEGA 2024; 9:29053-29068. [PMID: 38973861 PMCID: PMC11223521 DOI: 10.1021/acsomega.4c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
This account presents the results of two successful optimization processes. First, a polyphenol-rich aqueous olive extract was obtained and then silver nanoparticles (AgNPs) synthesized with high efficiency. Selected parameters for both processes were optimized based on the procedure of the Box-Behnken multifactorial design. The independent variables in the extraction process were the biomass/water ratio, temperature, and time. For AgNPs synthesis, the independent variables were the volume of olive extract, temperature, and process duration. The relationship between the process parameters was visualized graphically by using the response surface methodology. A high fit of the experimental data with the predicted models was shown. The regression coefficients were high, 0.9936 for extraction and 0.9757 for AgNPs biosynthesis. The extraction efficiency under its optimal conditions was as follows: biomass/solvent ratio 0.016, temperature 80 °C for 80 min, and yield 160.67 [μg GAE (gallic acid equivalent)/mL]. The highest yield of AgNPs synthesis, equal to 1.955, was obtained when it was carried out for 50 min at 75 °C with the application of 11 mL of extract. Studies on the AgNPs suspension's stability depending on the extract amount were demonstrated. A physicochemical analysis using dynamic light scattering, transmission electron microscopy images, and Fourier transform infrared spectroscopy for AgNPs obtained under optimal conditions was shown. Finally, a pilot-scale biosynthesis of AgNPs was designed.
Collapse
Affiliation(s)
- Anna Wirwis
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Zygmunt Sadowski
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
11
|
Magyari-Pavel IZ, Moacă EA, Avram Ș, Diaconeasa Z, Haidu D, Ștefănuț MN, Rostas AM, Muntean D, Bora L, Badescu B, Iuhas C, Dehelean CA, Danciu C. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants (Basel) 2024; 13:774. [PMID: 39061845 PMCID: PMC11273738 DOI: 10.3390/antiox13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Olea europaea L. is the most valuable species of the Olea type, and its products offer a wide range of therapeutical uses. The olive tree has been extensively studied for its nourishing qualities, and the "Mediterranean diet", which includes virgin olive oil as a key dietary component, is strongly associated with a reduced risk of cardiovascular disease and various malignancies. Olive leaves, a by-product in the olive harvesting process, are valued as a resource for developing novel phytomedicines. For this purpose, two ethanolic extracts obtained from Olivae folium from Spain (OFS) and Greece (OFG) were investigated. Our findings contribute to a wider characterization of olive leaves. Both extracts displayed important amounts of phenolic compounds and pentacyclic triterpenes, OFG having higher concentrations of both polyphenols, such as oleuropein and lutein, as well as triterpenes, such as oleanolic acid and maslinic acid. The antioxidant capacity is similar for the two extracts, albeit slightly higher for OFG, possibly due to metal polyphenol complexes with antioxidant activity. The extracts elicited an antimicrobial effect at higher doses, especially against Gram-positive bacteria, such as Streptococcus pyogenes. The extract with lower inorganic content and higher content of polyphenols and triterpenic acids induced a strong anti-radical capacity, a selective cytotoxic effect, as well as antimigratory potential on A375 melanoma cells and antiangiogenic potential on the CAM. No irritability and a good tolerability were noted after evaluating the extracts on the in vivo Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Therefore, the present data are suggestive for the possible use of the two types of olive leaf products as high-antioxidant extracts, potentially impacting the healthcare system through their use as antimicrobial agents and as anticancer and anti-invasion treatments for melanoma.
Collapse
Affiliation(s)
- Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ștefana Avram
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Daniela Haidu
- Romanian Academy “Coriolan Dragulescu” Institute of Chemistry, Bv. M. Viteazu, No. 24, 300223 Timisoara, Romania;
| | - Mariana Nela Ștefănuț
- Department of Chemical and Electrochemical Syntheses, Laboratory of Electrochemical and Chemical Technologies, National Institute of Research and Development for Electrochemistry and Condensed Matter, Dr. A. P. Podeanu 144, 300569 Timişoara, Romania;
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies-INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania;
| | - Delia Muntean
- Department of Microbiology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Cristian Iuhas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| |
Collapse
|
12
|
Xiang Z, Liu L, Xu Z, Kong Q, Liang H, Feng S, Chen T, Zhou L, Yang H, Ding C. Purification of Phenolic Compounds from Camellia polyodonta Flower: Composition Analysis, Antioxidant Property, and Hypolipidemic Activity In Vitro and In Vivo. Antioxidants (Basel) 2024; 13:662. [PMID: 38929101 PMCID: PMC11200836 DOI: 10.3390/antiox13060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Camellia polyodonta flowers are rich sources of phenolics and less attention has been paid to their potential biological activity. This study aims to explore the crude extracts and resulting purified fractions (CPFP-I, II, III, and IV) through compositional analysis and antioxidant and hypolipidemic activities in vitro and in vivo. Among four fractions, CPFP-II contained the highest total phenolic content and flavonoid content, while CPFP-III exhibited the greatest total proanthocyanidin content. Among the 14 phenolic compounds, CPFP-II displayed the highest content of procyanidin B2, B4, and C1, whereas CPFP-III contained the highest amount of 1,2,3,6-tetragalloylglucose. The DPPH, ABTS, and FRAP assessments demonstrated a consistent trend: CPFP-II > CPFP-III > CPFP-I > CPFP-IV. In vivo experiments showed that that all four fractions significantly reduced lipid levels in hyperlipidemic C. elegans (p < 0.05), with CPFP-II exhibiting the most potent effect. Furthermore, CPFP-II effectively bound to bile acids and inhibited the enzymatic activity of pancreatic lipase in vitro. Consequently, CPFP-II should be prioritized as a promising fraction for further exploration and should provide substantial support for the feasibility of the C. polyodonta flower as a natural alternative.
