1
|
Kanwal N, Musharraf SG. Analytical approaches for the determination of adulterated animal fats and vegetable oils in food and non-food samples. Food Chem 2024; 460:140786. [PMID: 39142208 DOI: 10.1016/j.foodchem.2024.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Edible oils and fats are crucial components of everyday cooking and the production of food products, but their purity has been a major issue for a long time. High-quality edible oils are contaminated with low- and cheap-quality edible oils to increase profits. The adulteration of edible oils and fats also produces many health risks. Detection of main and minor components can identify adulterations using various techniques, such as GC, HPLC, TLC, FTIR, NIR, NMR, direct mass spectrometry, PCR, E-Nose, and DSC. Each detection technique has its advantages and disadvantages. For example, chromatography offers high precision but requires extensive sample preparation, while spectroscopy is rapid and non-destructive but may lack resolution. Direct mass spectrometry is faster and simpler than chromatography-based MS, eliminating complex preparation steps. DNA-based oil authentication is effective but hindered by laborious extraction processes. E-Nose only distinguishes odours, and DSC directly studies lipid thermal properties without derivatization or solvents. Mass spectrometry-based techniques, particularly GC-MS is found to be highly effective for detecting adulteration of oils and fats in food and non-food samples. This review summarizes the benefits and drawbacks of these analytical approaches and their use in conjunction with chemometric tools to detect the adulteration of animal fats and vegetable oils. This combination provides a powerful technique with enormous chemotaxonomic potential that includes the detection of adulterations, quality assurance, assessment of geographical origin, assessment of the process, and classification of the product in complex matrices from food and non-food samples.
Collapse
Affiliation(s)
- Nayab Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan..
| |
Collapse
|
2
|
Kutateladze T, Karchkhadze K, Bitskinashvili K, Vishnepolsky B, Ninidze T, Mikeladze D, Datukishvili N. Novel PCR-Based Technology for the Detection of Sunflower in Edible and Used Cooking Oils. Foods 2024; 13:3760. [PMID: 39682833 DOI: 10.3390/foods13233760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Reliable detection of sunflower (Helianthus annuus) in edible and used cooking oil (UCO) is crucial for the sustainable production of food and biodiesel. In this study, a variety of sunflower oils (crude, cold pressed, extra virgin, refined, and UCO) were examined using different methods of DNA extraction and PCR amplification to develop an efficient technology for the identification of sunflower in oils. DNA extraction kits such as NucleoSpin Food, DNeasy mericon Food, and Olive Oil DNA Isolation as well as modified CTAB method were found to be able to isolate amplifiable genomic DNA from highly processed oils. Novel uniplex, double, and nested PCR systems targeting the sunflower-specific helianthinin gene were developed for efficient identification of sunflower. New sunflower DNA markers were revealed by uniplex PCRs. The combination of modified CTAB and nested PCR was demonstrated as a reliable, rapid, and cost-effective technology for detecting traces of sunflower in 700 μL of highly processed oil, including refined and used cooking oil. The study will contribute to both the food industry and the energy sector as developed methods can be used for oil authenticity testing in food and biodiesel production.
Collapse
Affiliation(s)
- Tamara Kutateladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
| | - Kakha Karchkhadze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave., Tbilisi 0162, Georgia
| | - Kakha Bitskinashvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
| | - Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
| | - Tata Ninidze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave., Tbilisi 0162, Georgia
| | - David Mikeladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave., Tbilisi 0162, Georgia
| | - Nelly Datukishvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi 0160, Georgia
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave., Tbilisi 0162, Georgia
| |
Collapse
|
3
|
Sharma R, Nath PC, Lodh BK, Mukherjee J, Mahata N, Gopikrishna K, Tiwari ON, Bhunia B. Rapid and sensitive approaches for detecting food fraud: A review on prospects and challenges. Food Chem 2024; 454:139817. [PMID: 38805929 DOI: 10.1016/j.foodchem.2024.139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Precise and reliable analytical techniques are required to guarantee food quality in light of the expanding concerns regarding food safety and quality. Because traditional procedures are expensive and time-consuming, quick food control techniques are required to ensure product quality. Various analytical techniques are used to identify and detect food fraud, including spectroscopy, chromatography, DNA barcoding, and inotrope ratio mass spectrometry (IRMS). Due to its quick findings, simplicity of use, high throughput, affordability, and non-destructive evaluations of numerous food matrices, NI spectroscopy and hyperspectral imaging are financially preferred in the food business. The applicability of this technology has increased with the development of chemometric techniques and near-infrared spectroscopy-based instruments. The current research also discusses the use of several multivariate analytical techniques in identifying food fraud, such as principal component analysis, partial least squares, cluster analysis, multivariate curve resolutions, and artificial intelligence.
