1
|
Wei Y, Rui H, Wang X, Chang C, Wang Y, Gu L, Su Y, Yang Y, Li J. The role of defatted hydrolyzed egg yolk powder in protecting DHA algal oil. Food Chem 2025; 473:143088. [PMID: 39884233 DOI: 10.1016/j.foodchem.2025.143088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
This study comprehensively investigated DHA algal oil emulsions and microcapsules prepared with different egg yolk hydrolysates (DHYP). Dual-enzyme (phospholipase A1 and protease) treatment enhanced emulsion stability by boosting protein adsorption, reducing particle size, and increasing zeta potential. For microcapsules, EF-DUAL, treated with dual-enzymes, had improved solubility, dispersibility, and wall material compactness, effectively protecting DHA from oxidation. During accelerated storage, EF-DUAL had the lowest oxidation levels and maintained a high DHA retention rate of 22.08 % after 12 days at 60 °C, extending DHA algal oil's shelf life by 300 %. Linear regression analysis indicated that the oxidation of DHA algal oil followed first-order kinetics, whereas microcapsule powders exhibited higher zero-order coefficients. Overall, this study underscores the potential of DHYP, particularly dual-enzyme hydrolyzed egg yolk powder, as a wall material for DHA microencapsulation.
Collapse
Affiliation(s)
- Yingxin Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Huan Rui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Wang
- Xipa Food Research Institute, Bole, Xinjiang, 833400, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Pan T, Wang J, Wang H, Zhao S, Liu D, Wang W. Preparation of soy protein isolate-ellagic acid conjugates through ultrasound-assisted metal-free Fenton reaction: Synthesis, structure, and functional properties. Food Chem 2025; 484:144397. [PMID: 40267680 DOI: 10.1016/j.foodchem.2025.144397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The grafting of polyphenols onto proteins possesses the potential to enhance their functional properties. In this study, ultrasound-assisted metal-free Fenton reaction grafting method (UMFM) was developed to efficiently prepare soy protein isolate (SPI)-ellagic acid (EA) conjugates. Under optimized conditions of 380 W, 50 °C, and 75 min, UMFM significantly improved the grafting degree of SPI with EA by 10.3 % and reduced the reaction time by 94.8 % compared to the conventional method. In addition, the results of reactive group content, multi-spectroscopy analysis, and surface hydrophobicity demonstrated the decrease in free amino and sulfhydryl groups contents, alterations in the secondary and tertiary structures of SPI, as well the ultrasonication-induced further unfolding of SPI structure, thereby facilitating the formation of covalent bonds between SPI and EA. Moreover, the functional properties of SPI, including thermal stability, emulsifying activity, and antioxidant properties, were significantly enhanced after conjugation with EA, especially in ultrasound-assisted conditions.
Collapse
Affiliation(s)
- Tiange Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shunan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Ubaid M, Saini CS. Enzymatic hydrolysis of grape seed protein: In vitro digestibility, functional, and structural insights as effected by enzyme concentration and enzymolysis time. Int J Biol Macromol 2025; 309:143077. [PMID: 40246122 DOI: 10.1016/j.ijbiomac.2025.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
This study investigated the production of grape seed protein hydrolysate by studying the influence of various enzymatic hydrolysis conditions on grape seed proteins. The hydrolysate was characterized in terms of functional, structural, antioxidant properties and in vitro digestibility. The findings revealed that enzymatic hydrolysis led to structural modifications, which enhanced the functional properties of grape seed proteins. Enzymatic hydrolysis of grape seed protein with enzyme alcalase concentration @ 4 % (v/v) and 6 h resulted in the highest degree of hydrolysis, highest antioxidant activity, emulsifying capacity and solubility, and the lowest turbidity value. Enzymatic hydrolysis treatment reduced particle size, and turbidity, while improving DPPH radical scavenging activity, solubility. FTIR analysis indicated structural and conformational changes in the protein. X-ray diffraction results demonstrated reduced crystallinity in all the grape seed protein hydrolysates. The conformational as well as structural alterations contributed to improved antioxidant properties, and in-vitro digestibility of grape seed protein hydrolysate.
Collapse
Affiliation(s)
- M Ubaid
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India.
| |
Collapse
|
4
|
Manzoor MF, Waseem M, Diana T, Wang R, Ahmed Z, Mohamed Ahmed IA, Ali M, An-Zeng X. Ultrasound-assisted modification to improve the red pepper seed protein isolate structural, functional, and antioxidant properties. Int J Biol Macromol 2025; 309:143154. [PMID: 40233908 DOI: 10.1016/j.ijbiomac.2025.143154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
The study aims to extract protein from red pepper seeds and analyze the effect of ultrasound (US) on red pepper seed protein isolates (RPSPI) at pH 7 and 9. Circular dichroism (CD) spectroscopy analyzed structural changes in RPSPI, revealing that the increase in US treatment duration from 5 to 20 min was associated with decreased β-turn and α-helix while improving the β-sheet and random coil content. It demonstrates that US treatment stimulated protein unfolding and significantly disrupted distinct types of H bonds in the RPSPI, especially those involved in forming β-turns and α-helix. US treatment significantly improved the free sulfhydryl groups, revealing modified tertiary protein structures. The dissociation of large RPSPI aggregates into smaller ones significantly reduced the average particle size in aqueous suspensions. Ultimately, these changes enabled US-treated RPSPI samples to exhibit increased water solubility, emulsifying activity index, emulsifying stability index, water holding capacity, oil holding capacity, foaming characteristic, and foaming stability at pH 7 and 9, with maximum improvement of 25 %, 49.4 %, 45.11 %, 65.1 %, 46.2 %, 71.1 %, and 81.8 %, respectively. US treatments significantly increased the DPPH, ABTS, and OH scavenging ability (%) of RPSPI at pH 9, with a maximum improvement of 58 %, 33 %, and 36 %, respectively. Moreover, the principal component analysis demonstrated that the structural changes correlated with its functional and antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; Faculty of Sciences and Technology, ILMA University, Karachi, Pakistan.
| | - Muhammad Waseem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Tazeddinova Diana
- Department of Technology and Catering Organization, South Ural State University, Chelyabinsk, Russian Federation
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China
| | - Zahoor Ahmed
- Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan; College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Isam A Mohamed Ahmed
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China
| | - Xin An-Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
5
|
Li Q, Niu M, Jia C, Xu Y, Zhao S. Enhancement on the solubility of polyploid and diploid rice proteins by enzymatic hydrolysis: From structural and functional characteristics of rice protein hydrolysates. Int J Biol Macromol 2025; 307:142235. [PMID: 40107562 DOI: 10.1016/j.ijbiomac.2025.142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Polyploid rice protein (PRP) has the advantage of high nutritional value, but its functional properties are minimal due to its poor solubility. This work aims to improve the solubility of PRP through enzymatic hydrolysis and assess the effect of hydrolysis time (5-330 min) and protease type (Alcalase, Neutrase, and Trypsin) on the structural, functional, and antioxidant properties of PRP hydrolysates (PRPHs). Compared to PRP, PRPHs exhibited significantly decreased free sulfhydryl content and surface hydrophobicity and improved structural flexibility, regardless of the protease used. With increasing time, the nitrogen solubility index of the hydrolysates increased by 25.01 %, which was attributed to the reduction in molecular weight (< 15 kDa). The highest emulsifying activity (48.81 m2/g) and hydroxyl radical scavenging activity (IC50 of 5.49 mg/mL) were observed from Neutrase hydrolysates at 210 min and 330 min, respectively. Trypsin hydrolysate at 210 min demonstrated the lowest IC50 (0.17 mg/mL) in ABTS+. Moreover, compared to diploid rice protein hydrolysates (DRPHs) obtained under the same conditions, PRPHs by all proteases exhibited superior functional and antioxidant properties and richer amino acid content. This study showed the potential of PRPHs applied to functional foods with favorable functional and antioxidant properties.
