1
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
2
|
Colak N, Slatnar A, Medic A, Torun H, Kurt-Celebi A, Dräger G, Djahandideh J, Esatbeyoglu T, Ayaz FA. Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars. PHYSIOLOGIA PLANTARUM 2024; 176:e14611. [PMID: 39528361 DOI: 10.1111/ppl.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. 'Ruby Queen' and 'Scarlet Supreme') and white beet ('Rodeo' and 'Ansa') cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.
Collapse
Affiliation(s)
- Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ana Slatnar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hülya Torun
- Biosystem Engineering, Faculty of Agriculture, Düzce University, Düzce, Turkey
| | - Aynur Kurt-Celebi
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Gerald Dräger
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Jasmin Djahandideh
- Department of Molecular Food Chemsitry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemsitry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Gutiérrez-Fernández L, Díez-Pascual AM, San Andrés MP. Dispersive Solid Phase Extraction of Melatonin with Graphene/Clay Mixtures and Fluorescence Analysis in Surfactant Aqueous Solutions. Molecules 2024; 29:2699. [PMID: 38893572 PMCID: PMC11173625 DOI: 10.3390/molecules29112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, the dispersive solid phase extraction (dSPE) of melatonin using graphene (G) mixtures with sepiolite (SEP) and bentonite (BEN) clays as sorbents combined with fluorescence detection has been investigated. The retention was found to be quantitative for both G/SEP and G/BEN 4/96 and 10/90 w/w mixtures. G/clay 4/96 w/w mixtures were selected to study the desorption process since the retention was weaker, thus leading to easier desorption. MeOH and aqueous solutions of the nonionic surfactant Brij L23 were tested as desorbents. For both clays and an initial sample volume of 25 mL, a percentage of melatonin recovery close to 100% was obtained using 10 or 25 mL of MeOH as desorbent. Further, using a G/SEP mixture, 25 mL as the initial sample volume and 5 mL of MeOH or 60 mM Brij L23 solution as the desorbent, recoveries of 98.3% and 90% were attained, respectively. The whole method was applied to herbal tea samples containing melatonin, and the percentage of agreement with the labeled value was 86.5%. It was also applied to herbal samples without melatonin by spiking them with two concentrations of this compound, leading to recoveries of 100 and 102%.
Collapse
Affiliation(s)
- Lucía Gutiérrez-Fernández
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Lv Z, Liu H, Yang W, Zhang Q, Chen D, Jiao Z, Liu J. Comprehensive Analysis of Physicochemical Properties and Volatile Compounds in Different Strawberry Wines under Various Pre-Treatments. Molecules 2024; 29:2045. [PMID: 38731535 PMCID: PMC11085539 DOI: 10.3390/molecules29092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.L.); (H.L.); (W.Y.); (Q.Z.); (D.C.); (Z.J.)
| |
Collapse
|
5
|
Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct 2024; 15:3420-3432. [PMID: 38497922 DOI: 10.1039/d3fo04760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an in vitro model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Collapse
Affiliation(s)
- Marta Gallardo-Fernandez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana Rita Garcia
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Alexandra Brito
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Borisenkov MF, Popov SV, Smirnov VV, Martinson EA, Solovieva SV, Danilova LA, Gubin DG. The Association between Melatonin-Containing Foods Consumption and Students' Sleep-Wake Rhythm, Psychoemotional, and Anthropometric Characteristics: A Semi-Quantitative Analysis and Hypothetical Application. Nutrients 2023; 15:3302. [PMID: 37571240 PMCID: PMC10420797 DOI: 10.3390/nu15153302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Food is an important source of melatonin (MT), which belongs to a group known as chronobiotics, a class of substances that affect the circadian system. Currently, no studies have been conducted on how the consumption of foods containing MT (FMT) is associated with indicators characterizing the human circadian system. In this study, we tested the hypothesis that FMT consumption is associated with chronotype and social jetlag. A total of 1277 schoolchildren and university students aged M (SD) 19.9 (4.1) years (range: 16-25 years; girls: 72.8%) participated in a cross-sectional study. Each participant completed an online questionnaire with their personal data (sex, age, height, weight, waist circumference, and academic performance) and a sequence of tests to assess their sleep-wake rhythm (the Munich Chronotype Questionnaire), sleep quality (the Pittsburgh Sleep Quality Index), and depression level (the Zung Self-Rating Depression Scale). Study participants also completed a modified food frequency questionnaire that only included foods containing MT (FMT). They were asked how many foods containing MT (FMT) they had eaten for dinner, constituting their daily serving, in the past month. The consumption of foods containing MT (FMT) during the day (FMTday) and at dinner (FMTdinner) was assessed using this test. Multiple regression analyses were performed to assess the association between the studied indicators. We found that higher FMTday values were associated with early chronotype (β = -0.09) and less social jetlag (β = -0.07), better sleep quality (β = -0.06) and lower levels of depression (β = -0.11), as well as central adiposity (β = -0.08). Higher FMTdinner values were associated with a lower risk of central adiposity (β = -0.08). In conclusion, the data obtained confirm the hypothesis that the consumption of foods containing MT (FMT) is associated with chronotype and social jetlag in adolescents and young adults.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | | | - Svetlana V. Solovieva
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Lina A. Danilova
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Denis G. Gubin
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, Tyumen 625023, Russia
- Tyumen Cardiology Research Centre, Tomsk National Research Medical Center, Russian Academy of Science, Tyumen 119991, Russia
| |
Collapse
|
7
|