Collapse
Affiliation(s)
- Zhuoya Xiang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China
| | - Li Liu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Zhou Xu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China
| | - Qingbo Kong
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Heng Liang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Hongyu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Z.X.)
| |
Collapse
|
13
|
Vural N, Algan-Cavuldak Ö, Akay MA. Desirability Function Approach for the Optimization of Hydroalcoholic Solvent Extraction Conditions for Antioxidant Compounds from Olive Leaves. AN ACAD BRAS CIENC 2024; 96:e20230602. [PMID: 38808814 DOI: 10.1590/0001-37652024202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 05/30/2024] Open
Affiliation(s)
- Nilüfer Vural
- Department of Food Processing-Food Technology, Health Services Vocational School, University of Ankara Yıldırım Beyazıt, 06760, Çubuk, Ankara, Türkiye
- Institute of Public Health, Department of Traditional, Complementary and Integrative Medicine Practice and Research Center, University of Ankara Yıldırım Beyazıt, 06010, Etlik, Ankara, Türkiye
| | - Özge Algan-Cavuldak
- Department of Food Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - M Abdülkadir Akay
- Department of Chemistry, Faculty of Sciences, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
14
|
Ronca CL, Duque-Soto C, Samaniego-Sánchez C, Morales-Hernández ME, Olalla-Herrera M, Lozano-Sánchez J, Giménez Martínez R. Exploring the Nutritional and Bioactive Potential of Olive Leaf Residues: A Focus on Minerals and Polyphenols in the Context of Spain's Olive Oil Production. Foods 2024; 13:1036. [PMID: 38611342 PMCID: PMC11012209 DOI: 10.3390/foods13071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Lyophilized plant-origin extracts are rich in highly potent antioxidant polyphenols. In order to incorporate them into food products, it is necessary to protect these phytochemicals from atmospheric factors such as heat, light, moisture, or pH, and to enhance their bioavailability due to their low solubility. To address these challenges, recent studies have focused on the development of encapsulation techniques for antioxidant compounds within polymeric structures. In this study, lyophilized olive leaf extracts were microencapsulated with the aim of overcoming the aforementioned challenges. The method used for the preparation of the studied microparticles involves external ionic gelation carried out within a water-oil (W/O) emulsion at room temperature. HPLC analysis demonstrates a high content of polyphenols, with 90% of the bioactive compounds encapsulated. Meanwhile, quantification by inductively coupled plasma optical emission spectroscopy (ICP-OES) reveals that the dried leaves, lyophilized extract, and microencapsulated form contain satisfactory levels of macro- and micro-minerals (calcium, potassium, sodium). The microencapsulation technique could be a novel strategy to harness the polyphenols and minerals of olive leaves, thus enriching food products and leveraging the antioxidant properties of the polyphenolic compounds found in the lyophilized extract.
Collapse
Affiliation(s)
- Carolina L. Ronca
- Department of Pharmacy, University of Federico II of Naples, 80138 Naples, Italy;
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Carmen Duque-Soto
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | | | - Manuel Olalla-Herrera
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Rafael Giménez Martínez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| |
Collapse
|
15
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
16
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
17
|
Zhou W, Guo S, Zhang S, Lu Z, Sun Z, Ma Y, Shi J, Zhang H. Effects of Siraitia grosvenorii seed flour on the properties and quality of steamed bread. Front Nutr 2023; 10:1249639. [PMID: 37671201 PMCID: PMC10475572 DOI: 10.3389/fnut.2023.1249639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Siraitia grosvenorii seeds are rich in abundant active compounds beneficial to human health. To clarify the digestion characteristics of Siraitia grosvenorii seed flour (SSF) and promote the use of SSF in the processing of functional staple foods, SSF was prepared, its composition and physicochemical properties were studied, and the processing characteristics of SSF-wheat flour were systematically investigated. The results showed that the torque curve and other parameters of the dough were significantly affected by the amount of SSF added. With the increase of SSF proportion, the water absorption showed an increasing trend, while the degree of protein weakening first weakened and then enhanced. At 20% SSF, the dough was more resistant to kneading. In response to an increase in SSF, the L* value decreased significantly, and the a* and b* values increased gradually, while the specific volume decreased gradually. Additionally, the hardness, adhesiveness, and chewiness of the bread enhanced gradually, while its elasticity, cohesiveness, and resilience decreased gradually. After the addition of 30% SSF, the inner tissue of steamed bread was more delicate. With an increase in SSF proportion, the predicted glycemic index (pGI) of steamed bread weakened markedly. Overall, these results showed that SSF, as a kind of food ingredient with hypoglycemic activity, can be used in the production of new functional steamed bread products. This study provides basic research data for the development of products containing S. grosvenorii seed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang, China
- Engineering and Technology Research Center of Aquatic Products Processing and Quality Control, Xinxiang, China
| | - Siyu Guo
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhaodi Lu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ziyi Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yulin Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinxiu Shi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Engineering and Technology Research Center of Aquatic Products Processing and Quality Control, Xinxiang, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an, China
| |
Collapse
|
18
|
Martínez C, Jiménez A, Garrigós MC, Valdés A. Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production. Foods 2023; 12:2382. [PMID: 37372593 DOI: 10.3390/foods12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Analysis of the oxidative stability of novel avocado chips with added natural extracts was carried out with the aim of reducing the chemical additive content in their formulation. Two different natural extracts were initially evaluated and characterized: one obtained from olive pomace (OE) and other from pomegranate seed waste. OE was selected due to its better antioxidant potential according to FRAP, ABTS, and DPPH assays as well as its higher total phenolic content. The formulations used were 0, 1.5 wt.%, and 3 wt.% of OE. A gradual disappearance of the band found around 3009 cm-1 and related to unsaturated fatty acids was observed in the control sample in contrast to formulations with added OE. The band observed near 3299 cm-1 widened and intensified with time due to the oxidation degree of samples, with this effect being higher in the control chips. The observed changes in fatty acid and hexanal content with storage time underlined the higher extent of oxidation in the control samples. This fact could suggest an antioxidant protectant action of OE in avocado chips during thermal treatment, which was attributed to the presence of phenolic compounds. The obtained chips incorporating OE represent a viable option for the development of a natural, healthy, and clean-label avocado snack at competitive cost and with low environmental impacts.