Collapse
Affiliation(s)
- Qiong Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Niu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Caihua Jia
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Xu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
6
|
Li Q, Chang B, Huang G, Wang D, Gao Y, Fan Z, Sun H, Sui X. Differential Enzymatic Hydrolysis: A Study on Its Impact on Soy Protein Structure, Function, and Soy Milk Powder Properties. Foods 2025; 14:906. [PMID: 40077608 PMCID: PMC11899159 DOI: 10.3390/foods14050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Protein constitutes the primary nutrient in soy, and its modifications are intricately linked to the properties of the soy milk powder. This study employed six main commercial enzymes (bromelain, neutrase, papain, trypsin, flavourzyme, and alcalase) to investigate the impact of enzymatic hydrolysis on the structural and functional properties of soy protein isolate (SPI), as well as its influence on the physicochemical properties of soy milk powder. The findings indicated that each of enzymes exhibits distinct specificity, with the degree of hydrolysis following the order: alcalase > flavourzyme > papain > bromelain > neutrase > trypsin. Enzymatic hydrolysis facilitates the unfolding of SPI, leading to the exposure of chromogenic fluorophores and hydrophobic amino acid residues, which in turn promotes an increase in free sulfhydryl content. Concurrently, this process induces the transformation of α-helix and β-sheet into β-turn and random coil. The enzyme modification enhances the solubility, emulsification, and foaming activities of SPI and significantly augment its antioxidant properties (p < 0.05). However, this enzymatic treatment adversely affects the stability of its emulsification and foaming properties. Subsequent to enzymatic hydrolysis, soy milk powder demonstrated a reduction in particle size and an improvement in solubility, which significantly enhanced its flavor profile. In summary, alcalase offers substantial advantages in augmenting the functional properties of SPI and increasing the solubility of soy milk powder. However, this process adversely affects the flavor profile of soy milk powder, a consequence attributed to the broad hydrolysis specificity of alcalase.
Collapse
Affiliation(s)
- Qian Li
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Baoyue Chang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhijun Fan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongbo Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Lei S, Zhao C, Miao Y, Zhao H, Liu Z, Zhang Y, Zhao L, Peng C, Gong J. Quality characteristics and fibrous structure formation mechanism of walnut protein and wheat gluten meat analogues during high-moisture extrusion cooking process. Food Chem 2025; 463:141168. [PMID: 39276553 DOI: 10.1016/j.foodchem.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Blending two or more materials to create better high-moisture meat analogues has been actively studied in the food science and technology field. Walnut protein is a high-quality plant-based protein resource, yet its full potential remains underexploited. Thus, this study focused on exploring the quality characteristics and fibrous structure formation mechanism of walnut protein (WP) and wheat gluten (WG) meat analogues during high-moisture extrusion cooking process. Results showed that the optimized WP and WG-blended high-moisture meat analogues exhibited a more pronounced anisotropic and oriented fibrous structure. The blending of WP and WG can protect the molecular chains from the thermal transition, and promote the aggregation of protein molecules mainly by enhancing the interaction between hydrophobic interactions and hydrogen bonds, increasing the apparent viscosity and forming protein subunits with larger molecular weights (>100 kDa) to stabilize the newly formed conformation. Additionally, the content of α-helix was the highest among the secondary structures. This study provides a theoretical basis for the application of WG and WP to produce HMMAs with rich fibrous structures.
Collapse
Affiliation(s)
- Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650201, China
| | - Hong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichen Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuzhuang Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China.
| |
Collapse
|
8
|
Sawant S, Alvarez VB, Heldman DR. Limited enzymatically hydrolyzed pea protein-inulin interactions in gel systems. J Food Sci 2024; 89:9243-9256. [PMID: 39617827 DOI: 10.1111/1750-3841.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Gelation of protein-polysaccharide mixtures can help create a variety of distinctive gel systems as compared to single polysaccharide or protein gels. The properties of these functional gels are heavily reliant upon the nature of protein-polysaccharides interactions, their gelling compatibility, and mechanism. Pea protein isolate dispersions (7.5%) were subjected to limited enzymatic hydrolysis using the enzyme Alcalase® at three hydrolysis times (0, 3, and 6 min). Inulin was added according to three ratios (0, 1:4, and 2:4) with pea protein. Viscoelastic properties of the gels formed were measured using amplitude sweep and frequency sweep. Storage modulus (G') measurements from the amplitude sweep indicated that samples hydrolyzed for 3 min with 1:4 ratio of inulin to pea protein had maximum gel strength, exhibiting G' values of ∼307 Pa. G' values for samples hydrolyzed for 0 and 6 min with different inulin ratios averaged ∼13 and ∼144 Pa, respectively. Confocal laser scanning microscopy showed that gels developed by samples hydrolyzed for 3 min showed a dense network as compared to an open network in gels formed by samples hydrolyzed for 6 min, whereas large random aggregates were observed in gels formed by samples hydrolyzed for 0 min. The study confirmed that inulin promotes noncovalent bond formation in samples hydrolyzed for 3 min with a 1:4 inulin ratio, shown by an ∼18% increased protein solubility in urea. Additionally, collaboration between noncovalent bonds and disulfide linkages stabilized the gel structure, as indicated by further increase in solubility in combination of urea and Dithiothreitol. PRACTICAL APPLICATION: Plant proteins are gaining attention as alternatives to animal proteins. However, they have inferior functionality, which affects their applicability in food products. This investigation aimed to evaluate enzymatic hydrolysis to enhance the structural and functional properties of pea proteins, thus increasing their applicability in the food industry. Inulin is an oligosaccharide and soluble fiber, which promotes gut health. Thus, gels combining hydrolyzed pea protein and inulin can serve as a model mixed food system of interest to both the industry and consumers.
Collapse
Affiliation(s)
- Sanjana Sawant
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Valente B Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science and Technology, The Wilbur A. Gould Food Industries Center, The Ohio State University, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Zhu C, Wu W, Soladoye OP, Zhang N, Zhang Y, Fu Y. Towards food-derived self-assembling peptide-based hydrogels: Insights into preparation, characterization and mechanism. Food Chem 2024; 459:140397. [PMID: 39018622 DOI: 10.1016/j.foodchem.2024.140397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Food proteins represent a vital source of self-assembling peptides, with hydrogels constructed through peptide self-assembly exhibiting widespread utility in the food sector. This review aims to provide a recent research progress in preparation and characterization of hydrogels from food-derived peptides. Also, the self-assembly mechanisms and the impact of factors are discussed. Presently, food-derived self-assembling peptide-based hydrogels can be synthesized using either physical or chemical methodologies and evaluated through methodologies such as microscopic, spectroscopic, and rheological assessment. The self-assembly of food-derived peptides is hierarchically formed by non-covalent interactions, including hydrogen bond and hydrophobic interactions, where variables such as temperature and pH intricately modulate the assembly mechanism. The association between peptide sequence and hydrogel structure in the self-assembly mechanism is also discussed, which remains to be further explored. The present review contributes to application of food-derived peptide-based hydrogels in the fields of food, nutrition and material sciences.
Collapse
Affiliation(s)
- Chenxiao Zhu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
10
|
Yin C, Zhang X, Xu B, Zhao Q, Zhang S, Li Y. Effect of limited hydrolysis on the structure and gel properties of soybean isolate proteins: A comparative study of papain or/and trypsin. Int J Biol Macromol 2024; 282:137398. [PMID: 39521233 DOI: 10.1016/j.ijbiomac.2024.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Plant protein's gelation is crucial in various food applications, and hydrolysis may enhance their gelation properties. In this study, we prepared soybean protein isolate hydrolysates (SPIH) using trypsin and/or papain, and found significant improvement in the solubility and gelling properties. These proteases broken down the peptide bonds and caused the exposure of hydrophobic groups as well as the unfolding of protein. Low molecular weight (<35 kDa) SPIHs were generated by the two-step enzymatic hydrolysis, showing significant improvements in storage modulus (G'), loss modulus (G″), viscosity, strength, and water-holding capacity (WHC). Among, PT-10 exhibited the highest WHC (61.72 ± 0.36 %), gel strength (4.67 ± 0.12 g), and network cross-linking density (0.33 ± 0.01 mol/m3), while its solubility was also significantly increased up to 254 %. According to the results of gel molecular force interactions, disulfide bonds, hydrophobic interactions and hydrogen bonds involved in the gel network formation. These findings reveal that the appropriate hydrolysis modification may improve SPI gel's properties and expand its application in gel foods.