Arabia A, Muñoz P, Pallarés N, Munné-Bosch S. Experimental approaches in studying active biomolecules modulating fruit ripening: Melatonin as a case study. PLANT PHYSIOLOGY 2023; 192:1747-1767. [PMID: 36805997 PMCID: PMC10315297 DOI: 10.1093/plphys/kiad106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are naturally occurring small organic molecules found at low concentrations in plants. They perform essential functions in growth and developmental processes, from organ initiation to senescence, including fruit ripening. These regulatory molecules are studied using different experimental approaches, such as performing exogenous applications, evaluating endogenous levels, and/or obtaining genetically modified lines. Here, we discuss the advantages and limitations of current experimental approaches used to study active biomolecules modulating fruit ripening, focusing on melatonin. Although melatonin has been implicated in fruit ripening in several model fruit crops, current knowledge is affected by the different experimental approaches used, which have given different and sometimes even contradictory results. The methods of application and the doses used have produced different results in studies based on exogenous applications, while different measurement methods and ways of expressing results explain most of the variability in studies using correlative analyses. Furthermore, studies on genetically modified crops have focused on tomato (Solanum lycopersicum L.) plants only. However, TILLING and CRISPR methodologies are becoming essential tools to complement the results from the experimental approaches described above. This will not only help the scientific community better understand the role of melatonin in modulating fruit ripening, but it will also help develop technological advances to improve fruit yield and quality in major crops. The combination of various experimental approaches will undoubtedly lead to a complete understanding of the function of melatonin in fruit ripening in the near future, so that this knowledge can be effectively transferred to the field.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Núria Pallarés
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
8
|
Xing Q, Hasan MK, Li Z, Yang T, Jin W, Qi Z, Yang P, Wang G, Ahammed GJ, Zhou J. Melatonin-induced plant adaptation to cadmium stress involves enhanced phytochelatin synthesis and nutrient homeostasis in Solanum lycopersicum L. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131670. [PMID: 37236109 DOI: 10.1016/j.jhazmat.2023.131670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato. Cd stress significantly decreased chlorophyll content and CO2 assimilation rate, but increased Cd, H2O2 and MDA accumulation in the shoot, most profoundly in PCs deficient TRV-PCS and TRV-COMT-PCS plants. Notably, Cd stress and exogenous melatonin treatment significantly increased endogenous melatonin and PC contents in non-silenced plants. Results also explored that melatonin could alleviate oxidative stress and enhance antioxidant capacity and redox homeostasis by conserving improved GSH:GSSG and ASA:DHA ratios. Moreover, melatonin improves osmotic balance and nutrient absorption by regulating the synthesis of PCs. This study unveiled a crucial mechanism of melatonin-regulated PC synthesis, persuaded Cd stress tolerance and nutrient balance in tomato, which may have potential implications for the enhancement of plant resistance to toxic heavy metal stress.
Collapse
Affiliation(s)
- Qufan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Md Kamrul Hasan
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Zhichao Li
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ting Yang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Weiduo Jin
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, China; Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
9
|
Zu Z, Wang S, Zhao Y, Fan W, Li T. Integrated enzymes activity and transcriptome reveal the effect of exogenous melatonin on the strain degeneration of Cordyceps militaris. Front Microbiol 2023; 14:1112035. [PMID: 37089574 PMCID: PMC10117847 DOI: 10.3389/fmicb.2023.1112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
As a valuable medicinal and edible fungus, Cordyceps militaris has been industrialized with broad development prospects. It contains a lot of bioactive compounds that are beneficial to our health. However, during artificial cultivation, strain degeneration is a challenge that inhibits the industrialization utility of C. militaris. Exogenous melatonin (MT) can scavenge for reactive oxygen species (ROS) in fungus and can alleviate strain degeneration. To establish the significance and molecular mechanisms of MT on strain degeneration, we investigated the third-generation strain (W5-3) of C. militaris via morphological, biochemical, and transcriptomic approaches under MT treatment. Morphological analyses revealed that colony angulation of C. militaris was significantly weakened, and the aerial hypha was reduced by 60 μmol L-1 MT treatment. Biochemical analyses showed low levels of ROS and malondialdehyde (MDA), as well as increasing endogenous MT levels as exogenous MT increased. RNA-Seq revealed that compared with the control, several antioxidant enzyme-related genes were up-regulated under 60 μmol L-1 MT treatment. Among them, glutathione s-transferase genes were up-regulated by a factor of 11.04. In addition, genes that are potentially involved in cordycepin, adenosine and active compound biosynthesis for the growth and development of mycelium were up-regulated. Collectively, these findings provide the basis for further elucidation of the molecular mechanisms involved in C. militaris strain degeneration.
Collapse
Affiliation(s)
- Zhichao Zu
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Siqi Wang
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yingming Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Wenli Fan
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Comparative Metabolomic Analysis of the Nutritional Aspects from Ten Cultivars of the Strawberry Fruit. Foods 2023; 12:foods12061153. [PMID: 36981080 PMCID: PMC10048718 DOI: 10.3390/foods12061153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Strawberry (Fragaria × ananassa) is among the most widely cultivated fruits with good taste and rich nutrients. Many strawberry species, including white strawberries, are planted all over the world. The metabolic profiles of strawberry and distinctions among different cultivars are not fully understood. In this study, non-targeted metabolomics based on UHPLC-Q-Exactive Orbitrap MS was used to analysis the metabolites in 10 strawberry species. A total of 142 compounds were identified and were divided into six categories. Tochiotome may differ most from the white strawberry (Baiyu) by screening 72 differential metabolites. Histidine, apigenin, cyanidin 3-glucoside and peonidin 3-glucoside had potential as biomarkers for distinguishing Baiyu and another 11 strawberry groups. Amino acid metabolisms, anthocyanin biosynthesis and flavonoid biosynthesis pathways were mainly involved in the determination of the nutrition distinctions. This research contributes to the determination of the nutrition and health benefits of different strawberry species.