Collapse
Affiliation(s)
- Carmen Martínez
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Alfonso Jiménez
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Maria Carmen Garrigós
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Arantzazu Valdés
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| |
Collapse
|
19
|
Yousefi S, Rajaei P, Nateghi L, Nodeh HR, Rashidi L. Encapsulation of sesamol and retinol using alginate and chitosan-coated W/O/W multiple emulsions containing Tween 80 and Span 80. Int J Biol Macromol 2023; 242:124766. [PMID: 37164132 DOI: 10.1016/j.ijbiomac.2023.124766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The conditions of production of multiple W/O/W nanoemulsions containing sesamol and retinol were optimized using response surface methodology (RSM). Span 80 (5, 10, and 15 % w/v), Tween 80 (1, 5.5, and 10 % w/v), and water in oil ratio (W/O) (20, 30, and 40 %) were considered as independent variables while encapsulation efficiency (EE%) and particle size were taken as dependent variables. Alginate (Alg) and chitosan (CS) were also applied to form a deposit layer. An optimum sample with an EE of 92.93 % and particle size of 381.94 nm was produced when Tween 80, Span 80, and W/O were 6.24 %, 10.84 %, and 37.70 %, respectively. Based on the Fourier transform infrared spectroscopy (FTIR), detection of hydrophobic band (2899 cm-1) approved the physical entrapment of biomolecules. Differential scanning calorimetry (DSC) indicated an endothermic peak at 236.48 °C associated with the ionic interactions of Alg-CS. Confocal laser scanning microscopy (CLSM) indicated Alg-CS complex deposit layer formed by electrostatic attraction surrounding the W/O/W multiple layers. The in vitro release of sesamol and retinol was 39 % of sesamol and 22 % of retinol in simulated gastric fluid (SGF) and 56 % and 22 % in simulated intestinal fluid (SIF), respectively.
Collapse
Affiliation(s)
- Shahryar Yousefi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Peyman Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Hamid Rashidi Nodeh
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| |
Collapse
|
20
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Antioxidant and Antithrombotic Activities of Kenaf Seed (Hibiscus cannabinus) Coat Ethanol Extract in Sprague Dawley Rats. Appl Biochem Biotechnol 2023; 195:772-800. [PMID: 36173546 DOI: 10.1007/s12010-022-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.
Collapse
|
22
|
Sun Y, Hou T, Yu Q, Zhang C, Zhang Y, Xu L. Mixed oats and alfalfa improved the antioxidant activity of mutton and the performance of goats by affecting intestinal microbiota. Front Microbiol 2023; 13:1056315. [PMID: 36699611 PMCID: PMC9869024 DOI: 10.3389/fmicb.2022.1056315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Oat hay and alfalfa hay are important roughage resources in livestock production. However, the effect of the mixture of oat hay and alfalfa hay on the meat quality of Albas goats is unclear. This study aimed to investigate the effects of feeding different proportions of oat hay and alfalfa hay on the growth performance and meat quality of Albas goats. Therefore, 32 goats were fed for 70 days and randomly divided into four treatment groups on the principle of similar weight: whole oat group (OAT), oat alfalfa ratio 3:7 group (OA73), oat alfalfa ratio 7:3 group (OA37) and whole alfalfa group (Alfalfa), with eight goats in each group. Daily feed intake records, feces, feed samples, and rumen fluid collection were made throughout the trial. The goats were weighed on the last day of the trial, and four goats per group were randomly selected for slaughter. Cecum contents, meat samples, and hot carcass weight were collected, and data were recorded. Furthermore, the relationship between the rumen and cecal microbes on performance and meat quality was clarified by analyzing the rumen and hindgut microbiomes. The results showed that feeding alfalfa could significantly reduce the daily weight gain of fattening goats. Compared with the highest group (OA37), the daily weight gain decreased by 19.21%. Although there was no significant change in feed intake in the four treatments, the feed conversion rate of the alfalfa group significantly decreased by 30.24-36.47% compared to the other groups. However, with the increased alfalfa content, MDA decreased significantly, T-AOC was up-regulated, and the antioxidant activity of the fattened goat meat fed with the high alfalfa group was significantly higher than that of the low alfalfa group. Notably, the abundance of Bacteroidales_unclassified and Clostridium were strongly correlated with T-AOC and MDA. Therefore, increasing the proportion of alfalfa in the diet can affect the antioxidant activity of goat meat by improving the gut microbiota, while an oat-hay mixture can improve the growth performance of livestock.
Collapse
Affiliation(s)
- Yukun Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingyi Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chengrui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijun Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lijun Xu,
| |
Collapse
|
23
|
Tunisian Wild Olive Leaves: Phenolic Compounds and Antioxidant Activity as an Important Step Toward Their Valorization. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Mechi D, Fernández A, Baccouri B, Abaza L, Martín-Vertedor D. Addition of ‘Chetoui’ olive leaf extract to reduce acrylamide in Californian-style black olive. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Bisson G, Comuzzi C, Giordani E, Poletti D, Boaro M, Marino M. An exopolysaccharide from Leuconostoc mesenteroides showing interesting bioactivities versus foodborne microbial targets. Carbohydr Polym 2022; 301:120363. [DOI: 10.1016/j.carbpol.2022.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
26
|
Yang H, Li L, Xie C, He M, Guo Z, Zhao S, Teng F, Li Y. Characteristics and structure of a soy protein isolate-lutein nanocomplex produced via high-pressure homogenization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5411-5421. [PMID: 35338503 DOI: 10.1002/jsfa.11894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In recent years, nanocarriers for transporting active substances have attracted attention. This study was to explore the soy protein isolate (SPI) after high-pressure homogenization (HPH) (0, 30, 60, 90 and 120 MPa) as potential lutein carriers. RESULTS The load amount (LA) and encapsulation efficiency (EE) of the SPI-lutein nanocomplexes at a homogenization pressure of 60 MPa were the highest (2.32 mg mL-1 and 92.85%, respectively), and the average particle size and ζ-potential of the SPI-lutein nanocomplexes were 192.1 nm and -30.06 mV, respectively. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl-antioxidant activities of the complex increased from 12.4% and 23.3% to 52.7% and 61.07%, respectively, after the protein was treated with HPH. The surface hydrophobicity of the SPI and the SPI-lutein nanocomplexes increased with increasing homogenization pressure treatment. Fourier transform-infrared spectrophotometry analyses suggested that the homogenization treatments resulted in partial unfolding of the protein molecules, and the addition of lutein can also lead to the change of protein secondary structure. The fluorescence emission of SPI was quenched by lutein through the static quenching mechanism. Fluorescence experiments revealed that SPI and lutein had the strongest binding ability through hydrophobic interaction at a homogenization pressure of 60 MPa. CONCLUSION After HPH, the combination of SPI and lutein was beneficial, and the stability of lutein also improved after the combination. This study is conducive to expanding the application of soybean protein in the food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haodong Yang
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Changyuan Xie
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingyu He
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Zengwang Guo
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Shijie Zhao
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- Department of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Academy of Green Food Science, Harbin, China
| |
Collapse
|
27
|
Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, Fernández-Fernández C, Sterniša M, Smole Možina S, Ozogul Y, Generalić Mekinić I. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants (Basel) 2022; 11:antiox11091656. [PMID: 36139730 PMCID: PMC9495989 DOI: 10.3390/antiox11091656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic profiles, antioxidant, and antimicrobial activities of hydroethanolic olive leaf extracts from six Mediterranean olive cultivars (Croatian: Lastovka, Levantinka, Oblica; Italian: Moraiolo, Frantoio, Nostrana di Brisighella) were investigated. As expected, various distributions of phenolic levels were observed for each cultivar and the total phenolic content showed high variability (ranging from 4 to 22 mg GAE/g of dry extract), with the highest amount of phenolics found in the Oblica sample, which also provided the highest antiradical (ORAC) and reducing activity (FRAP). The screening of individual compounds was performed by HPLC-PDA-ESI-QTOF-MS and the main detected compounds were oleuropein, hydroxytyrosol, oleoside/secologanoside, verbascoside, rutin, luteolin glucoside, hydroxyoleuropein, and ligstroside. While the antioxidant activity of the samples was relatively high, they showed no bactericidal and bacteriostatic activity against E. coli and S. Typhimurium; weak activity against Staphylococcus aureus, Bacillus cereus, and Listeria innocua; and inhibitory effects against Campylobacter jejuni at 0.5 mg dry extract/mL. The obtained results support the fact that olive leaf extracts, and especially those from the Oblica cultivar, could potentially be applied in various industries as natural preservatives and effective and inexpensive sources of valuable antioxidants.