Collapse
Affiliation(s)
- Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
11
|
Zhang J, Mao X, Zhang J, Liu Q. Structural changes and functional characteristics of common vetch isolate proteins altered by different pH-shifting treatments. Int J Biol Macromol 2024; 282:136887. [PMID: 39490483 DOI: 10.1016/j.ijbiomac.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
To investigate protein structure and functional changes, common vetch protein isolate (CVPI) during pH-shifting were performed. Results showed secondary and tertiary structures of CVPI were improved during these treatments compared with the pH 7.0. Scanning electron microscopy showed the microstructure was changed from lamellar to spherical granular and rod-like structure during pH - shifting. Under 8 pH treatments (pH 2.0, 3.0, 12.0, 2.0 → 7.0, 3.0 → 7.0, 12.0 → 7.0, 11.0 → 9.0 and 11.0 → 7.0), the average particle sizes were smaller and from 82 to 146 nm. Under 8 pH treatments (pH 2.0, 3.0, 11.0, 12.0, 11.0 → 9.0, 11.0 → 7.0,12.0 → 9.0 and 12.0 → 7.0), the protein solubility was higher and from 63 to 86 %. Under 3 pH treatments (pH 2.0, 11.0 and 12.0), the emulsion activity index and emulsion stability index was higher and from 40 to 60 m2/g and from 54 to 97 min. Under 5 pH treatments (pH 2.0, 12.0, 11.0 → 9.0, 12.0 → 9.0 and 12.0 → 7.0), the foaming capacity and foaming stability was higher and from 145 to 185 % and from 67 to 82 %. Therefore, the pH - shifting treatment gave the CVPI improved characteristics in structural and functional properties.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Xinqi Mao
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Quanlan Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
12
|
Wang J, Bi H, Zhou X, Yang B, Wen L. Enhancing functionality and bioactivity of walnut protein through limited enzyme digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8321-8331. [PMID: 38899487 DOI: 10.1002/jsfa.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Walnut protein (WP) is recognized as a valuable plant protein. However, the poor solubility and functional properties limit its application in the food industry. It is a great requirement to improve the physicochemical properties of WP. RESULTS Following a 90 min restricted enzymatic hydrolysis period, the solubility of WP significantly increased from 3.24% to 54.54%, with the majority of WP hydrolysates (WPHs) possessing a molecular weight exceeding 50 kDa. Circular dichroism spectra showed that post-hydrolysis, the structure of the protein became more flexible, while the hydrolysis time did not significantly alter the protein's secondary structure. After hydrolysis, WP's surface hydrophobicity significantly increased from 2279 to 6100. Furthermore, WPHs exhibited a strong capacity for icariin loading and micelle formation with critical micelle concentration values of 0.71, 0.99 and 1.09 mg mL-1, respectively. Moreover, similar immuno-enhancement activities were observed in WPHs. After exposure to WPHs, the pinocytosis of RAW264.7 macrophages was significantly improved. WPH treatment also increased the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in macrophages. Up-regulation of mRNA expressions of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α was observed in a dose-dependent manner. CONCLUSION The enhancement of functionality and bioactivity in WP can be achieved through the application of limited enzyme digestion with trypsin. This process effectively augments the nutritional value and utility of the protein, making it a valuable component in various dietary applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co. Ltd, Guangzhou, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Dent T, LeMinh A, Maleky F. Comparison of Colorimetric Methods for Measuring the Solubility of Legume Proteins. Gels 2024; 10:551. [PMID: 39330153 PMCID: PMC11440109 DOI: 10.3390/gels10090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Increasing the use of plant proteins in foods requires improving their physical and chemical properties, such as emulsification, gelation capacity, and thermal stability. These properties determine the acceptability and functionality of food products. Higher protein solubility significantly impacts these properties by affecting denaturation and the stability of emulsifiers or gels. Therefore, developing plant-based protein ingredients requires accurately and conveniently measuring their solubility. Colorimetric solubility methods overcome many issues of more robust combustion and titration methods, but complicated chemical mechanisms limit their applicability for certain proteins. This study aims to compare the effectiveness of four common colorimetric solubility measurement methods for pulse and non-pulse legume proteins and hydrolysates. Pea, chickpea, lentil, and soy protein isolates were made from defatted flour and their solubility at a range of pHs was measured using the Bradford, Lowry, bicinchoninic acid (BCA), and biuret methods. Solubility was also measured for chickpea and soy protein hydrolysates made using Alcalase and Flavourzyme. A comparison of the methods for solubility quantification revealed that the Bradford and Lowry methods most closely match the expected results for the unhydrolyzed protein, with the BCA and biuret methods underestimating solubility by 30%. The Lowry method was the preferred method for hydrolysate solubility measurement, with the Bradford method measuring 0% solubility at the isoelectric point due to an inability to interact with peptides that are soluble at this pH. This study identifies reliable methods for measuring plant protein solubility that establish uniform outcomes and enable a better comparison across studies, giving a consensus for key functional properties in food applications.
Collapse
Affiliation(s)
- Terrence Dent
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
| | - Allison LeMinh
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
| | - Farnaz Maleky
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Zhang W, Hui B, Li X, Guo Z, Ma J, Li J. Effects of Different Soybean and Coconut Oil Additions on the Physicochemical and Sensory Properties of Soy Protein-Wheat Protein Mixture Subjected to High-Moisture Extrusion. Foods 2024; 13:2263. [PMID: 39063346 PMCID: PMC11275395 DOI: 10.3390/foods13142263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
A protein mixture was prepared using a blend of soybean protein isolate, soybean protein concentrate, and wheat protein through high-moisture extrusion. This study investigated the effects of soybean oil/coconut oil additions (2%, 5%, and 8%) on the physiochemical properties of a soy protein-wheat protein mixture subjected to high-moisture extrusion. The protein extrudates underwent assessment for textural properties, fiber degree, sensory evaluation, microstructure, protein solubility, and protein secondary structure. The findings indicated that plant oils significantly reduced the hardness, springiness, and chewiness of the extrudates, and 5% plant oil significantly increased the fiber degree of the extrudates. In addition, the highest fiber degree and sensory evaluation score were achieved with 5% coconut oil. Observation of the macro- and microstructure indicated that the presence of unsaturated fatty acids in soybean oil did not benefit the improvement of the fibrous structure of protein extrudates during high-moisture extrusion processing. SDS-PAGE and FTIR results revealed that coconut oil, rich in saturated fatty acids, caused the clustering of medium- and low-molecular-weight subunits in texturized protein. Additionally, coconut oil elevated the ratio of 11S protein subunits containing sulfur-based amino acids and facilitated a shift from β-turn to β-sheet. The inclusion of plant oils increased the development of hydrogen and disulfide bonds, resulting in a denser, fibrous structure. DSC demonstrated that plant oils reduced the thermal stability of the texturized proteins but enhanced the order of protein structure.
Collapse
Affiliation(s)
- Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.Z.); (B.H.); (X.L.); (J.M.)
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing 100048, China
| | - Bowen Hui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.Z.); (B.H.); (X.L.); (J.M.)
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing 100048, China
- Department of Environmental Protection and Biopharmaceutical, Beijing Industrial Technician College, Beijing 100048, China
| | - Xuejie Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.Z.); (B.H.); (X.L.); (J.M.)
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing 100048, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jian Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.Z.); (B.H.); (X.L.); (J.M.)
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing 100048, China
| | - Jian Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.Z.); (B.H.); (X.L.); (J.M.)