Collapse
|
11
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
12
|
Chen X, Zhao Y, Laborda P, Yang Y, Liu F. Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. oryzae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1865. [PMID: 36767232 PMCID: PMC9914633 DOI: 10.3390/ijerph20031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the top ten bacterial plant diseases worldwide. Serotonin N-acetyltransferase (SNAT) is one of the key rate-limiting enzymes in melatonin (MT) biosynthesis. However, its function in pathogenic bacteria remains unclear. In this study, a Xoo SNAT protein (xoSNAT3) that showed 27.39% homology with sheep SNAT was identified from a collection of 24 members of GCN5-related N-acetyltransferase (GNAT) superfamily in Xoo. This xoSNAT3 could be induced by MT. In tobacco-based transient expression system, xoSNAT3 was found localized on mitochondria. In vitro studies indicated that xoSNAT3 showed the optima enzymatic activity at 50 °C. The recombinant enzyme showed Km and Vmax values of 709.98 μM and 2.21 nmol/min/mg protein, respectively. Mutant △xoSNAT3 showed greater impaired MT biosynthesis than the wild-type strain. Additionally, △xoSNAT3 showed 14.06% less virulence and 26.07% less biofilm formation. Collectively, our results indicated that xoSNAT3 services as a SNAT involved in MT biosynthesis and pathogenicity in Xoo.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
13
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Dehnavi P, Rakhshandeh H, Bakhtiari E, Asadpour H, Moshirian Farahi SM, Forouzanfar F. Effect of Tomato ( Solanum lycopersicum) Extract in Patients with Primary Insomnia: A Double-blind Randomized Study. Cent Nerv Syst Agents Med Chem 2023; 23:137-143. [PMID: 37475550 DOI: 10.2174/1871524923666230720155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Insomnia is a condition that causes sleep problems, and many people suffer from it. Patients with this disorder have difficulty with beginning or continuation of sleep, so they are exhausted all day long, and their performance reduces. This study was designed to assess the efficacy of capsules that contain tomato extract in patients with primary insomnia. METHODS In this study, 70 patients with primary insomnia were assigned to 2 groups randomly: intervention and control. The intervention group used to take tomato capsules every night for 2 weeks, and the placebo one used to take placebo capsules every night for 2 weeks. All patients used to fill out Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI) questionnaires before and after the intervention. ISI and PSQI results were analyzed separately on SPSS software. RESULTS A total of 70 patients (35 in the intervention group and 35 in the control group), including 50 females and 20 males, were studied. Female to male ratio and the rate of unemployment were significantly higher in the intervention group (in both cases P < 0.001), but there was no significant difference between the intervention and control groups in other characteristics (Age, marital status, weight, height, education; in all cases P > 0.05). At the end of the study, the amount of actual sleep had increased, and the delay in falling asleep decreased in both groups; the two groups at the end of the study were not significantly different in terms of these two variables (P > 0.05). The ISI score in both groups decreased significantly at the end of the study, and the PSQI score in both groups decreased significantly at the end of the study (In both cases, P < 0.05). The absolute value of ISI score change in the intervention group was significantly higher than the control group (P < 0.001); But the absolute value of PSQI score change was not significantly different between the two groups (P = 0.102). Most importantly, the improvement of both ISI and PSQI scores in the intervention group was significantly better than the control group (P > 0.05). CONCLUSION This study showed that tomato capsules have sleep-inducing effects, although there was no significant difference in the amount of actual sleep, and the delay in falling sleep in the intervention group compared to the control group.
Collapse
Affiliation(s)
- Parvin Dehnavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Bakhtiari
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Asadpour
- Division of Sleep Medicine, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Feng BS, Kang DC, Sun J, Leng P, Liu LX, Wang L, Ma C, Liu YG. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Nandi S, Ahmed S, Saxena AK. Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites. Curr Top Med Chem 2022; 22:2029-2044. [PMID: 35382719 DOI: 10.2174/1568026622666220405121643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malaria, a global challenge, is a parasitic disease caused by Plasmodium species. Approximately 229 million cases of malaria were reported in 2019. Major incidences occur in various continents, including African and Eastern Mediterranean Continents and South-East Asia. INTRODUCTION Despite the overall decline in global incidence from 2010 to 2018, the rate of decline has been almost constant since 2014. The morbidity and mortality have been accelerated due to reactive oxygen species (ROS) caused by oxidative stress generated by the parasite responsible for the destruction of host metabolism and cell nutrients. METHODS The excessive release of free radicals is associated with the infection in the animal or human body by the parasites. This may be related to a reduction in nutrients required for the generation of antioxidants and the destruction of cells by parasite activity. Therefore, an intensive literature search has been carried out to find the natural antioxidants used to neutralize the free radicals generated during malarial infection. RESULTS The natural antioxidants may be useful as an adjuvant treatment along with the antimalarial chemotherapeutics to reduce the death rate and enhance the success rate of malaria treatment. CONCLUSION In this manuscript, an attempt has been made to provide significant insight into the antioxidant activities of herbal extracts against malaria parasites.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Anil Kumar Saxena
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| |
Collapse
|
17
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P. Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:188-197. [PMID: 35700585 DOI: 10.1016/j.plaphy.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Management, Hainan University, Haikou, 570228, China
| | | | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
18
|
Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G. The role of melatonin in tomato stress response, growth and development. PLANT CELL REPORTS 2022; 41:1631-1650. [PMID: 35575808 DOI: 10.1007/s00299-022-02876-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.