Collapse
Affiliation(s)
- Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India; Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu-641062, India.
| | - Pinku Chandra Nath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala-799046, India.
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Hyderabad- 501401, Telangana, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur-713209.
| | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, New Delhi, 110016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
4
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
5
|
Novel time-domain NMR-based traits for rapid, label-free Olive oils profiling. NPJ Sci Food 2022; 6:59. [PMID: 36513670 PMCID: PMC9746572 DOI: 10.1038/s41538-022-00173-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Olive oil is one of the oldest and essential edible oils in the market. The classification of olive oils (e.g. extra virgin, virgin, refined) is often influenced by factors ranging from its complex inherent physiochemical properties (e.g. fatty acid profiles) to the undisclosed manufacturing processes. Therefore, olive oils have been the target of adulteration due to its profitable margin. In this work, we demonstrate that multi-parametric time-domain NMR relaxometry can be used to rapidly (in minutes) identify and classify olive oils in label-free and non-destructive manner. The subtle differences in molecular microenvironment of the olive oils induce substantial changes in the relaxation mechanism in the time-domain NMR regime. We demonstrated that the proposed NMR-relaxation based detection (AUC = 0.95) is far more sensitive and specific than the current gold-standards in the field i.e. near-infrared spectroscopy (AUC = 0.84) and Ultraviolet-visible spectroscopy (AUC = 0.73), respectively. We further show that, albeit the inherent complexity of olive plant natural phenotypic variations, the proposed NMR-relaxation based traits may be a viable mean (AUC = 0.71) in tracing the regions of origin for olive trees, in agreement with their geographical orientation.
Collapse
|
6
|
Khadivi A, Mirheidari F, Moradi Y, Paryan S. Identification of the promising olive ( Olea europaea L.) cultivars based on morphological and pomological characters. Food Sci Nutr 2022; 10:1299-1311. [PMID: 35432970 PMCID: PMC9007313 DOI: 10.1002/fsn3.2767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/07/2022] Open
Abstract
Olive (Olea europaea L.) is an ancient tree and can tolerate drought very well. In the present study, morphological and pomological diversity of 24 olive cultivars (5-15 replications for each cultivar, 243 trees in total) was evaluated. There were significant differences among the cultivars studied based on the characters recorded. The CV was more than 20.00% in 46 of 50 characters measured. Leaf length ranged from 27.07 to 78.54 mm, and leaf width varied from 5.42 to 23.06 mm. Ripening date ranged from late-August to early-October. Fruit length ranged from 13.04 to 33.72 mm, fruit diameter varied from 10.24 to 23.71 mm, fruit weighted from 0.97 to 9.61 g, and the range of fruit flesh thickness was 1.63-7.65 mm. There was high variability in terms of fruit color, ranging from light green to black. Hierarchical cluster analysis (HCA) performed based on the mean of replications with Euclidean distance and Ward method grouped the cultivars into two major clusters. Differences in many of the morphological traits were observed across the cultivars. These sets of data were used to identify unique and desirable cultivars morphologically. The present research demonstrates that local olive cultivars have unique characteristics that differentiate them from imported cultivars. Thus, local cultivars provide novel genetic resources that should be conserved.