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing 100048, China
| |
Collapse
|
15
|
Di Filippo G, Melchior S, Plazzotta S, Calligaris S, Innocente N. Effect of enzymatic hydrolysis with Alcalase or Protamex on technological and antioxidant properties of whey protein hydrolysates. Food Res Int 2024; 188:114499. [PMID: 38823844 DOI: 10.1016/j.foodres.2024.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The aim of this study was to evaluate the effect of the enzymatic hydrolysis, performed using Alcalase and Protamex enzymes, on the technological functionalities and the antioxidant capacity of whey protein hydrolysates (WPHs) to identify the conditions allowing to obtain target functionality/ies. Samples were characterized for hydrolysis degree (DH), molecular weight distribution, structural properties, and food-related functionalities. Free sulfhydryl groups and surface hydrophobicity significantly decreased with the increase in DH, regardless of the used enzyme. The foaming and antioxidant properties of Alcalase WPHs were higher as compared to those of WPI, reaching the maximum value at DH = 18-20 %, while higher DH resulted in impaired functionality. Gelling properties were guaranteed when WPI was hydrolysed by Protamex at DH < 15 % while foaming and antioxidant abilities were fostered at 15 < DH < 21 %. These results were well correlated with MW distribution and were rationalized into a road map which represents a useful tool in the selection of proper hydrolysis conditions (time, DH, enzyme type) to obtain WPHs with tailored functionalities. Research outcomes highlighted the possibility to drive protein hydrolysis to optimize the desired functionality/ies.
Collapse
Affiliation(s)
- Giulia Di Filippo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nadia Innocente
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
16
|
Nourmohammadi N, Campanella OH, Chen D. Effect of limited proteolysis and CaCl 2 on the rheology, microstructure and in vitro digestibility of pea protein-carboxymethyl cellulose mixed gel. Food Res Int 2024; 188:114474. [PMID: 38823865 DOI: 10.1016/j.foodres.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 ∼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Osvaldo H Campanella
- Department of Food Science and Technology, the Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States
| | - Da Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN47907, United States.
| |
Collapse
|
17
|
Zhang C, Zhang Y, Qiu B, Liu Z, Gao X, Zhang N, Liu X, Qi S, Li L, Liu W. Encapsulation of Lactobacillus plantarum in W 1/O/W 2 double emulsions stabilized with the high-intensity ultrasound-treated pea protein and pectin. ULTRASONICS SONOCHEMISTRY 2024; 107:106936. [PMID: 38834000 PMCID: PMC11179064 DOI: 10.1016/j.ultsonch.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
This study focuses on developing a water-in-oil-in-water (W1/O/W2) double emulsion system using high-intensity ultrasound (HIU)-treated pea protein isolate (HIU-PPI) and pectin to encapsulate Lactobacillus plantarum (L. plantarum). The effects of ultrasound treatment on pea protein isolate (PPI) characteristics such as solubility, particle size, emulsification, surface hydrophobicity, and surface free sulfhydryl group were examined, determining optimal HIU processing conditions was 400 W for 10 min. The developed W1/O/W2 double emulsion system based on HIU-PPI demonstrated effective encapsulation and protection of L. plantarum, especially at the HIU-PPI concentration of 4 %, achieving an encapsulation efficiency of 52.65 %. Incorporating both HIU-PPI and pectin as emulsifiers increased the particle size and significantly enhanced the emulsion's viscosity. The highest bacterial encapsulation efficiency of the emulsion, 59.94 %, was attained at a HIU to pectin concentration ratio of 3:1. These emulsions effectively encapsulate and protect L. plantarum, with the concentration of HIU-PPI being a critical factor in enhancing probiotic survival under simulated gastrointestinal digestion. However, the concurrent utilization of pectin and HIU-PPI as emulsifiers did not provide a notable advantage compared to the exclusive use of HIU-PPI in enhancing probiotic viability during in vitro simulated digestion. This research offers valuable perspectives for the food industry on harnessing environmentally friendly, plant-based proteins as emulsifiers in probiotic delivery systems. It underscores the potential of HIU-modified pea protein and pectin in developing functional food products that promote the health benefits of probiotics.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yu Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA 01003, USA
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Nan Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Qi
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
18
|
Wang W, Ji S, Xia Q. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions. Carbohydr Polym 2024; 334:122041. [PMID: 38553238 DOI: 10.1016/j.carbpol.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Recently, there has been a focus on using biopolymer-based particles to stabilize high internal phase Pickering emulsions (HIPPEs) due to the notable advances in biocompatibility and biodegradability. In this work, the complex particles of peanut protein isolate and carboxymethyl cellulose (CMC) with various substitution degrees (DS; 0.7 and 0.9) and weight average molecular weights (Mw; 90, 250, and 700 kDa) were prepared and characterized as novel stabilizers. For the obtained four types of morphologically distinct particles, the complex particles formed by CMC (0.9 DS and 250 kDa) showed cluster structures with an average size of 1.271 μm, equally biphasic wettability with three-phase contact angles of 91.5°, and the highest diffusion rate at the oil-water interface. HIPPEs stabilized by these particles exhibited more elastic behavior due to the smaller tanδ and higher viscosity, as well as excellent thixotropic recovery properties and stability against heating, storage, and freeze-thawing. Furthermore, confocal laser scanning microscopy verified that these particles formed a dense interfacial layer around the oil droplets, which could resist flocculation and coalescence between oil droplets during in vitro digestion. The improved bioaccessibility of curcumin-loaded HIPPEs made these delivery systems potentially apply in functional foods.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
19
|
Kim H, Chin KB. Effects of gold and green kiwifruit juices on the physicochemical properties and tenderness of pork loin and antioxidant activity during incubation (24 h) in a pork model system. Anim Biosci 2024; 37:908-917. [PMID: 38575124 PMCID: PMC11065720 DOI: 10.5713/ab.23.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE Although pork loins is not a tough meat, they need to develop meat products with a soft texture for the elderly. This study focused on the physicochemical properties and tenderness characteristics of pork loin injected with green kiwifruit juice (GRJ) and gold kiwifruit juice (GOJ) during various incubation times. In addition, the antioxidant activities of hydrolysate derived from the hydrolysis of pork loin by kiwifruit juice protease were evaluated. METHODS The pork loin was injected with 10% and 20% GRJ and GOJ, under various incubation times (0, 4, 8, and 24 h). Then, the physicochemical properties and tenderness of pork loins were measured. 2,2- diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power were conducted to determine hydrolysate's antioxidant activities derived from pork loin's hydrolysis by kiwifruit juice protease. RESULTS GRJ had greater tenderizing ability than GOJ, even at the 10% addition. When kiwifruit juice was injected into pork loin, the tenderness increased with increasing incubation time. This was confirmed by the decrease in intensity of the myosin heavy chain (MHC) band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In particular, the MHC band decreased at 8 h for both 10% GRJ and 20% GOJ and at 4 h for 20% GRJ alone. The highest myofibril fragmentation index and peptide solubility were observed in pork loin treated with 20% GRJ compared to the other treatments during incubation. The 10% GRJ and 20% GOJ treatments showed similar levels of antioxidant activity of the protein hydrolysates in pork loin, and 20% GRJ showed the highest activity among the treatments. CONCLUSION Kiwifruit juice had protease activity, and GRJ was more useful for tenderizing meat products than GOJ. Thus, GRJ at 10% could be a potential agent to tenderize and enrich the natural antioxidant activity through the proteolysis of pork loin.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186,
Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
20
|
Gao K, Rao J, Chen B. Plant protein solubility: A challenge or insurmountable obstacle. Adv Colloid Interface Sci 2024; 324:103074. [PMID: 38181662 DOI: 10.1016/j.cis.2023.103074] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Currently, there is an increasing focus on comprehending the solubility of plant-based proteins, driven by the rising demand for animal-free food formulations. The solubility of proteins plays a crucial role in impacting other functional properties of proteins and food processing. Consequently, understanding protein solubility in a deeper sense may allow a better usage of plant proteins. Herein, we discussed the definition of protein solubility from both thermodynamic and colloidal perspectives. A range of factors affecting solubility of plant proteins are generalized, including intrinsic factors (amino acids composition, hydrophobicity), and extrinsic factors (pH, ionic strength, extraction and drying methods). Current methods to enhance solubility are outlined, including microwave, high intensity ultrasound, hydrostatic pressure, glycation, pH-shifting, enzymatic hydrolysis, enzymatic cross-linking, complexation and modulation of amino acids. We base the discussion on diverse modified methods of nitrogen solubility index available to determine and analyze protein solubility followed by addressing how other indigenous components affect the solubility of plant proteins. Some nonproteinaceous constituents in proteins such as carbohydrates and polyphenols may exert positive or negative impact on protein solubility. Appropriate protein extraction and modification methods that meet consumer and manufacturers requirements concerning nutritious and eco-friendly foods with lower cost should be investigated and further explored.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
21
|
Zhang L, Li Q, Zhang W, Bakalis S, Luo Y, Lametsch R. Different source of commercial soy protein isolates: Structural, compositional, and physicochemical characteristics in relation to protein functionalities. Food Chem 2024; 433:137315. [PMID: 37690138 DOI: 10.1016/j.foodchem.2023.137315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
This study aimed to illustrate the relationship among physicochemical properties, subunit composition and protein functionalities in a broad collection of commercial soy protein isolates (SPIs) from China and the EU. The results indicated that SPIs had large variations in glycinin/β-conglycinin composition, protein denaturation, and water- and oil-binding capacity (WBC and OBC) and solubility. These SPIs could be roughly divided into pre-denatured SPI, partially hydrolyzed SPI, and less modified SPI. The pre-denatured SPI with high surface hydrophobicity and large particle sizes showed reduced WBC and OBC due to increased protein aggregation, and partially hydrolyzed SPI showed high protein solubility owing to the exposure of hydrophilic regions and reduction in molecular size. The processing-induced physicochemical changes played a pivotal role in determining protein functionalities, whereas subunit composition affected protein functionality less. Overall, this study highlighted the obvious difference in raw material quality of commercial SPI, and provided promising methods for SPI categorization.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Qian Li
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Wei Zhang
- DeePro Technology (Beijing) Co., Ltd., Beijing, China; Center for Sustainable Protein, Beijing, China.