Collapse
Affiliation(s)
| | - Yu Zhang
- Chongqing University, Chongqing, China
| | | | | | | | - Zongli Hu
- Chongqing University, Chongqing, China
| | | |
Collapse
|
19
|
Li Z, Zhang S, Xue J, Mu B, Song H, Liu Y. Exogenous Melatonin Treatment Induces Disease Resistance against Botrytis cinerea on Post-Harvest Grapes by Activating Defence Responses. Foods 2022; 11:foods11152231. [PMID: 35953999 PMCID: PMC9367934 DOI: 10.3390/foods11152231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea seriously affects the value of post-harvest grapes. Melatonin can act as an exogenous regulator in the resistance of exogenous pathogens due to its antioxidant activity. An artificial inoculation trial was conducted to research the induced resistance mechanism of melatonin treatment using the table grape “Muscat Hamburg” (Vitis vinifera L. cv). Grapes were immersed with 0.02, 0.2, and 2 mmol/L melatonin, followed by B. cinerea suspension injections after 48 h. The results showed that the mycelial growth and spore germination of B. cinerea was not significantly inhibited by melatonin at different concentrations (0.02–2 mmol/L). However, post-harvest melatonin treatment inhibited the increase of disease incidence and severity of grey mould, induced the synthesis and accumulation of total phenols and flavonoids, reduced malondialdehyde generation, and inhibited an increase in cell membrane permeability. Meanwhile, defensive enzyme activities, including superoxide dismutase (SOD), peroxidize (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), chitinase (CHI), and β-1,3-glucanase, were significantly increased in fruits treated with exogenous melatonin. These results suggested that exogenous melatonin treatment could activate defence responses to combat the infection of B. cinerea in post-harvest grapes.
Collapse
Affiliation(s)
- Zezhen Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| | - Shujuan Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
- Correspondence: ; Tel.: +86-139-3549-1091
| | - Jianxin Xue
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
| | - Bingyu Mu
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
| | - Hong Song
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| | - Yanping Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| |
Collapse
|
20
|
Uğur Y. Extraction and quantification of melatonin in cornelian cherry (Cornus mas L.) by ultra-fast liquid chromatography coupled to fluorescence detector (UFLC-FD). ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Wild edible plants (WEPs) can be widely found in the world and defined as native species that grow naturally in their natural habitat. They have become part of the traditional food as human diet and used in folk medicine to treat diseases. They are very rich in terms of nutraceuticals. Melatonin is a natural hormone providing several benefits for human health. It has functions such as regulating growth and development and increasing tolerance to environmental stress factors in plants. It is stated that the serum melatonin level in humans increases after intake of foods containing melatonin. This study examined the presence of melatonin in wild grown cornelian cherry fruits by UFLC-FD and determined suitable extraction and chromatographic conditions. The optimum mobile phase, excitation/emission wavelength, and extraction solvent were determined as methanol: water: acetic acid, 275/345 nm, and methanol: water: HCl, respectively. Melatonin content in fruits ranged from 130.82 to 201.84 ng g−1 in fresh fruit.
Collapse
Affiliation(s)
- Yılmaz Uğur
- Department of Pharmacy Services, Health Services Vocational School, Inonu University, Malatya, 44280, Turkey
| |
Collapse
|
21
|
Madebo MP, Zheng Y, Jin P. Melatonin-mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive meta-analysis. Compr Rev Food Sci Food Saf 2022; 21:3205-3226. [PMID: 35621156 DOI: 10.1111/1541-4337.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
At postharvest, fruits have a short shelf life. Recently, there has been much literature on the effects of melatonin on the postharvest quality of horticultural crops. However, reports of various findings comprise mixed claims and product-specific conclusions. Therefore, a meta-analysis systematically dissects the comprehensive effect on several fruits. In this meta-analysis, standard mean difference (SMD) was adopted using a random-effect model. The study used 36 articles and isolated 24 indicator parameters of postharvest quality and antioxidant properties based on the inclusion criteria. As exhibited in the forest plot, melatonin reduced chilling injury, weight loss, respiration rate, and ethylene content (SMD -0.90, 95% CI [-1.14, -0.65]; I2 = 81%; p < .00001). Similarly, the application of melatonin significantly suppressed electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide, superoxide anion, lipoxygenase, and polyphenol oxidase (SMD -0.89, 95% CI [-1.09, -0.69]; I2 = 70%; p < .00001). In addition, exogenous melatonin application induced endogenous melatonin content, phenolic content, and flavonoid and anthocyanin contents (SMD 1.15, 95% CI [0.91, 1.39]; I2 = 71%; p = .01). Moreover, melatonin treatment enhanced antioxidant activities (catalase, superoxide dismutase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyse) (SMD 1.37, 95% CI [1.03, 1.71]; I2 = 86%; p < .00001). Thus, in the whole study, the overall effect was significantly high in treated fruit (p < .0001), and the overall heterogeneity was above (I2 ) > 70%. In addition, the funnel plot showed symmetry in the most selected studies. To sum up, the result gives a further understanding of melatonin's capabilities in reducing postharvest losses and maintaining the quality of fresh fruits.
Collapse
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.,College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
22
|
Isotopic labelling-based analysis elucidates biosynthesis pathways in Saccharomyces cerevisiae for Melatonin, Serotonin and Hydroxytyrosol formation. Food Chem 2021; 374:131742. [PMID: 34891088 DOI: 10.1016/j.foodchem.2021.131742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/29/2022]
Abstract
Yeasts can synthetise bioactive compounds such as Melatonin (MEL), Serotonin (SER) and Hydroxytyrosol (HT). Deciphering the mechanisms involved in their formation can lead to exploit this fact to increase the bioactive potential of fermented beverages. Quantitative analysis using labelled compounds, 15-N2 l-tryptophan and 13-C tyrosine, allowed tracking the formation of the above-mentioned bioactive compounds during the alcoholic fermentation of synthetic must by two different Saccharomyces cerevisiae strains. Labelled and unlabelled MEL, SER and HT were undoubtedly identified and quantified by High Resolution Mass Spectrometry (HRMS). Our results prove that there are at least two pathways involved in MEL biosynthesis by yeast. One starts with tryptophan as precursor being known for the vertebrates' pathway. Additionally, MEL is produced from SER which in turn is consistent with the plants' biosynthesis pathway. Concerning HT, it can be formed both from labelled tyrosine and from intermediates of the Erlich pathway.