Collapse
Affiliation(s)
- Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Farhad Mirheidari
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Younes Moradi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Simin Paryan
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| |
Collapse
|
7
|
González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. The Role of Chromatographic and Electromigration Techniques in Foodomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:31-49. [PMID: 34628626 DOI: 10.1007/978-3-030-77252-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques - especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Diana Angélica Varela-Martínez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.,Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Bogotá D.C., Colombia
| | | | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain. .,Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.
| |
Collapse
|
8
|
Species identification from seized animal oil: a case study of suspected Gangetic dolphin (Platanista gangetica). Int J Legal Med 2021; 135:1413-1416. [PMID: 33825024 DOI: 10.1007/s00414-021-02574-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Poaching of South Asian river dolphins is considered one of the main reasons for the rapid decline of their natural populations. To curb the escalated rate of poaching, high numbers of oil and meat seizures are recovered with subsequent convictions by the law enforcement agencies. In this connection, we report a case where suspected animal oil was confiscated by the forest official of West Bengal. We extracted DNA and successfully amplified partial fragments of Cytb and 16S rRNA mitochondrial genes. The generated sequences identified that the seized oil belonged to the Ganges river dolphin (Platanista gangetica) which is protected as Schedule I under the Wildlife (Protection) Act, 1972 of India and listed as "Endangered" under IUCN and APPENDIX I in CITES. In routine case work analysis, oil samples are not preferred for forensic DNA investigation due to low DNA yield and presence of inhibitors or contaminants leading to high failure rate. However, the present study generates hope for identifying species from seized animal oil and supports law enforcement in successful prosecution of the case.
Collapse
|
9
|
Nehal N, Choudhary B, Nagpure A, Gupta RK. DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol 2021; 41:767-791. [PMID: 33530758 DOI: 10.1080/07388551.2021.1874279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Globalization of the food trade requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and the traceability of foodstuffs. New challenges in food supply chains such as deliberate fraudulent substitution, tampering or mislabeling of food and its ingredients or food packaging incapacitates the market and eventually the national economy. Currently, no proper standards have been established for the authentication of most of the food materials. However, in order to control food fraud, various robust and cost-effective technologies have been employed, like a spectrophotometer, GC-MS, HPLC, and DNA barcoding. Among these techniques, DNA barcoding is a biotechnology advantage with the principle of using 400-800 bp long standardized unique DNA sequences of mitochondrial (e.g. COI) or plastidial (e.g. rbcL) of nuclear origin (e.g. ITS) to analyze and classify the food commodities. This review covers several traded food commodities like legumes, seafood, oils, herbal products, spices, fruits, cereals, meat, and their unique barcodes which are critically analyzed to detect adulteration or fraud. DNA barcoding is a global initiative and it is being accepted as a global standard/marker for species identification or authentication. The research laboratories and industries should collaborate to realize its potential in setting standards for quality assurance, quality control, and food safety for different food products.
Collapse
Affiliation(s)
- Nazish Nehal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Bharti Choudhary
- School of Studies in Biotechnology, Pt. Ravi Shankar Shukla University, Raipur, India
| | - Anand Nagpure
- Biology Division, State Forensic Science Laboratory, Bhopal, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
10
|
An Artificial Intelligence Approach for Italian EVOO Origin Traceability through an Open Source IoT Spectrometer. Foods 2020; 9:foods9060834. [PMID: 32630427 PMCID: PMC7353555 DOI: 10.3390/foods9060834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Extra virgin olive oil (EVOO) represents a crucial ingredient of the Mediterranean diet. Being a first-choice product, consumers should be guaranteed its quality and geographical origin, justifying the high purchasing cost. For this reason, it is important to have new reliable tools able to classify products according to their geographical origin. The aim of this work was to demonstrate the efficiency of an open source visible and near infra-red (VIS-NIR) spectrophotometer, relying on a specific app, in assessing olive oil geographical origin. Thus, 67 Italian and 25 foreign EVOO samples were analyzed and their spectral data were processed through an artificial intelligence algorithm. The multivariate analysis of variance (MANOVA) results reported significant differences (p < 0.001) between the Italian and foreign EVOO VIS-NIR matrices. The artificial neural network (ANN) model with an external test showed a correct classification percentage equal to 94.6%. Both the MANOVA and ANN tested methods showed the most important spectral wavelengths ranges for origin determination to be 308–373 nm and 594–605 nm. These are related to the absorption of phenolic components, carotenoids, chlorophylls, and anthocyanins. The proposed tool allows the assessment of EVOO samples’ origin and thus could help to preserve the “Made in Italy” from fraud and sophistication related to its commerce.