| | - Serafim Bakalis
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Zhang D, Jiang K, Luo H, Zhao X, Yu P, Gan Y. Replacing animal proteins with plant proteins: Is this a way to improve quality and functional properties of hybrid cheeses and cheese analogs? Compr Rev Food Sci Food Saf 2024; 23:e13262. [PMID: 38284577 DOI: 10.1111/1541-4337.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.
Collapse
Affiliation(s)
- Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kai Jiang
- School of Resources and Civil Engineering, No, rtheastern University, Shenyang, Liaoning, China
| | - Hui Luo
- Laboratory of Oncology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Zhao
- Differentiated & Biofunctional Food, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Peng Yu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Gan
- Plant Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
23
|
Gomes MHG, Kurozawa LE. Performance of rice protein hydrolysates as a stabilizing agent on oil-in-water emulsions. Food Res Int 2023; 172:113099. [PMID: 37689863 DOI: 10.1016/j.foodres.2023.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Rice protein isolate (RPI) has been receiving increasing attention from the food industry due to its performance as an emulsifier. However, it is possible to enlarge its field of applications through enzymatic hydrolysis. Therefore, this work aimed to investigate the effects of the controlled enzymatic hydrolysis (degree of hydrolysis DH as 2, 6, and 10%) using Flavourzyme on the physicochemical properties of rice protein and to identify the minimum concentration of these hydrolysates (0.5, 1.0, and 1.5%) to form and stabilize oil/water emulsion. The physicochemical, interfacial tension (IT), and surface characteristics of RPI and their hydrolysates (RPH) were determined. Even at a lower protein concentration (1.0%), protein hydrolysate presented lower IT when compared with RPI at a higher protein concentration (1.5%). The interfacial tension decreased from 17.6 mN/m to 9.9 mN/m when RPI was hydrolyzed. Moreover, enzymatic hydrolysis (DH 6 and 10%) enhanced the protein solubility by almost 20% over a pH range of 3-11. The improved amphiphilic property of RPH, supported by the results of IT and solubility, was confirmed by the higher emulsion stability indicated by the Turbiscan and emulsion stability indexes. Emulsions stabilized by RPH (DH 6% and 10%) at lower protein concentrations (1%) exhibited better physical stability than RPI at higher protein concentrations (1.5%). In this work, we verified the minimum concentration of rice protein hydrolysate required to form and stabilize oil-in-water (O/W) emulsions.
Collapse
Affiliation(s)
- Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
24
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Zhang X, Tang Y, Cheng H, Zhang J, Zhang S. Investigating structure, biological activity, peptide composition and emulsifying properties of pea protein hydrolysates obtained by cell envelope proteinase from Lactobacillus delbrueckii subsp. bulgaricus. Int J Biol Macromol 2023; 245:125375. [PMID: 37321439 DOI: 10.1016/j.ijbiomac.2023.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We present the structure, biological activity, peptide composition, and emulsifying properties of pea protein isolate (PPI) after hydrolysis by cell envelope proteinase (CEP) from Lactobacillus delbrueckii subsp. bulgaricus. Hydrolysis resulted in the unfolding of the PPI structure, characterized by an increase in fluorescence and UV absorption, which was related to thermal stability as demonstrated by a significant increase in ΔH and the thermal denaturation temperature (from 77.25 ± 0.05 to 84.45 ± 0.04 °C). The hydrophobic amino acid of PPI significantly increased from 218.26 ± 0.04 to 620.77 ± 0.04 followed by 557.18 ± 0.05 mg/100 g, which was related to their emulsifying properties, with the maximum emulsifying activity index (88.62 ± 0.83 m2/g, after 6 h hydrolysis) and emulsifying stability index (130.77 ± 1.12 min, after 2 h hydrolysis). Further, the results of LC-MS/MS analysis demonstrated that the CEP tended to hydrolyze peptides with an N-terminus dominated by Ser and a C-terminus dominated by Leu, which enhanced the biological activity of pea protein hydrolysates, as supported by their relatively high antioxidant (ABTS+ and DPPH radical scavenging rates were 82.31 ± 0.32% and 88.95 ± 0.31%) and ACE inhibitory (83.56 ± 1.70%) activities after 6 h of hydrolysis. 15 peptide sequences (score > 0.5) possessed both antioxidant and ACE inhibitory activity potential according to the BIOPEP database. This study provides theoretical guidance for the development of CEP-hydrolyzed peptides with antioxidant and ACE inhibitory activity that can be used as emulsifiers in functional foods.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuqing Tang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hong Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - JingJing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
26
|
Chen L, Zhang SB. Structural and functional properties of self-assembled peanut protein nanoparticles prepared by ultrasonic treatment: Effects of ultrasound intensity and protein concentration. Food Chem 2023; 413:135626. [PMID: 36745945 DOI: 10.1016/j.foodchem.2023.135626] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Peanut protein isolate (PPI) nanoparticles were prepared by self-assembly under the combined action of ultrasound (US) and protein concentration. The effects of ultrasound intensity (150-500 W) and protein concentration (1-12 %, w/v) on the structural and functional properties of PPI nanoparticles were investigated. Low-intensity US significantly increased the particle size of PPI, but high-intensity US decreased it. The largest PPI nanoparticles were obtained when 10 % PPI was subjected to low-intensity US treatment (200 W for 5 min). These nanoparticles possessed unique structural characteristics, such as the lowest absolute ζ-potential and the highest contents of exposed free sulfhydryl and disulfide bond, which may be responsible for their excellent heat-set gelling properties. The 12 % PPI treated with low- and high-intensity US had the highest emulsifying activity index and emulsifying stability index, respectively. The self-assembled PPI nanoparticles induced by US treatments at high protein concentrations have great potentials for application in the food industry.