Collapse
Affiliation(s)
- Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
- Correspondence: ; Tel.: +385-21510192
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Martina Čagalj
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Federica Pasini
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Carmen Fernández-Fernández
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
28
|
Pan LH, Wu CL, Luo SZ, Luo JP, Zheng Z, Jiang ST, Zhao YY, Zhong XY. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
30
|
Effect of polyglycerol polyricinoleate on the inhibitory mechanism of sesamol during bulk oil oxidation. Sci Rep 2022; 12:11946. [PMID: 35831366 PMCID: PMC9279469 DOI: 10.1038/s41598-022-16201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, effects of sesamol on improving the oxidative stability of sunflower oil and its oil-in-water emulsion was investigated. To investigate the kinetic parameters related to the initiation and propagation stages of oxidation, a sigmoidal-model was used. Sesamol exhibited higher antioxidant activity in sunflower oil-in-water emulsion than that of sunflower oil. In both sunflower oil and sunflower oil-in-water emulsion, the inhibitory effect of sesamol against lipid oxidation continued even after the induction period. To improve the efficiency of sesamol in sunflower oil, polyglycerol polyricinoleate (PGPR) was incorporated into the functional environment of the sesamol. Sesamol exhibited a synergistic effect with PGPR during both initiation (synergistic effect of 68.87%) and propagation (synergistic effect of 36.84%) stages. Comparison of the size of reverse micelles in samples containing PGPR with those without PGPR revealed that PGPR can enhance the efficiency of sesamol by increasing the acceptance capacity of lipid hydroperoxides in reveres micelles structures. This can result in enhancing the effective collisions between sesamol and lipid hydroperoxides in the presence of PGPR. The water produced as a major byproduct of oxidation played a key role on the antioxidant activity of sesamol alone or in combination with PGPR during oxidation process.
Collapse
|
31
|
Macit A, Kizil M. Effect of olive leaf extract marination on heterocyclic aromatic amine formation in pan-fried salmon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3908-3915. [PMID: 34952976 DOI: 10.1002/jsfa.11740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, the reducing effects of varying levels of olive leaf extract (0%, 0.25%, 0.5%, 1% and 2%) on the formation of heterocyclic aromatic amines (HAAs) in pan-cooked salmon at 180 and 220 °C were examined. RESULTS All salmon samples were analyzed for ten HAAs: IQx, IQ, MeIQx, MeIQ, 4,8-DiMeIQx, 7,8-DiMeIQx, PhIP, AαC, MeAαC and Trp-P-2. The most abundant HAA was MeIQ (≤2.98 ng g-1 ) followed by Trp-P-2 (≤2.40 ng g-1 ), MeIQx (≤0.83 ng g-1 ), IQ (≤0.41 ng g-1 ), 7,8-DiMeIQx (≤0.29 ng g-1 ), 4,8-DiMeIQx (≤0.16 ng g-1 ) and IQx (≤0.06 ng g-1 ). However, PhIP, AαC and MeAαC were undetectable in all samples. In the control samples, HAAs were found at levels ranging from not detected to 2.40 ng g-1 . Total HAA content was between 0.81 and 4.03 ng g-1 . The olive leaf extracts reduced the total HAA levels at all certain concentration levels at 180 °C and the reducing effects were found to be 32.78-77.69%. CONCLUSION The current study displayed that olive leaf extracts could be efficient when added in up to 1% concentration prior to cooking for reducing HAA formation without changing organoleptic characteristics of salmon. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arife Macit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mevlude Kizil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Márquez K, Márquez N, Ávila F, Cruz N, Burgos-Edwards A, Pardo X, Carrasco B. Oleuropein-Enriched Extract From Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities. Front Nutr 2022; 9:895070. [PMID: 35832049 PMCID: PMC9273007 DOI: 10.3389/fnut.2022.895070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Olive oil consumption has increased in the last two decades and consequently, its wastes have increased, which generates a tremendous environmental impact. Among the by-products are the olive mill leaves, which are easier and inexpensive to treat than other olive by-products. However, little research has been done on their chemical composition and potential bioactivity. Hence, in this study, olive mill leaves were used to obtain Oleuropein-Enriched Extracts (OLEU-EE) using Conventional Extraction, Ultrasound-Assisted Extraction, and Homogenization-Assisted Extraction. These three techniques were evaluated using a Factorial Design to determine the parameters to obtain an OLEU-EE with high contents of Total Phenolic Compounds (TPC), Antioxidant Activity (AA), and Oleuropein concentration (OLEU). From the results, the Homogenizer-Assisted Extraction (HAE) technique was selected at 18,000 rpm, solid:liquid ratio 1:10, and 30 s of homogenization with 70% ethanol, due to its high TPC (5,196 mg GA/100 g), AA (57,867 μmol of TE/100 g), and OLEU (4,345 mg of OLEU/100 g). In addition, the antiglycating effect of OLEU-EE on the levels of (1) fluorescent Advanced Glycation End Products (AGEs) were IC50 of 0.1899 and 0.1697 mg/mL for 1λEXC 325/λEM 440 and 2λEXC 389/λEM 443, respectively; (2) protein oxidative damage markers such as dityrosine (DiTyr), N-formylkynurenine (N-formyl Kyn), and kynurenine (Kyn) were IC50 of 0.1852, 0.2044, and 0.1720 mg/mL, respectively. In conclusion, OLEU-EE from olive mill leaves has different capacities to inhibit AGEs evidenced by the IC50 of fluorescent AGEs and protein oxidation products, together with the scavenging free radical evidenced by the concentration of Trolox Equivalent. Therefore, OLEU-EE could be potential functional ingredients that prevent oxidative damage caused by free radicals and AGEs accumulation.