Collapse
|
23
|
Alessa H, Saber AL, Althakafy JT. Up-to-date studies regarding the determination of melatonin by chromatographic methods. Arch Pharm (Weinheim) 2021; 355:e2100378. [PMID: 34842297 DOI: 10.1002/ardp.202100378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Melatonin is an indolic compound that has been reported in the literature to exist in human-based samples, vertebrates, vegetables, fruits, and pharmaceutical products. Melatonin is considered a dietary supplement and can regulate circadian rhythms, although it has not been classified as a drug by the US Food and Drug Administration. Several analytical methods have been used for its detection. This study aimed to summarize the recent outcomes of the chromatographic methods such as electrophoretic methods, gas chromatography, and liquid chromatography, which have been used for the determination of melatonin in the last three decades, with the focus on gas chromatography and high-performance liquid chromatography methods.
Collapse
Affiliation(s)
- Hussain Alessa
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amr L Saber
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jalal T Althakafy
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
24
|
Abstract
Two factors intrinsic to health are diet and sleep. These two behaviors may well influence one another. Indeed, that insufficient sleep adversely impacts dietary intakes is well documented. On the other hand, diet may influence sleep via melatonin and its biosynthesis from tryptophan. Experimental data exist indicating that provision of specific foods rich in tryptophan or melatonin can improve sleep quality. Whole diets rich in fruits, vegetables, legumes, and other sources of dietary tryptophan and melatonin have been shown to predict favorable sleep outcomes. Although clinical trials are needed to confirm a causal impact of dietary patterns on sleep and elucidate underlying mechanisms, available data illustrate a cyclical relation between these lifestyle factors. We recommend adopting a healthful diet to improve sleep, which may further promote sustained favorable dietary practices.
Collapse
Affiliation(s)
- Faris M Zuraikat
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; , ,
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Rebecca A Wood
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Rocío Barragán
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; , ,
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010, Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marie-Pierre St-Onge
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; , ,
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
25
|
Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
|
27
|
Mannino G, Pernici C, Serio G, Gentile C, Bertea CM. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. Int J Mol Sci 2021; 22:ijms22189996. [PMID: 34576159 PMCID: PMC8469784 DOI: 10.3390/ijms22189996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Carlo Pernici
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| |
Collapse
|
28
|
Agathokleous E, Zhou B, Xu J, Ioannou A, Feng Z, Saitanis CJ, Frei M, Calabrese EJ, Fotopoulos V. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. ENVIRONMENTAL RESEARCH 2021; 200:111746. [PMID: 34302829 DOI: 10.1016/j.envres.2021.111746] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Melatonin is produced by plants, algae, and animals. Worldwide studies show diverse positive effects of exogenous melatonin on plants, edible plant products, and algae, but the potential of melatonin to enhance food and feed systems through these positive effects remains largely unexplored. Through a meta-analysis of about 25,000 observations, we show for the first time that exogenous application of melatonin significantly increases crop productivity and yields, and enhances the nutritional and nutraceutical value of edible plant products and algae by regulating diverse biological functions. We demonstrate that melatonin can improve plants, edible plant products, and algae under various current climate change scenarios, environmental pollution factors, and other stresses by about 7% to nearly 30%, on average, depending on the stressor. We also analyze various technical/methodological factors influencing the desired outcomes and identify conditions that offer optimal enhancement. We show that the positive effect of melatonin on plants and edible plant products varies among species, genera, and families, and strongly depends on the concentration of melatonin and treatment duration. The effect of melatonin is slightly lower on the monocot clade Commelinids than on the eudicot clades Asterids and Rosids. We also show that its stimulatory effect on plants depends on cultivation system, with a larger effect obtained in hydroponic systems. However, it does not depend on application stage (seed or vegetative), application route (foliage, roots, or seed), and whether the cultivation system is ex vivo or in vivo. This is the first meta-analysis examining the effects of melatonin on plants, edible plant products, and algae, and offers a scientific and technical roadmap facilitating sustainable food and feed production through the application of exogenous melatonin.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Boya Zhou
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Jianing Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Michael Frei
- Institute of Agronomy and Crop Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| |
Collapse
|
29
|
Light Spectral Composition Influences Structural and Eco-Physiological Traits of Solanum lycopersicum L. cv. 'Microtom' in Response to High-LET Ionizing Radiation. PLANTS 2021; 10:plants10081752. [PMID: 34451797 PMCID: PMC8399554 DOI: 10.3390/plants10081752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023]
Abstract
This study evaluated if specific light quality (LQ) regimes (white fluorescent, FL; full-spectrum, FS; red-blue, RB) during plant growth modified morphological and photosynthetic traits of Solanum lycopersicum L. 'Microtom' plants irradiated at the dry seed stage with 25 Gy 48Ca ions (IR). The irradiation reduced plant size while it increased leaf dry matter content (LDMC) and relative water content (RWC) compared to the control. FS and RB light regimes determined a decrease of plant height and a rise of RWC compared to FL plants. The irradiation under FS and RB regimes favoured the development of dwarf plants and improved the leaf water status. Under the FL regime, irradiated plants showed reduced photosynthesis and stomatal conductance. The opposite behavior was observed in RB irradiated plants in which gas exchanges were significantly stimulated. RB regime enhanced Rubisco expression in irradiated plants also inducing anatomical and functional adjustments (i.e., increase of leaf thickness and incidence of intercellular spaces). Finally, 48Ca ions did not prevent fruit ripening and the achievement of the 'seed-to seed' cycle, irrespective of the LQ regime. Overall, the present study evidenced that RB light regime was the most effective in optimising growth and photosynthetic efficiency of 'Microtom' irradiated plants. These outcomes may help to develop proper cultivation protocols for the growth of dwarf tomato in Controlled Ecological Life Support Systems (CELSS).