Collapse
Affiliation(s)
- Lin Chen
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Shao-Bing Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province 450001, People's Republic of China.
| |
Collapse
|
27
|
Gouseti O, Larsen ME, Amin A, Bakalis S, Petersen IL, Lametsch R, Jensen PE. Applications of Enzyme Technology to Enhance Transition to Plant Proteins: A Review. Foods 2023; 12:2518. [PMID: 37444256 DOI: 10.3390/foods12132518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As the plant-based food market grows, demand for plant protein is also increasing. Proteins are a major component in foods and are key to developing desired structures and textures. Seed storage proteins are the main plant proteins in the human diet. They are abundant in, for example, legumes or defatted oilseeds, which makes them an excellent candidate to use in the development of novel plant-based foods. However, they often have low and inflexible functionalities, as in nature they are designed to remain densely packed and inert within cell walls until they are needed during germination. Enzymes are often used by the food industry, for example, in the production of cheese or beer, to modify ingredient properties. Although they currently have limited applications in plant proteins, interest in the area is exponentially increasing. The present review first considers the current state and potential of enzyme utilization related to plant proteins, including uses in protein extraction and post-extraction modifications. Then, relevant opportunities and challenges are critically discussed. The main challenges relate to the knowledge gap, the high cost of enzymes, and the complexity of plant proteins as substrates. The overall aim of this review is to increase awareness, highlight challenges, and explore ways to address them.
Collapse
Affiliation(s)
- Ourania Gouseti
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Mads Emil Larsen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Ashwitha Amin
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Serafim Bakalis
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Rene Lametsch
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| |
Collapse
|
28
|
Cingöz A, Yildirim M. Effects of hydrolysis degree on the functional properties of hydrolysates from sour cherry kernel protein concentrate. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-2-566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
During the processing of sour cherries into different foodstuffs, a large amount of kernels is produced as waste material, which creates a significant disposal problem for the food industry. Sour cherry kernels containing 25.3–35.5% of protein can be used as a functional protein source in food production. Therefore, we aimed to study the effects of hydrolysis degree on the sour cherry kernel protein hydrolysates.
Proteins were extracted from the defatted flour by isoelectric precipitation. The resulting protein concentrate was hydrolyzed (5, 10, and 15% hydrolysis) using Alcalase to yield hydrolysates. We determined their oil and water holding, emulsifying, gelation, and foaming properties, as well as apparent molecular weight distribution and proximate compositions.
No protein fractions greater than an apparent molecular weight of about 22 kDa were present in the hydrolysates. The hydrolysis of the protein concentrate mostly led to an increase in protein solubility. As the degree of hydrolysis increased from 5 to 15%, the water holding capacity of the hydrolysates decreased from 2.50 ± 0.03 to 2.03 ± 0.02 g water/g, indicating its deterioration.
The hydrolysates obtained at different degrees of hydrolysis had a better solubility than the intact protein concentrate. The oil holding capacity, the foaming stability, and the least gelation concentration of the protein concentrate could not be considerably improved by hydrolysis. In contrast, its emulsifying activity index and foaming capacity could be increased with a limited degree of hydrolysis (up to 10%).
Collapse
|
29
|
Song F, Chen J, Zhang Z, Tian S. Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chem 2023; 404:134547. [PMID: 36240554 DOI: 10.1016/j.foodchem.2022.134547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The effect of layer-by-layer coating of liposomes with chitosan and pea protein isolate hydrolysates (PPIH) was evaluated. Traditional flaxseed oil liposomes (FL Lipo) were used as a model for comparison to liposomes coated with chitosan and PPIH (FL LipoCP). The potential of PPIH as a coating material was evaluated. Additionally, the influence of chitosan and PPIH on vesicle size and zeta potential of liposomes was investigated. The chitosan layer of liposomes exhibited a loose structure. After the second layer of coating with PPIH, chitosan molecules were rearranged on the liposome surface, leading to a more compact and dense shell structure of liposomes. Electrostatic interactions, hydrogen bonds, and hydrophobic interactions favored the stability of FL LipoCP. Compared to FL Lipo, FL LipoCP displayed higher oxidation stability during storage and a slower release of flaxseed oil during in vitro digestion.
Collapse
Affiliation(s)
- Fanfan Song
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, China
| | - Zhengquan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaojun Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Zhang L, Li Y, Sun X, Lai S, Chen F. The droplet breakup model and characteristics of pH-shifted peanut protein isolate-high methoxyl pectin stabilised emulsions under ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106340. [PMID: 36842215 PMCID: PMC9984890 DOI: 10.1016/j.ultsonch.2023.106340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 05/27/2023]
Abstract
The effect of pH on the occurrence states of peanut protein isolate (PPI) and high methoxyl pectin (HMP), and droplet breakup model of the emulsions under ultrasound were studied. Particle size distribution and scanning electron microscopy results showed that PPI-HMP existed a soluble complex at pH 5.0, had no interaction at pH 7.0, and was co-soluble at pH 9.0. Droplet breakup model results revealed that the characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and 9.0. The average diameter of the droplet well satisfied the model. According to rheological properties, interface tension, and microstructure, the formation mechanism and characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and pH 9.0. The research provided a reference for constructing emulsions using pH-shifted PPI-HMP under ultrasound.
Collapse
Affiliation(s)
- Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yingxi Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Shaojuan Lai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
31
|
Hariharan S, Patti A, Arora A. Functional Proteins from Biovalorization of Peanut Meal: Advances in Process Technology and Applications. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:13-24. [PMID: 36650319 DOI: 10.1007/s11130-022-01040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.
Collapse
Affiliation(s)
- Subramoni Hariharan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Antonio Patti
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amit Arora
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
32
|
Wang T, Chang C, Cheng W, Gu L, Su Y, Yang Y, Li J. Combined effect of heating and enzymatic hydrolysis on the dispersibility and structure properties of egg white powder. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
33
|
Sharma S, Pradhan R, Manickavasagan A, Tsopmo A, Thimmanagari M, Dutta A. Corn distillers solubles by two-step proteolytic hydrolysis as a new source of plant-based protein hydrolysates with ACE and DPP4 inhibition activities. Food Chem 2023; 401:134120. [DOI: 10.1016/j.foodchem.2022.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
34
|
Covalent modification of soy protein hydrolysates by EGCG: Improves the emulsifying and antioxidant properties. Food Res Int 2023; 164:112317. [PMID: 36737910 DOI: 10.1016/j.foodres.2022.112317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, the effect of EGCG conjugation on the emulsifying and antioxidant properties of SPHs was investigated to improve the functional characteristic of soy protein hydrolysates (SPHs) and develop a novel hydrolysates/peptides-EGCG conjugates. Enzymatic hydrolyzed SPHs (DH 5%, 8%, 10%) covalent with 1% EGCG to prepare conjugates at pH 9.0. The free amino group and tryptophan content of SPHs-EGCG conjugates significantly decreased, indicating the successful preparation of SPHs-EGCG conjugates. Additionally, 5% SPHs-EGCG conjugates showed the highest EGCG binding capacity. EGCG conjugation increased the particle sizes and charge of SPHs. Compared with non-covalent SPHs, the covalent modification of EGCG increased the emulsifying and antioxidant capacity, especially for 5% SPHs-EGCG, it exhibited much higher surface hydrophobicity, ESI (emulsifying stability index), EAI (emulsifying activity index), and antioxidant activity than others. This result revealed that SPHs and EGCG played a synergistic effect in improving the emulsifying and antioxidant capacity. Fluorescence spectroscopy analysis showed that the combination of EGCG conjugation significantly decreased the fluorescence intensity and caused maximum emission red-shift. The formation of a covalent bond between SPHs and EGCG was verified through Fourier transform infrared spectroscopy (FTIR), and the results also showed a significant increase in the α-helix and random coil contents of the conjugation, and a significant decrease in the β-sheet and β-turn contents. These results indicate that EGCG conjugation with SPHs induced the unfolding and stretching of protein flexibility. Overall, SPHs-EGCG conjugates can be applied as a promising emulsifier to fabricate emulsion systems and would be helpful in designing functional beverages containing polyphenols and peptides with enhanced functional nutritional properties.