Collapse
Affiliation(s)
- Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
- *Correspondence: Katherine Márquez ; orcid.org/0000-0001-6298-2597
| | - Nicole Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Alberto Burgos-Edwards
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Ximena Pardo
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| |
Collapse
|
33
|
Effect of Ohmic Heating on the Extraction Yield, Polyphenol Content and Antioxidant Activity of Olive Mill Leaves. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the influence of ohmic heating (OH), compared to the conventional heating (Conven) and Control (solvent) methods, on the extraction of olive mill leaves. The main extraction parameters were: (i) solvent ratio (aqueous ethanol; 40%, 60%, and 80%, v/v), and (ii) extraction temperature; 45 °C, 55 °C, and 75 °C (for OH and Conven), and room temperature (for Control). The selected response variables were extraction yield (%), total phenolic content (TPC), and antioxidant activity (ABTS and DPPH). The ohmic system, compared to Conven and Control, exhibited the greatest effects (p < 0.001) on increasing (i) extraction yield (34.53%) at 75 °C with 80% ethanol, (ii) TPC at 55 °C (42.53, 34.35, 31.63 mg GAE/g extract, with 60%, 40%, and 80% ethanol, respectively), and (iii) antioxidant potency at 75 °C detected by DPPH and ABTS, in the range of 1.21–1.04 mM TE/g, and 0.62–0.48 mM TE/g extract, respectively. Further, there were relatively similar trends in TPC and antioxidant activity (both methods), regardless of solvent ratios, p < 0.001. These findings demonstrate the potential of ohmic heating, as a green processing tool, for efficient extraction (15 min) of olive leaves. To date, no literature has described ohmic application for olive leave extraction.
Collapse
|
34
|
Ullah H, Hussain Y, Santarcangelo C, Baldi A, Di Minno A, Khan H, Xiao J, Daglia M. Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules 2022; 27:1906. [PMID: 35335268 PMCID: PMC8954466 DOI: 10.3390/molecules27061906] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Casado-Diaz A, Moreno-Rojas JM, Verdú-Soriano J, Lázaro-Martínez JL, Rodríguez-Mañas L, Tunez I, La Torre M, Berenguer Pérez M, Priego-Capote F, Pereira-Caro G. Evaluation of Antioxidant and Wound-Healing Properties of EHO-85, a Novel Multifunctional Amorphous Hydrogel Containing Olea europaea Leaf Extract. Pharmaceutics 2022; 14:349. [PMID: 35214081 PMCID: PMC8879625 DOI: 10.3390/pharmaceutics14020349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
The excess of free radicals in the wound environment contributes to its stagnation during the inflammatory phase, favoring hard-to-heal wounds. Oxidative stress negatively affects cells and the extracellular matrix, hindering the healing process. In this study, we evaluated the antioxidant and wound-healing properties of a novel multifunctional amorphous hydrogel-containing Olea europaea leaf extract (OELE). Five assessments were performed: (i) phenolic compounds characterization in OELE; (ii) absolute antioxidant activity determination in OELE and hydrogel (EHO-85); (iii) antioxidant activity measurement of OELE and (iv) its protective effect on cell viability on human dermal fibroblasts (HDFs) and keratinocytes (HaCaT); and (v) EHO-85 wound-healing-capacity analysis on diabetic mice (db/db; BKS.Cg-m+/+Leprdb). The antioxidant activity of OELE was prominent: 2220, 1558, and 1969 µmol TE/g by DPPH, ABTS, and FRAP assays, respectively. Oxidative stress induced with H2O2 in HDFs and HaCaT was normalized, and their viability increased with OELE co-treatment, thus evidencing a protective role. EHO-85 produced an early and sustained wound-healing stimulating effect superior to controls in diabetic mice. This novel amorphous hydrogel presents an important ROS scavenger capacity due to the high phenolic content of OELE, which protects skin cells from oxidative stress and contributes to the physiological process of wound healing.
Collapse
Affiliation(s)
- Antonio Casado-Diaz
- Clinical Management Unit of Endocrinology and Nutrition, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
| | - José Manuel Moreno-Rojas
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), 14004 Córdoba, Spain
| | - José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain; (J.V.-S.); (M.B.P.)
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Department of Geriatrics, Hospital Universitario de Getafe, 28905 Madrid, Spain
| | - Isaac Tunez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Manuel La Torre
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Miriam Berenguer Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain; (J.V.-S.); (M.B.P.)
| | - Feliciano Priego-Capote
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Analytical Chemistry, Institute of Nanochemistry, University of Córdoba, 14071 Córdoba, Spain
| | - Gema Pereira-Caro
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), 14004 Córdoba, Spain
| |
Collapse
|
36
|
Goh MPY, Kamaluddin AF, Tan TJL, Yasin H, Taha H, Jama A, Ahmad N. An evaluation of the phytochemical composition, antioxidant and cytotoxicity of the leaves of Litsea elliptica Blume - An ethnomedicinal plant from Brunei Darussalam. Saudi J Biol Sci 2022; 29:304-317. [PMID: 35002423 PMCID: PMC8717155 DOI: 10.1016/j.sjbs.2021.08.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Litsea elliptica is traditionally believed to prevent and treat stomach ulcers, cancer, fever and headaches. This study investigates the phytochemical composition, antioxidant and cytotoxic effects of L. elliptica leaf extracts. The phytochemical content was determined via GCMS analysis and total phenolic content (TPC) and total flavonoid content (TFC) were analysed using the Folin-Ciocalteu and aluminium-chloride assays. Antioxidant activities were determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging and ferric-ion reducing antioxidant power (FRAP) assays, whereas cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and calcein/ethidium viability assays. The mechanism of cytotoxicity was investigated using Annexin V/propidium iodide. Modifications in the mitochondria were investigated using MitoTracker Red CMXRos. Ten and twenty-six compounds were characterized in the young-leaf and mixed-leaves extracts, respectively. The young-leaf methanolic extract demonstrated the highest antioxidant capacity of at least four-folds greater than the mixed-leaves and ethanolic extracts. The methanolic extract also had higher TPC and TFC values compared to the ethanolic extract. Although the mixed L. elliptica leaves had lower antioxidant capacities compared to the young leaves, the mixed leaves extract has demonstrated greater cytotoxicity against the A549 cancer cell line. Further investigation revealed that the L. elliptica leaves-induced cytotoxicity on A549 cells was possibly via the non-inflammatory mitochondria-mediated apoptotic pathway. Overall, our results showed the potential of the L. elliptica leaves possessing cytotoxic activities against carcinoma cells where the compounds present can be further investigated for its therapeutic application.