Collapse
|
30
|
Kołodziejczyk I, Kaźmierczak A, Posmyk MM. Melatonin Application Modifies Antioxidant Defense and Induces Endoreplication in Maize Seeds Exposed to Chilling Stress. Int J Mol Sci 2021; 22:ijms22168628. [PMID: 34445334 PMCID: PMC8395332 DOI: 10.3390/ijms22168628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to demonstrate the biostimulating effect of exogenous melatonin (MEL) applied to seeds via hydroconditioning. It was indicated that only well-chosen application technique and MEL dose guarantees success concerning seed germination and young seedlings growth under stress conditions. For maize seed, 50 μM of MEL appeared to be the optimal dose. It improved seed germination and embryonic axes growth especially during chilling stress (5 °C/14 days) and during regeneration after its subsided. Unfortunately, MEL overdosing lowered IAA level in dry seeds and could disrupt the ROS-dependent signal transduction pathways. Very effective antioxidant MEL action was confirmed by low level of protein oxidative damage and smaller quantity of lipid oxidation products in embryonic axes isolated from seeds pre-treated with MEL and then exposed to cold. The stimulatory effects of MEL on antioxidant enzymes: SOD, APX and GSH-PX and on GST-a detoxifying enzyme, was also demonstrated. It was indicated for the first time, that MEL induced defence strategies against stress at the cytological level, as appearing endoreplication in embryonic axes cells even in the seeds germinating under optimal conditions (preventive action), but very intensively in those germinating under chilling stress conditions (intervention action), and after stress removal, to improve regeneration.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-22
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| | - Małgorzata M. Posmyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| |
Collapse
|
31
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
33
|
Cheng G, Ma T, Deng Z, Gutiérrez-Gamboa G, Ge Q, Xu P, Zhang Q, Zhang J, Meng J, Reiter RJ, Fang Y, Sun X. Plant-derived melatonin from food: a gift of nature. Food Funct 2021; 12:2829-2849. [PMID: 33877242 DOI: 10.1039/d0fo03213a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, people have become increasingly interested in bioactive ingredients from plants, especially antioxidant molecules such as melatonin, which are beneficial to human health. The purpose of this article is to provide new information on plant-derived foods with a high content of melatonin. We comprehensively summarize the content of melatonin in plant-derived foods and discuss the factors that influence melatonin levels to provide new ideas on enhancement. Additionally, we describe the biosynthetic pathway of melatonin and identify its major functions. Medicinal herbs are often rich in melatonin while many vegetables and fruits exhibit somewhat lower levels with wide variations among species. The genetic traits of plants, the phenological stage of the cultivar, the photoperiod, the level of stress to which the plants are exposed at the time of harvest, exposure to agrochemicals and determination methods are the main factors affecting the melatonin content. To date, standardization of uniform sampling times and the use of suitable pretreatments as well as determination methods have not been achieved. The results of the studies reviewed highlight the potentially important role of plant melatonin in influencing the progression of human diseases. Based on the health promotional aspects of melatonin, consuming foods containing higher concentrations of tryptophan and melatonin is suggested.
Collapse
Affiliation(s)
- Guo Cheng
- College of Enology, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Production system influences tomato phenolics and indoleamines in a cultivar-specific manner. Food Res Int 2021; 140:110016. [PMID: 33648247 DOI: 10.1016/j.foodres.2020.110016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Tomato (Solanum lycopersicum) fruit is a rich source of health-promoting compounds, and epidemiological studies show that tomato consumption may reduce the risk of chronic diseases. This study compared the effect of genotype, production system, and their interaction on eight tomato varieties grown in the open-field (OF) or net-house (NH), a structure completely covered with a 50-mesh screen to reduce pest and wind damage, in South Texas. The NH structure reduced solar radiation up to ~30% and decreased wind speed by 6.44 km/h compared with conditions measured in the OF. We simultaneously analyzed 16 phenolics and indoleamines using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UHPLC/ESI-HR-QTOFMS). The chemometric analysis showed a distinct difference between NH- and OF-grown tomatoes irrespective of the variety. The melatonin and serotonin contents showed a cultivar-specific effect of the production system. Likewise, the effect of cultivation systems on levels of phenolic acids and flavonoids varied based on tomato cultivar. Among the studied phenolic acids, significantly enhanced levels of sinapic acid were observed in OF-grown tomatoes. Similarly, we detected a considerable genotypic effect on gallic acid, p-coumaric acid, ferulic acid, sinapic acid, and naringin. The interaction of cultivar and production system substantially affected gallic acid, protocatechuic acid, sinapic acid, and apigenin. However, further studies need to be performed to explore the environment-specific effects on the total composition. In summary, our results indicate that the production system plays an important role in tomato composition beyond the natural genetic variation among cultivars.
Collapse
|
35
|
Nano-sized FeO@SiO-molecular imprinted polymer as a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of , biological, and water samples. Talanta 2021; 221:121620. [DOI: 10.1016/j.talanta.2020.121620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
36
|
Juhnevica-Radenkova K, Moreno DA, Ikase L, Drudze I, Radenkovs V. Naturally occurring melatonin: Sources and possible ways of its biosynthesis. Compr Rev Food Sci Food Saf 2020; 19:4008-4030. [PMID: 33337029 DOI: 10.1111/1541-4337.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.