Collapse
|
35
|
Lv Y, Chen L, Liu F, Xu F, Zhong F. Improvement of the encapsulation capacity and emulsifying properties of soy protein isolate through controlled enzymatic hydrolysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Assessment of Natural Waxes as Stabilizers in Peanut Butter. Foods 2022; 11:foods11193127. [PMID: 36230203 PMCID: PMC9562660 DOI: 10.3390/foods11193127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Manufacturers add sugar and fully hydrogenated vegetable oils to peanut butter to avoid its oil separation during storage. Unfortunately, hydrogenated oils are significant sources of saturated fats, and reducing their consumption is challenging for food scientists without affecting the desired characteristics of food products. Therefore, in a preliminary study, 1%, 1.5%, and 2% of three natural waxes (rice bran, carnauba, and beeswax) were added to the natural peanut butter to test their efficacy as a stabilizer. Rice bran and carnauba wax added to peanut butter presented a higher elastic modulus (G’) and lower oil separation percentages than beeswax. However, no significant differences were found between the different percentages of waxes. Thus, in the final experiments, 1% of these selected waxes (rice bran and carnauba waxes) were added directly to the roasted ground peanut. Due to the difficulty of adding high melting point waxes to the peanut butter, a second experiment added wax oleogel (rice-bran and carnauba wax) to defatted peanut flour. After four weeks of storage, all of the samples were examined for their texture (TPA) and oil separation. The sample with directly added bran wax had the highest values for spreadability and firmness, and the lowest oil separation, which was 11.94 ± 0.90 N·s−1, 19.60 ± 0.71 N·s−1, and 0.87 ± 0.05%, respectively. In the peanut flour sample, the spreadability, firmness, and separated oil of the rice bran wax oleogel added sample were 46.95 ± 0.99 N·s−1, 66.61 ± 0.93 N, and 1.57 ± 0.07%, respectively. However, the textural properties of the rice bran wax oleogel added sample were close to the commercial peanut butter (natural and creamy). Therefore, the results indicate that the rice bran wax oleogel could be the potential replacement of the fully hydrogenated oil as a stabilizer.
Collapse
|
37
|
Zhang K, Wen Q, Wang Y, Li T, Nie B, Zhang Y. Study on the in vitro digestion process of green wheat protein: Structure characterization and product analysis. Food Sci Nutr 2022; 10:3462-3474. [PMID: 36249975 PMCID: PMC9548370 DOI: 10.1002/fsn3.2947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the in vitro digestion process of green wheat protein (GWP) was explored by simulating the gastrointestinal digestion. The digestibility of GWP was 65.23%, and was mainly digested by trypsin. During the digestion process of GWP, large-size particles are digested by pepsin, and medium-sized particles are digested by trypsin into smaller particles; irregular large block structure with smooth surface was gradually turned into smaller blocks with porous surface; and the spatial conformation was loosened mainly by the unfolding of β-sheet structure. Gel electrophoresis demonstrated that HMW glutenin and ω-gliadins in GWP were completely digested, while LMW glutenin and α/β/γ-gliadins were partially digested. Additionally, the peptide lengths were relatively dispersed after pepsin digestion. Most of the peptides (76.5%) fell into the range 3-15 amino acid after pepsin and trypsin digestion. The molecular weight (MW) of most pepsin digestion products was above 2000 Da, whereas the MW of trypsin digestion products was mainly concentrated in 500-2000 Da. Besides, the sensitizing peptide sequence of wheat protein was detected in the final digestion products of GWP. This research provided a theoretical guidance for the development and application of GWP.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
- Henan International Joint Laboratory of Whole Grain Wheat Products ProcessingZhengzhouChina
- Henan Province Whole Grain Fresh Food Processing Engineering Technology Research CenterZhengzhouChina
| | - Qingyu Wen
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
- Henan International Joint Laboratory of Whole Grain Wheat Products ProcessingZhengzhouChina
- Henan Province Whole Grain Fresh Food Processing Engineering Technology Research CenterZhengzhouChina
| | - Yufei Wang
- School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanChina
| | - Tianqi Li
- Henan Ankang Food Science and Technology Research InstituteZhengzhouChina
- Henan Ankang Future Food Technology Co., LtdZhengzhouChina
| | - Bin Nie
- Resource Utilization Department of Henan Provincial Department of Agriculture and RuralZhengzhouChina
| | - Yu Zhang
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
38
|
Yu C, Zheng L, Cai Y, Zhao Q, Zhao M. Desirable characteristics of casein peptides with simultaneously enhanced emulsion forming ability and antioxidative capacity in O/W emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jackfruit leaf protein concentrate (LPC) was hydrolyzed by pepsin (H–Pep) and pancreatin (H–Pan) at different hydrolysis times (30–240 min). The effect of the enzyme type and hydrolysis time of the LPC on the amino acid composition, structure, and thermal properties and its relationship with the formation of O/W emulsions were investigated. The highest release of amino acids (AA) occurred at 240 min for both enzymes. H–Pan showed the greatest content of essential and hydrophobic amino acids. Low β-sheet fractions and high β-turn contents had a greater influence on the emulsifier properties. In H–Pep, the β-sheet fraction increased, while in H–Pan it decreased as a function of hydrolysis time. The temperatures of glass transition and decomposition were highest in H–Pep due to the high content of β-sheets. The stabilized emulsions with H–Pan (180 min of hydrolysis) showed homogeneous distributions and smaller particle sizes. The changes in the secondary structure and AA composition of the protein hydrolysates by the effect of enzyme type and hydrolysis time influenced the emulsifying properties. However, further research is needed to explore the use of H–Pan as an alternative to conventional emulsifiers or ingredients in functional foods.
Collapse
|
40
|
Effects of Different Amounts of Corn Silk Polysaccharide on the Structure and Function of Peanut Protein Isolate Glycosylation Products. Foods 2022; 11:foods11152214. [PMID: 35892799 PMCID: PMC9330836 DOI: 10.3390/foods11152214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Covalent complexes of peanut protein isolate (PPI) and corn silk polysaccharide (CSP) (PPI-CSP) were prepared using an ultrasonic-assisted moist heat method to improve the functional properties of peanut protein isolate. The properties of the complexes were affected by the level of corn silk polysaccharide. By increasing the polysaccharide addition, the grafting degree first increased, and then tended to be flat (the highest was 38.85%); the foaming, foam stability, and solubility were also significantly improved. In a neutral buffer, the solubility of the sample with a protein/polysaccharide ratio of 2:1 was 73.69%, which was 1.61 times higher than that of PPI. As compared with PPI, the complexes had higher thermal stability and lower surface hydrophobicity. High addition of CSP could made the secondary structure of PPI change from ordered α-helix to disordered β-sheet, β-turn, and random coil structure, and the complex conformation become more flexible and loose. The results of multiple light scattering showed that the composite solution exhibited high stability, which could be beneficial to industrial processing, storage, and transportation. Therefore, the functional properties of peanut protein isolate glycosylation products could be regulated by controlling the amount of polysaccharide added.
Collapse
|
41
|
Chen W, Wang Y, Lv X, Yu G, Wang Q, Li H, Wang J, Zhang X, Liu Q. Physicochemical, structural and functional properties of protein isolates and major protein fractions from common vetch (Vicia sativa L.). Int J Biol Macromol 2022; 216:487-497. [PMID: 35810850 DOI: 10.1016/j.ijbiomac.2022.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
Common vetch (CV), a leguminous crop cultivated for green manure and fodder rich in protein and starch, is widespread over much area of the northern hemisphere. Its seeds can be used as a protein source to human consumption. CV protein isolates (CVPI) and major protein fractions (CV albumin protein, CVAP; CV globulin protein, CVGP; CV glutelin protein, CVGTP) from 4 samples were investigated the properties to facilitate full use of protein resources. Protein comprises 27.70 %-32.14 % of the dry CV seed weight, which is mainly composed by CVAP (26.79 %-56.12 %) and CVGP (22.78 %-52.42 %). CVPI, CVAP and CVGP mainly presented 7S and 11S components. CVGTP mainly contained the 11S component. They showed difference in thermal properties and surface hydrophobicity. Circular dichroism data showed that α-helix was their major secondary structure. CVPI and major protein fractions exhibited a U-shape protein solubility. CVPI and CVAP had advantages in emulsifying and foaming properties. This study provided novel insights on unexploited sources of CV proteins with interesting characteristics in terms of potential uses as protein-based foods.