Collapse
Affiliation(s)
- May Poh Yik Goh
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Ajmal Faiz Kamaluddin
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Terence Jit Loong Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Hartini Yasin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Abdalla Jama
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Norhayati Ahmad
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
37
|
Pagadala R, Kasi V, Shabalala NG, Jonnalagadda SB. Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Bouguerra Neji S, Bouaziz M. Production of biologically active hydroxytyrosol rich extract via catalytic conversion of tyrosol. RSC Adv 2022; 12:2595-2602. [PMID: 35425278 PMCID: PMC8979270 DOI: 10.1039/d1ra08875k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
An effective and economical process was established to produce hydroxytyrosol, a naturally occurring orthodiphenolic antioxidant molecule found in olive oil from its monophenolic precursor tyrosol. The approach proposed in the present work presents an environment-friendly method based on wet hydrogen peroxide catalytic oxidation with montmorillonite KSF as an inexpensive and environmentally benign solid acid at room temperature. The influence of the principal operating parameters including concentration of tyrosol, H2O2, and catalyst used were studied. The antioxidant activity was realized by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. High antioxidant activity was detected according to the high hydroxytyrosol production (IC50 = 0.7 μg mL−1). The bactericidal and fungicidal properties of hydroxytyrosol rich extract were investigated using the NCCLS broth dilution and EN 1276 standard methods. Positive bactericidal and fungicidal effects of concentrations ranging between 1–0.5 g L−1 and 4–2 g L−1 were obtained. An effective and economical process was established to produce hydroxytyrosol, a natural antioxidant molecule.![]()
Collapse
Affiliation(s)
- Soumaya Bouguerra Neji
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP1173, 3038 Sfax, Tunisia
| | - Mohamed Bouaziz
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP1173, 3038 Sfax, Tunisia
| |
Collapse
|
39
|
Adelusi TI, Oyedele AQK, Monday OE, Boyenle ID, Idris MO, Ogunlana AT, Ayoola AM, Fatoki JO, Kolawole OE, David KB, Olayemi AA. Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro) - Molecular Dynamics, Molecular Mechanics, and Density Functional Theory Investigations. J Mol Struct 2021; 1250:131879. [PMID: 34785822 PMCID: PMC8581770 DOI: 10.1016/j.molstruc.2021.131879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023]
Abstract
The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance.
Collapse
Key Words
- : Mpro, Main protease
- ADMET, Absorption, Distribution, Metabolism, Excretion, and Toxicity
- GROMACS, GROningen MAchine for Chemical Simulations
- HOMO, Highest Occupied Molecular Orbital
- LUMO, Lowest Unoccupied Molecular Orbital
- MM-PBSA, Molecular Mechanics Poisson–Boltzmann Surface Area
- Molecular docking
- Molecular dynamics
- Molecular mechanics
- ORF, Open Reading Frame
- Quantum Mechanics
- SARS-COV2 Mpro inhibitors
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Abdul-Quddus Kehinde Oyedele
- Computational biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ojo Emmanuel Monday
- Computational biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ibrahim Damilare Boyenle
- Computational biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | | - Abdeen Tunde Ogunlana
- Computational biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ashiru Mojeed Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of natural and applied science, Fountain University
| | - John Olabode Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Oladipo Elijah Kolawole
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, Nigeria
| | - Kehinde Busuyi David
- Department of Nursing, Faculty of Medical Science, Littoral University, Porto Novo, Benin Republic
| | | |
Collapse
|
40
|
Wu J, Cui C, Zhang H, Liu D, Schreiber L, Qin W, Wan Y. Identifying new compounds with potential pharmaceutical and physiological activity in Areca catechu and Areca triandra via a non-targeted metabolomic approach. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:970-981. [PMID: 33619832 DOI: 10.1002/pca.3039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The fruits of Areca catechu, also called areca nuts, are widely used as popular masticatory and traditional herbal medicine in Asia. Besides arecoline and related alkaloids, limited information is available about further primary and secondary metabolites and their potential biological activities. OBJECTIVE Here we aimed to further enhance our knowledge on phytochemical profiles of A. catechu and Areca triandra fruits. We intended to comprehensively identify metabolites in A. catechu and A. triandra fruits. METHODOLOGY Metabolites were identified by ultra-performance liquid chromatography triple-quadrupole tandem mass spectrometry (UPLC-MS/MS). The occurrence of 12 selected bioactive compounds in 4 different developmental stages of A. catechu and A. triandra was quantified by LC-MS/MS. RESULTS A total of 791 metabolites was identified. Of these, 115 metabolites could successfully be mapped to 44 Kyoto Encyclopedia of Genes and Genomes metabolic pathways, and 154 metabolites occurred at significantly different levels in A. catechu compared to A. triandra. Several components with known biological activities were identified for the first time in A. catechu and A. triandra. The abundance of many of these new components was similar in A. catechu and A. triandra, but significantly different between the pericarp and the seeds of A. catechu fruits. CONCLUSIONS Metabolic profiles indicate that fruits of the Areca species compared here have similar primary and secondary metabolites. Our findings provide new insights into A. catechu and A. triandra as valuable sources for traditional medicine and they pave the way for further studies to potentially improve the underlying pharmaceutical and physiological effects.