Collapse
Affiliation(s)
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | | | | |
Collapse
|
37
|
Barreiro Astray S, Barbosa-Pereira L, Lage-Yusty MA, López-Hernández J. Comparison of Analytical Methods for the Rapid Determination of Melatonin in Food Supplements. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Wang SY, Shi XC, Wang R, Wang HL, Liu F, Laborda P. Melatonin in fruit production and postharvest preservation: A review. Food Chem 2020; 320:126642. [DOI: 10.1016/j.foodchem.2020.126642] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
|
39
|
Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale. Food Microbiol 2020; 86:103265. [DOI: 10.1016/j.fm.2019.103265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
|
40
|
Yang TH, Chen YC, Ou TH, Chien YW. Dietary supplement of tomato can accelerate urinary aMT6s level and improve sleep quality in obese postmenopausal women. Clin Nutr 2020; 39:291-297. [PMID: 30792141 DOI: 10.1016/j.clnu.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the effect of the ingestion of tomato before bed on obese postmenopausal women's urinary 6-sulphatoxymelatonin (aMT6s) level and sleep quality. We quantified melatonin concentrations in beefsteak tomato, black tomato, and two commercial tomato juices and found that beefsteak tomato contained the highest level of melatonin. In this 8-week open-label, randomized controlled dietary intervention trial, 36 subjects completed the entire trial. The tomato group ate 250 g of beefsteak tomatoes 2 h before sleep for 8 weeks. Blood and urine samples were collected at the baseline and in the 8th week and were analyzed. The Pittsburgh Sleep Quality Index (PSQI) in the tomato group significantly decreased with time (p for trend = 0.0297). After 8 weeks of the beefsteak intervention, all components of the PSQI in tomato group had significantly improved, and their aMT6s level was 10-fold significantly higher than that of the control group. Therefore, supplementation with beefsteak tomato before sleep can increase circulating melatonin and improve sleep quality in obese postmenopausal women.
Collapse
Affiliation(s)
- Ting-Hsuan Yang
- Department of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi Chun Chen
- Department of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tzu-Hsuan Ou
- Department of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Wen Chien
- Department of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Metabolism and Obesity, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
41
|
Guiné RDPF, Correia PMDR, Ferrão AC, Gonçalves F, Lerat C, El-Idrissi T, Rodrigo E. Evaluation of phenolic and antioxidant properties of strawberry as a function of extraction conditions. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.14219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract We studied the extraction of antioxidant phenolic compounds, anthocyanins and the evaluation of antioxidant activity of strawberries in different extraction conditions, varying the type of solvent (ethanol:water (50%) and acetone:water (60%), the extraction time (15 and 60 min) and the solvent volume to sample mass ratio (5 mL/g and 20 mL/g). In addition, we performed principal component analysis and cluster analysis. The results showed that, although the two solvents tested had similar influence on total phenolic compounds extraction and antioxidant activity, the 60 minutes of extraction and the use of the solvent volume/sample mass ratio of 20 mL/g were the best extraction conditions, both for the 1st and 2nd recovered extracts. However, the solvent had a marked effect on anthocyanins’ extraction, so that acetone/water extracted almost the double as compared to ethanol/water, for the same extraction conditions. Finally, factor analysis allowed identifying a grouping structure of two components, which was confirmed by the dendogram obtained from cluster analysis.
Collapse
Affiliation(s)
| | | | | | | | - Clémence Lerat
- Instituto Politécnico de Viseu, Portugal; Université Angers Angers, France
| | - Theo El-Idrissi
- Instituto Politécnico de Viseu, Portugal; Université Angers Angers, France
| | - Eva Rodrigo
- Instituto Politécnico de Viseu, Portugal; Universidad de Granada, España
| |
Collapse
|
42
|
Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J. Melatonin Inhibits Cadmium Translocation and Enhances Plant Tolerance by Regulating Sulfur Uptake and Assimilation in Solanum lycopersicum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10563-10576. [PMID: 31487171 DOI: 10.1021/acs.jafc.9b02404] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Golam Jalal Ahammed
- College of Forestry , Henan University of Science and Technology , Luoyang 471023 , China
| | - Shuchang Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Mengqi Li
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Hanqin Yin
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement , Agricultural Ministry of China , 866 Yuhangtang Road , Hangzhou 310058 , China
| |
Collapse
|
43
|
Melatonin, protocatechuic acid and hydroxytyrosol effects on vitagenes system against alpha-synuclein toxicity. Food Chem Toxicol 2019; 134:110817. [PMID: 31521636 DOI: 10.1016/j.fct.2019.110817] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
Preventing the abnormal assembly of α-synuclein (α-Syn) and the correct modulation of vitagenes system exercise strong neuroprotective effects. It has been reported that melatonin (MEL), protocatechuic acid (PCA) and hydroxytyrosol (HT) reduce α-Syn toxicity. Their effect on the vitagenes system of PC12 cells have not been explored yet. These bioactive can cross the blood brain barrier (BBB). Therefore, this work aims to evaluate the inhibitory and destabilising capacities of MEL, PCA, HT, and their combinations on α-Syn kinetics and effects on vitagenes system (sirtuin-1 (SIRT-1), sirtuin-2 (SIRT-2), heme oxygenase (HO-1) and heat shock protein 70 (Hsp-70)). In vitro techniques (Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis, MTT assay and qPCR) were used. Compounds, both individually and simultaneously were able to decrease the toxicity induced by α-Syn. Concurrently, occurrence of PCA (100 μM) +HT (100 μM) showed the highest inhibitory effect against α-Syn fibril formation and destabilisation of α-Syn fibrils (88 and 62%, respectively). Moreover, these compounds increased the expression of SIRT-2, HO-1 and Hsp70, contributing to a neuroprotective effect. In addition, the most important result is the increase on the expression of SIRT-2 caused by the combination of MEL + HT + PCA in the absence of α-Syn fibrils.