Collapse
|
11
|
Aykas DP, Karaman AD, Keser B, Rodriguez-Saona L. Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods 2020; 9:foods9020221. [PMID: 32093145 PMCID: PMC7073519 DOI: 10.3390/foods9020221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/30/2023] Open
Abstract
The aim of this study is to develop a non-targeted approach for the authentication of extra virgin olive oil (EVOO) using vibrational spectroscopy signatures combined with pattern recognition analysis. Olive oil samples (n = 151) were grouped as EVOO, virgin olive oil (VOO)/olive oil (OO), and EVOO adulterated with vegetable oils. Spectral data was collected using a compact benchtop Raman (1064 nm) and a portable ATR-IR (5-reflections) units. Oils were characterized by their fatty acid profile, free fatty acids (FFA), peroxide value (PV), pyropheophytins (PPP), and total polar compounds (TPC) through the official methods. The soft independent model of class analogy analysis using ATR-IR spectra showed excellent sensitivity (100%) and specificity (89%) for detection of EVOO. Both techniques identified EVOO adulteration with vegetable oils, but Raman showed limited resolution detecting VOO/OO tampering. Partial least squares regression models showed excellent correlation (Rval ≥ 0.92) with reference tests and standard errors of prediction that would allow for quality control applications.
Collapse
Affiliation(s)
- Didem Peren Aykas
- Department of Food Science and Technology, The Ohio State University, 100 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Ayse Demet Karaman
- Department of Dairy Technology, Faculty of Agricultural Engineering, Adnan Menderes University, Aydin 09100, Turkey;
| | - Burcu Keser
- Kocarli Vocational School, Adnan Menderes University, Aydin 09100, Turkey;
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, 100 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
- Correspondence: ; Tel.: +1-614-292-3339
| |
Collapse
|
12
|
Amane D, Ananthanarayan L. Detection of adulteration in black gram-based food products using DNA barcoding. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Basak S, Aadi Moolam R, Parida A, Mitra S, Rangan L. Evaluation of rapid molecular diagnostics for differentiating medicinal Kaempferia species from its adulterants. PLANT DIVERSITY 2019; 41:206-211. [PMID: 31453420 PMCID: PMC6704042 DOI: 10.1016/j.pld.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
Accurate detection of unique herbs is crucial for herbal medicine preparation. Zingiberaceae species, which are important in Ayurvedic medicine of India, are often misidentified in Northeast (NE) Indian herbal markets. Kaempferia galanga (Zingiberaceae) is one of the major components of popular Ayurvedic drugs used for rheumatic diseases (i.e., "Gandha Thailam" and "Rasnairandadi Kashayam"), contusions, fractures, and sprains. In NE India, herbal healers often misidentify plants from the Marantaceae family (e.g., Calathea bachemiana and Maranta leuconeura) as Kaempferia, which leads to adulteration of the medicinal herb. This misidentification of herbs occurs in NE India because Zingiberaceae plant barcoding information is inadequate. As a consequence, herbal medicine is not only therapeutically less effective but may also cause adverse reactions that range from mild to life-threatening. In this study, we used eight barcoding loci to develop "fingerprints" for four Kaempferia species and two species frequently mistaken for Kaempferia. The PCR and sequencing success of the loci matK, rbcL and trnH-psbA were found to be 100%; the combination of matK, rbcL, and trnH-psbA proved to be the ideal locus for discriminating the Kaempferia species from their adulterants because the combined loci showed greater variability than individual loci. This reliable tool was therefore developed in the current study for accurate identification of Kaempferia plants which can effectively resolve identification issues for herbal healers.