Collapse
Affiliation(s)
- Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Chuang Cui
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - He Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571737, China
| | - Dongjun Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D53115, Germany
| | - Weiquan Qin
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan, 571339, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan, 570228, China
| |
Collapse
|
41
|
Oleuropein Enhances Stress Resistance and Extends Lifespan via Insulin/IGF-1 and SKN-1/Nrf2 Signaling Pathway in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:antiox10111697. [PMID: 34829568 PMCID: PMC8614835 DOI: 10.3390/antiox10111697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Oleuropein (OLE) is a secoiridoid glycoside that mainly exists in olives with multifaceted health benefits. The present study aimed to investigate the stress resistance and lifespan extension effects of OLE in Caenorhabditis elegans. The results showed that OLE could significantly prolong the lifespan of C. elegans by 22.29%. Treatment with OLE also significantly increased the survival rates of worms against lethal heat shock and oxidative stress. Meanwhile, OLE supplementation increased the expression and activity of antioxidant enzymes and suppressed the generation of malondialdehyde in nematodes. In addition, the results from mutants implied that OLE might mediate longevity and stress resistance via DAF-16/FoxO, which played a vital role in the insulin/IGF-1 signaling (IIS) pathway. To further identify the molecular targets of OLE, mRNA level and loss-of-function mutants of IIS-associated genes were investigated. The data revealed that OLE activated IIS by down-regulating the upstream components, daf-2 and age-1. Furthermore, another stress response and longevity pathway in parallel to DAF-16, SKN-1/Nrf2, was also shown to involve in OLE-induced beneficial effects. Collectively, these results provide the theoretical basis that OLE could enhance the stress resistance and increase the lifespan of C. elegans through the IIS and SKN-1/Nrf2 signaling pathways.
Collapse
|
42
|
Soleimanifar M, Jafari SM, Assadpour E, Mirarab A. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Sallam KI, Abd-Elghany SM, Imre K, Morar A, Herman V, Hussein MA, Mahros MA. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents. Food Microbiol 2021; 99:103834. [PMID: 34119118 DOI: 10.1016/j.fm.2021.103834] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
The antioxidant and antimicrobial effect of sesame oil (10, 30, and 50 g/kg) and sesamol (0.1, 0.3, and 0.5 g/kg) in meatballs during cold storage for 18 days at 3 ± 1 °C was investigated. Sesame oil and sesamol did not alter the sensory attributes of meatballs. Addition of either sesame oil or sesamol significantly delayed lipid oxidation when compared with control. Sesamol exhibited more potent antioxidant activities more than sesame oil. During storage, the aerobic plate counts (APCs) and Enterobacteriaceae counts (EBCs) were markedly (P < 0.01) decreased in meatballs treated with sesame oil or sesamol in comparison with untreated control samples. Control meatballs showed signs of quality deterioration at day 7 of storage, while treated meatballs exhibited longer shelf lifes ranged from 9-18 days according to sesame oil or sesamol concentrations. Both sesame oil and sesamol induced marked (P < 0.01) decline in the counts of E. coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria monocytogenes that artificially inoculated to meatballs. Sesamol was more effective than sesame oil in the reduction of APCs, EBCs as well as foodborne pathogens. The results suggest that both sesame oil and sesamol are potentially useful natural additives to fresh meat products for improving its microbial quality and extending its shelf life during cold storage.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645, Romania
| | - Mohamed Abdallah Hussein
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mahmoud Ahmed Mahros
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
44
|
Antimicrobial Polyamide-Alginate Casing Incorporated with Nisin and ε-Polylysine Nanoparticles Combined with Plant Extract for Inactivation of Selected Bacteria in Nitrite-Free Frankfurter-Type Sausage. Foods 2021; 10:foods10051003. [PMID: 34064386 PMCID: PMC8147807 DOI: 10.3390/foods10051003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of combining a polyamide-alginate casing incorporated with nisin (100 ppm and 200 ppm) and ε-polylysine (500 ppm and 1000 ppm) nanoparticles and a mixed plant extract as ingredient in sausage formulation (500 ppm; composed of olive leaves (OLE), green tea (GTE) and stinging nettle extracts (SNE) in equal rates) were studied to improve the shelf life and safety of frankfurter-type sausage. The film characteristics and microbiological properties of sausage samples were evaluated. Sausage samples were packaged in polyethylene bags (vacuum condition) and analysed during 45 days of storage at 4 °C. Control sausages were also treated with 120 ppm sodium nitrite. Polyamide-alginate films containing 100 ppm nisin and 500 ε-PL nanoparticles had the highest ultimate tensile strength compared to other films. However, 100 ppm nisin and 500 ε-PL nanoparticles decreased water vapour permeability of films. The results also revealed that nisin nanoparticles had significantly (p < 0.05) low inhibitory effects against Escherichia coli, Staphylococcus aureus, molds and yeasts and total viable counts compared to control and ε-PL nanoparticles. Furthermore, 1000 ppm ε-PL nanoparticles displayed the highest antimicrobial activity. Based on the obtained results, the films containing ε-PL nanoparticle could be considered as a promising packaging for frankfurter-type sausages.
Collapse
|
45
|
Sun W, Wang Y, Zhou XP, Zhang MX, Yang JZ, Liang D. Crystal structure of benzo[ d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C 21H 18O 5. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C21H18O5, monoclinic, P21 (no. 4), a = 9.1511(4) Å, b = 5.6679(3) Å, c = 16.7731(9) Å, β = 93.435(2)°, V = 868.42(8) Å3, Z = 2, R
gt
(F) = 0.0410, wR
ref
(F
2) = 0.1204, T = 296(2) K.
Collapse
Affiliation(s)
- Wei Sun
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| | - Yan Wang
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| | - Xiao-ping Zhou
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| | - Mu-xin Zhang
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| | - Jin-zhu Yang
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| | - Di Liang
- School of Pharmaceutical Sciences , Jilin University , Changchun 130021 , P. R. China
| |
Collapse
|
46
|
A Novel Pro-Melanogenic Effect of Standardized Dry Olive Leaf Extract on Primary Human Melanocytes from Lightly Pigmented and Moderately Pigmented Skin. Pharmaceuticals (Basel) 2021; 14:ph14030252. [PMID: 33799651 PMCID: PMC7999707 DOI: 10.3390/ph14030252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Benolea® (EFLA®943) is a standardized dry olive leaf extract (DOLE) considered safe for food consumption and has demonstrated superior pharmaceutical benefits such as antioxidant, anti-obesity, and anti-hypertensive activities. However, there is no study on its effects on melanogenesis yet. Disruption in the sequence of steps in melanogenesis can lead to hypopigmentary disorders which occur due to reduced production or export of pigment melanin in the skin. There is a need for safe and nontoxic therapeutics for the treatment of hypopigmentation disorders. Herein, we studied the effects of DOLE over a concentration range of 10-200 µg/mL on melanin synthesis and melanin secretion in B16F10 mouse melanoma cells and MNT-1 human melanoma cells and validated our results in primary human melanocytes (obtained from lightly pigmented (LP) and moderately pigmented (MP) cells) as well as their cocultures with keratinocytes. The capacity of melanocytes to export melanosomes was also estimated indirectly by the quantitation of melanocyte dendrite lengths and numbers. Our results show that DOLE significantly enhanced levels of extracellular melanin in the absence of effects on intracellular melanin, demonstrating that this plant extract's pro-melanogenic activity is primarily based on its capacity to augment melanin secretion and stimulate melanocyte dendricity. In summary, our preliminary results demonstrate that DOLE may hold promise as a pro-pigmenting agent for vitiligo therapy and gray hair treatment by its exclusive and novel mechanism of functioning as a dendrite elongator. Further studies to elucidate the mechanisms of action of the pro-melanogenic activity and effects of DOLE on melanosome export as well as the last steps of melanogenesis are warranted.