Collapse
|
44
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
45
|
Arena C, Vitale E, Hay Mele B, Cataletto PR, Turano M, Simoniello P, De Micco V. Suitability of Solanum lycopersicum L. 'Microtom' for growth in Bioregenerative Life Support Systems: exploring the effect of high-LET ionising radiation on photosynthesis, leaf structure and fruit traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:615-626. [PMID: 30585676 DOI: 10.1111/plb.12952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/20/2018] [Indexed: 05/09/2023]
Abstract
The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self-sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. 'Microtom'. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed-to-seed cycle in 'Microtom', and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for 'Microtom' cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.
Collapse
Affiliation(s)
- C Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Vitale
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Hay Mele
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| | - P R Cataletto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Turano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Science and Technology, University of Naples Pathenope, Centro Direzionale Isola C4, Naples, Italy
| | - V De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| |
Collapse
|
46
|
Nabavi SM, Nabavi SF, Sureda A, Xiao J, Dehpour AR, Shirooie S, Silva AS, Baldi A, Khan H, Daglia M. Anti-inflammatory effects of Melatonin: A mechanistic review. Crit Rev Food Sci Nutr 2019; 59:S4-S16. [DOI: 10.1080/10408398.2018.1487927] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrici_o Comunit_aria i Estr_es Oxidatiu and CIBEROBN (Physiopathology of Obesity and Nutrition), Universitat de les Illes Balears, Palma de E-07122 Mallorca, Spain
| | - Janbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Alessandra Baldi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Assessment of Tryptophan, Tryptophan Ethylester, and Melatonin Derivatives in Red Wine by SPE-HPLC-FL and SPE-HPLC-MS Methods. Foods 2019; 8:foods8030099. [PMID: 30875821 PMCID: PMC6463071 DOI: 10.3390/foods8030099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022] Open
Abstract
Melatonin (MEL) is an indoleamine produced mainly by the pineal gland in vertebrates. It plays a significant role in the regulation of circadian rhythms, mitigation of sleeping disorders, and jet lag. This compound is synthetized from tryptophan (TRP) and it has been found in seeds, fruits, and fermented beverages, including wine. Wine is also a source of other tryptophan derivatives, the tryptophan ethylester (TEE) and MEL isomers (MISs), for which the biological properties need to be elucidated. An analytical method for the simultaneous quantification of TRP, TEE, and MEL was developed by a Solid Phase Extraction (SPE) of a preconcentration of wine followed by high performance liquid chromatography (HPLC) analysis either with fluorescence or mass spectrometer detectors. The analytical method showed a relative standard deviation (RSD) lower than 8%, except for TRP (RSD 10.5% in wine). The recovery was higher than 76%. The versatility of SPE preconcentrations allowed for the adequate preconcentration of wine sample as well as detection of low concentrations, an important aspect especially for MEL (detection limit 0.0023 µg/L). The proposed method proved to be suitable for assessing the investigated compounds in some red wine samples, where 74.4⁻256.2 µg/L and 0.038⁻0.063 µg/L of TEE and MEL were detected, respectively. Five MISs were also found in wine samples in concentrations up to 1.97 µg/L.
Collapse
|
48
|
Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. Melatonin Mediates Enhancement of Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E1040. [PMID: 30818835 PMCID: PMC6429401 DOI: 10.3390/ijms20051040] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.
Collapse
Affiliation(s)
- Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yueting Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaocao Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Sangeeta Mitra
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
49
|
Fernandez-Cruz E, González B, Muñiz-Calvo S, Morcillo-Parra MÁ, Bisquert R, Troncoso AM, Garcia-Parrilla MC, Torija MJ, Guillamón JM. Intracellular biosynthesis of melatonin and other indolic compounds in Saccharomyces and non-Saccharomyces wine yeasts. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03257-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Fracassetti D, Vigentini I, Faro A, Foschino R, Tirelli A, Orioli M, Iriti M. Il contributo dei batteri lattici per la presenza di melatonina nel vino rosso. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191204006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
La melatonina (MEL) è un'indolammina implicata nella regolazione dei cicli circadiani e che possiede attività antiossidante. La presenza di MEL è stata dimostrata nelle piante e negli alimenti con particolare attenzione agli alimenti e bevande fermentati, tra cui il vino. L'uva è una fonte di MEL e nel vino l'attività metabolica del lievito svolge un ruolo cruciale per la produzione di MEL. È stato recentemente suggerito che anche i batteri lattici (LAB) posseggano tale abilità. In questo studio è stata indagata la sintesi di MEL da parte dei LAB in condizioni enologiche e di laboratorio. Sono stati analizzati 8 vini rossi prodotti su scala industriale in 4 cantine. Inoltre, 11 ceppi di LAB sono stati inoculati in terreno sintetico simil-vino. Dai risultati ottenuti è emerso che nei vini prodotti in due delle quattro cantine è stato osservato un aumento di MEL al termine della fermentazione malolattica. Tutti i ceppi oggetto dello studio hanno prodotto MEL in condizioni di laboratorio in quantità variabile a seconda del ceppo. I risultati mettono in evidenza per la prima volta che i LAB sono capaci di rilasciare MEL sia in condizioni di laboratorio che nel vino prodotto industrialmente. The contribution of lactic bacteria on melatonin in red wine
Collapse
|