Collapse
Affiliation(s)
- Supriyo Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781 039, India
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ramesh Aadi Moolam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781 039, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| | - Sudip Mitra
- Centre for Rural Technology, Indian Institute of Technology Guwahati, Assam, 781 039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781 039, India
| |
Collapse
|
14
|
Agrimonti C, Marmiroli N. Food Genomics for the Characterization of PDO and PGI Virgin Olive Oils. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caterina Agrimonti
- Department of Chemistry, Life Sciences and Environmental Sustainability. University of Parmav.le Parco Area delle Scienze 11/A43124 ParmaItaly
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability. University of Parmav.le Parco Area delle Scienze 11/A43124 ParmaItaly
| |
Collapse
|
15
|
Highly efficient DNA extraction and purification from olive oil on a washable and reusable miniaturized device. Anal Chim Acta 2018; 1020:30-40. [DOI: 10.1016/j.aca.2018.02.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/21/2023]
|
16
|
McDowell D, Osorio MT, Elliott CT, Koidis A. Detection of Refined Sunflower and Rapeseed Oil Addition in Cold Pressed Rapeseed Oil Using Mid Infrared and Raman Spectroscopy. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel McDowell
- Institute for Global Food Security; Queen's University Belfast; 18-30 Malone Road Belfast, BT9 5BN Northern Ireland UK
| | - Maria Teresa Osorio
- Institute for Global Food Security; Queen's University Belfast; 18-30 Malone Road Belfast, BT9 5BN Northern Ireland UK
| | - Christopher T. Elliott
- Institute for Global Food Security; Queen's University Belfast; 18-30 Malone Road Belfast, BT9 5BN Northern Ireland UK
| | - Anastasios Koidis
- Institute for Global Food Security; Queen's University Belfast; 18-30 Malone Road Belfast, BT9 5BN Northern Ireland UK
| |
Collapse
|
17
|
Creydt M, Fischer M. Omics approaches for food authentication. Electrophoresis 2018; 39:1569-1581. [DOI: 10.1002/elps.201800004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science; Institute of Food Chemistry; University of Hamburg; Hamburg Germany
| | - Markus Fischer
- Hamburg School of Food Science; Institute of Food Chemistry; University of Hamburg; Hamburg Germany
| |
Collapse
|
18
|
Uncu AO, Torlak E, Uncu AT. A Cost-Efficient and Simple Plant Oil DNA Extraction Protocol Optimized for DNA-Based Assessment of Product Authenticity. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1070-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sharma V, Hazra T, Kandhol R, Sharma R, Arora S. Confirmation of buffalo tallow in anhydrous cow milk fat using gas liquid chromatography in tandem with species-specific polymerase chain reaction. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivek Sharma
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Tanmay Hazra
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Rakesh Kandhol
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Rekha Sharma
- National Bureau of Animal Genetic Resources (NBAGR); Karnal Haryana 132001 India
| | - Sumit Arora
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| |
Collapse
|
20
|
Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem 2017; 221:1026-1033. [DOI: 10.1016/j.foodchem.2016.11.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/29/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
|
21
|
Swetha V, Parvathy V, Sheeja T, Sasikumar B. Authentication of Myristica fragrans Houtt. using DNA barcoding. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Braukmann TWA, Kuzmina ML, Sills J, Zakharov EV, Hebert PDN. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada. PLoS One 2017; 12:e0169515. [PMID: 28072819 PMCID: PMC5224991 DOI: 10.1371/journal.pone.0169515] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/18/2016] [Indexed: 01/30/2023] Open
Abstract
Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is highest.
Collapse
Affiliation(s)
- Thomas W. A. Braukmann
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Maria L. Kuzmina
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Jesse Sills
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Evgeny V. Zakharov
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
DNA barcoding reveals commercial fraud related to yak jerky sold in China. SCIENCE CHINA-LIFE SCIENCES 2016; 59:106-8. [PMID: 26758743 DOI: 10.1007/s11427-015-4979-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
24
|
Bolson M, Smidt EDC, Brotto ML, Silva-Pereira V. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLoS One 2015; 10:e0143049. [PMID: 26630282 PMCID: PMC4704546 DOI: 10.1371/journal.pone.0143049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023] Open
Abstract
The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL) and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL). The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.