Collapse
|
47
|
Li Y, Zhang Y, Dai W, Zhang Q. Enhanced oral absorption and anti-inflammatory activity of ellagic acid via a novel type of case in nanosheets constructed by simple coacervation. Int J Pharm 2021; 594:120131. [PMID: 33271309 DOI: 10.1016/j.ijpharm.2020.120131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
As a nature component, ellagic acid (EA) shows a broad array of pharmacological activities but is lost in clinical translation partly due to poor aqueous solubility. In an effort to enhance its oral absorption, novel EA-loaded casein nanosheets (EA@CAS-NSs) was constructed by simple coacervation and investigated for in vitro characterization and in vivo evaluation. The influences of factors including pH, EA concentration, and mass ratio of CAS and EA on properties of EA@CAS-NSs were also studied. The low pH value and high matrix and drug ratio were harmful to small particle size of EA@CAS-NSs. Meanwhile, the low and high concentration of EA went against the 8 h short-term stability of EA@CAS-NSs. Interestingly, EA@CAS-NSs showed a typical disk-like structure with a diameter of 100-400 nm and good long-term storage stability for 24 months. The molecular structure of EA in NSs remained unchanged, but the EA in NSs had lower crystallinity and better thermal stability than in raw state. No chemical interaction occurred between CAS and EA, although the intermolecular distance of them was less than 10 nm. In simulated intestinal fluid, the solubility of EA in NSs was nearly three times that of raw EA, and the dissolution of EA@CAS-NSs was 12 folds of raw EA at 120 min. With oral administration, EA@CAS-NSs demonstrated an improved oral absorption in rats, as evidenced by an AUC0-24 value 2.34 times higher than raw EA. Also, the EA@CAS-NSs showed a better anti-inflammatory activity than EA. Generally, EA@CAS-NSs could be a potential strategy for the further clinic use of EA.
Collapse
Affiliation(s)
- Yong Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenbing Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
48
|
Castro-González LM, Galano A, Alvarez-Idaboy JR. Free radical scavenging activity of newly designed sesamol derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02225c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently proposed derivatives of sesamol as better oxidants than the parent molecule are predicted to react faster, with several orders larger rate constants than sesamol itself.
Collapse
Affiliation(s)
- Laura M. Castro-González
- Department of Biological Sciences
- Centre for Molecular Simulation
- University of Calgary
- Calgary
- Canada
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México
- Mexico
| |
Collapse
|
49
|
Antioxidant Efficacy of Olive By-Product Extracts in Human Colon HCT8 Cells. Foods 2020; 10:foods10010011. [PMID: 33374501 PMCID: PMC7822158 DOI: 10.3390/foods10010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
The production of olive oil is accompanied by the generation of a huge amount of waste and by-products including olive leaves, pomace, and wastewater. The latter represents a relevant environmental issue because they contain certain phytotoxic compounds that may need specific treatments before the expensive disposal. Therefore, reducing waste biomass and valorizing by-products would make olive oil production more sustainable. Here, we explore the biological actions of extracts deriving from olive by-products including olive pomace (OP), olive wastewater (OWW), and olive leaf (OLs) in human colorectal carcinoma HCT8 cells. Interestingly, with the same phenolic concentration, the extract obtained from the OWW showed higher antioxidant ability compared with the extracts derived from OP and OLs. These biological effects may be related to the differential phenolic composition of the extracts, as OWW extract contains the highest amount of hydroxytyrosol and tyrosol that are potent antioxidant compounds. Furthermore, OP extract that contains a higher level of vanillic acid than the other extracts displayed a cytotoxic action at the highest concentration. Together these findings revealed that phenols in the by-product extracts may interfere with signaling molecules that cross-link several intracellular pathways, raising the possibility to use them for beneficial health effects.
Collapse
|
50
|
Phenolic Compounds Obtained from Olea europaea By-Products and their Use to Improve the Quality and Shelf Life of Meat and Meat Products-A Review. Antioxidants (Basel) 2020; 9:antiox9111061. [PMID: 33138148 PMCID: PMC7692586 DOI: 10.3390/antiox9111061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Consumers are interested in consuming clean label foods. Replacing synthetic additives with natural alternatives (especially sources rich in polyphenols) is a valid solution to produce and also preserve foods, especially meat and meat products. Olea europaea leaves and olive pomace and wastewater contain polyphenols that can be explored in this context. In this review, we summarize the main aspects related to the phenolic composition, extraction conditions, antimicrobial potential, and antioxidant activity (in vitro and in vivo) of Olea europaea leaves, olive pomace and wastewater as well as their applications in the production of meat and meat products. This review found evidence that extracts and isolated polyphenols from the Olea europaea tree and olive processing by-products can be explored as natural antioxidant and antimicrobial additives to improve the preservation of meat and meat products. The polyphenols found in these residues (especially oleuropein, hydroxytyrosol and tyrosol) increased the redox state in the main meat-producing animals and, consequently, the oxidative stability of fresh meat obtained from these animals. Moreover, the extracts and isolated polyphenols also improved the shelf life of fresh meat and meat products (as additive and as active component in film) by delaying the growth of microorganisms and the progression of oxidative reactions during storage. The accumulated evidence supports further investigation as a natural additive to improve the preservation of reformulated muscle products and in the production of edible and sustainable films and coatings for fresh meat and meat products.
Collapse
|