Collapse
Affiliation(s)
- Wang Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Yuhui Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Xin Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Guangshui Yu
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Qiankun Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Haokun Li
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Jialin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Xiaodong Zhang
- Shandong Centre of Crop Germplasm Resources, Jinan, Shandong 250100, China
| | - Quanlan Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
42
|
Limited enzymatic hydrolysis induced pea protein gelation at low protein concentration with less heat requirement. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Structural, Physicochemical and Functional Properties of Protein Extracted from De-Oiled Field Muskmelon ( Cucumis melo L. var. agrestis Naud.) Seed Cake. Foods 2022; 11:foods11121684. [PMID: 35741881 PMCID: PMC9222928 DOI: 10.3390/foods11121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
For oil plants, the oil extraction method is a crucial factor in influencing the functional characteristics of the protein. However, reports of protein functionality as affected by the oil extraction process are scarce. In this study, field muskmelon seed (FMS) protein was extracted by Soxhlet extraction method (SE), organic solvent extraction method (OSE), aqueous extraction method (AE), and pressing extraction method (PE), and its structure, amino acid profile, physicochemical properties, and functionality were determined. Molecular weight distribution was similar for all FMS proteins, whereas protein aggregates contents were most excellent for SE and OSE. FMS protein comprised predominantly glutamic acid, leucine, aspartic acid, arginine, and proline. Total amino acids content was highest for SE. Differences in functionality between four FMS proteins for different oil extraction methods were vast. PE had the highest value of solubility, and AE exhibited the lowest. AE had the greatest water and oil holding capacity. PE presented better foaming and emulsion capacities than other samples. This study demonstrated that the extraction oil method could impact the protein’s physicochemical and associated functional characteristics. High-quality plant oil and protein could be simultaneously obtained by modulating the oil extraction method in future research.
Collapse
|
44
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
45
|
Zhang L, Song C, Chang J, Wang Z, Meng X. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Yadav DN, Mir NA, Wadhwa R, Tushir S, Sethi S, Anurag RK, Oberoi HS. Hydrolysis of peanut ( Arachis hypogea L) protein concentrate by fungal crude protease extract: effect on structural, functional and in-vitro protein digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2141-2149. [PMID: 35602442 PMCID: PMC9114198 DOI: 10.1007/s13197-021-05225-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 06/03/2023]
Abstract
Peanut protein concentrates (PPCs) were subjected to hydrolysis by crude protease extract (CPE) obtained from three fungi viz; Rhizopus oligosporus, Trichoderma reesei, and Aspergillus oryzae and the effect on structural, functional and in-vitro protein digestibility (IVPD) properties were studied. Particle size was found significantly (p ≤ 0.05) lower in hydrolyzed samples than un-treated samples. Fourier transform infrared spectroscopy (FTIR) spectrum of hydrolyzed samples displayed intense absorbance peaks in the wavelength ranging from 1500 to 2600 cm-1. Peanut protein concentrates hydrolyzed by CPE from R. oligosporus showed higher surface hydrophobicity (564.18). Total sulfhydryl content was found lower in all the hydrolyzed samples whereas, reverse trend was observed for exposed sulfhydryl content. The structural changes simultaneously affected the functional and IVPD attributes of hydrolyzed PPCs. In comparison to the PPCs hydrolysed using crude extracts from T. reesei and R. oligosporus, PPCs hydrolysed by A, oryzae showed higher solubility, water and oil binding capacity, foaming capacity and foam stability. Higher IVPD values of 86.70% was also found in PPCs hydrolyzed with CPE of A. oryzae. The study established that CPE hydrolysis of PPCs has potential for scale-up studies and may serve as a cost effective alternative to protein hydrolysis with pure enzymes.
Collapse
Affiliation(s)
- Deep Narayan Yadav
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Nisar Ahmad Mir
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Ritika Wadhwa
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Surya Tushir
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Swati Sethi
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Rahul Kumar Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Harinder Singh Oberoi
- Division of Post-Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Hesaraghatta, Bengaluru, 560089 India
| |
Collapse
|
47
|
Liu Y, Hu H, Liu H, Wang Q. Recent Advances for the Developing of Instant Flavor Peanut Powder: Generation and Challenges. Foods 2022; 11:foods11111544. [PMID: 35681294 PMCID: PMC9180855 DOI: 10.3390/foods11111544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Instant flavor peanut powder is a nutritional additive that can be added to foods to impart nutritional value and functional properties. Sensory acceptability is the premise of its development. Flavor is the most critical factor in sensory evaluation. The heat treatment involved in peanut processing is the main way to produce flavor substances and involves chemical reactions: Maillard reaction, caramelization reaction, and lipid oxidation reaction. Peanut is rich in protein, fat, amino acids, fatty acids, and unsaturated fatty acids, which participate in these reactions as volatile precursors. N-heterocyclic compounds, such as the pyrazine, are considered to be the key odorants of the “baking aroma”. However, heat treatment also affects the functional properties of peanut protein (especially solubility) and changes the nutritional value of the final product. In contrast, functional properties affect the behavior of proteins during processing and storage. Peanut protein modification is the current research hotspot in the field of deep processing of plant protein, which is an effective method to solve the protein denaturation caused by heat treatment. The review briefly describes the characterization and mechanism of peanut flavor during heat treatment combined with solubilization modification technology, proposing the possibility of using peanut meal as material to produce IFPP.
Collapse
Affiliation(s)
| | | | - Hongzhi Liu
- Correspondence: (H.L.); (Q.W.); Tel.: +86-(10)-62818455 (H.L.); +86-(10)-62815837 (Q.W.)
| | - Qiang Wang
- Correspondence: (H.L.); (Q.W.); Tel.: +86-(10)-62818455 (H.L.); +86-(10)-62815837 (Q.W.)
| |
Collapse
|
48
|
Effect of enzymatic hydrolysis followed after extrusion pretreatment on the structure and emulsibility of soybean protein. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods 2022; 11:foods11091289. [PMID: 35564012 PMCID: PMC9101677 DOI: 10.3390/foods11091289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
A novel method combining high-pressure homogenization with enzymatic hydrolysis and hydrothermal cooking (HTC) was applied in this study to modify the structure of peanut protein, thus improving its physicochemical properties. Results showed that after combined modification, the solubility of peanut protein at a pH range of 2–10 was significantly improved. Moreover, the Turbiscan stability index of modified protein in the acidic solution was significantly decreased, indicating its excellent stability in low pH. From SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis), the high molecular weight fractions in modified protein were dissociated and the low molecular weight fractions increased. The combined modification decreased the particle size of peanut protein from 74.82 to 21.74 μm and shifted the isoelectric point to a lower pH. The improvement of solubility was also confirmed from the decrease in surface hydrophobicity and changes in secondary structure. This study provides some references on the modification of plant protein as well as addresses the possibility of applying peanut protein to acidic beverages.
Collapse
|
50
|
Karigidi KO, Akintimehin ES, Fayemiro MO, Balogun B, Adetuyi FO. Bioactive, antioxidant, anti‐hyperglycemic and nutritional properties of Groundnut based snack (Kulikuli) supplemented with Ginger. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kayode O. Karigidi
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Ondo State Nigeria
| | - Emmanuel S. Akintimehin
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Ondo State Nigeria
| | - Moyosola O. Fayemiro
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Ondo State Nigeria
| | - Bukola Balogun
- Chemistry/Biochemistry Unit Nigerian Stored Products Research institute Ibadan
| | - Foluso O. Adetuyi
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Ondo State Nigeria
| |
Collapse
|