Collapse
Affiliation(s)
- Mônica Bolson
- Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eric de Camargo Smidt
- Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Viviane Silva-Pereira
- Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
25
|
Mi X, Yang J, Cao L, Wei X, Zhu Y, Li Q, Liu X, He X, Liao Q, Yan Z. Potential DNA markers as a rapid tracing tool for animal adulterants in vegetarian food. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Parvathy VA, Swetha VP, Sheeja TE, Sasikumar B. Detection of plant-based adulterants in turmeric powder using DNA barcoding. PHARMACEUTICAL BIOLOGY 2015; 53:1774-1779. [PMID: 25853978 DOI: 10.3109/13880209.2015.1005756] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. OBJECTIVE The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. MATERIALS AND METHODS Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. RESULTS The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. DISCUSSION AND CONCLUSION Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.
Collapse
Affiliation(s)
- V A Parvathy
- Division of Crop Improvement and Biotechnology, Indian Institute of Spices Research , Kozhikode, Kerala , India
| | | | | | | |
Collapse
|
27
|
Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:541591. [PMID: 25802541 PMCID: PMC4352757 DOI: 10.1155/2015/541591] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 01/18/2023]
Abstract
Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine.
Collapse
Affiliation(s)
- Muhammad Ali Hashmi
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Muhammad Hanif
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Abstract
DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.
Collapse
Affiliation(s)
- Natasha de Vere
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, SA32 8HG, UK,
| | | | | | | |
Collapse
|
29
|
Ou G, Hu R, Zhang L, Li P, Luo X, Zhang Z. Advanced detection methods for traceability of origin and authenticity of olive oils. ANALYTICAL METHODS 2015; 7:5731-5739. [DOI: 10.1039/c5ay00048c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
This review focuses on the advances in the sensing and identification of adulteration of olive oil, including optical sensing, chromatography, nuclear magnetic resonance, and DNA-based methods.
Collapse
Affiliation(s)
- Gaozhi Ou
- Department of Sports
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Rui Hu
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan
- P. R. China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Key Laboratory of Detection for Mycotoxins
- Ministry of Agriculture
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Key Laboratory of Detection for Mycotoxins
- Ministry of Agriculture
| | - Xinjian Luo
- Department of Sports
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Key Laboratory of Detection for Mycotoxins
- Ministry of Agriculture
| |
Collapse
|
30
|
Swetha VP, Parvathy VA, Sheeja TE, Sasikumar B. DNA Barcoding for Discriminating the Economically ImportantCinnamomum verumfrom Its Adulterants. FOOD BIOTECHNOL 2014. [DOI: 10.1080/08905436.2014.931239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B. DNA Barcoding to Detect Chilli Adulteration in Traded Black Pepper Powder. FOOD BIOTECHNOL 2014. [DOI: 10.1080/08905436.2013.870078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Aparicio R, Morales MT, Aparicio-Ruiz R, Tena N, García-González DL. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.07.039] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Putative markers of adulteration of extra virgin olive oil with refined olive oil: Prospects and limitations. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Pérez-Jiménez M, Besnard G, Dorado G, Hernandez P. Varietal tracing of virgin olive oils based on plastid DNA variation profiling. PLoS One 2013; 8:e70507. [PMID: 23950947 PMCID: PMC3737381 DOI: 10.1371/journal.pone.0070507] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices.
Collapse
Affiliation(s)
- Marga Pérez-Jiménez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, Córdoba, Spain
| | - Guillaume Besnard
- Laboratoire Evolution & Diversité Biologique (EDB), CNRS-UPS-ENFA, UMR 5174, Bâtiment 4R1b2, Toulouse Cedex 9, France
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, Córdoba, Spain
| |
Collapse
|
35
|
de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S, Tatarinova T, Garbett H, Walker K, Wilkinson MJ. DNA barcoding the native flowering plants and conifers of Wales. PLoS One 2012; 7:e37945. [PMID: 22701588 PMCID: PMC3368937 DOI: 10.1371/journal.pone.0037945] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.
Collapse
Affiliation(s)
- Natasha de Vere
- National Botanic Garden of Wales, Llanarthne, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rossi S, Calabretta A, Tedeschi T, Sforza S, Arcioni S, Baldoni L, Corradini R, Marchelli R. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays. ARTIFICIAL DNA, PNA & XNA 2012; 3:63-72. [PMID: 22772038 PMCID: PMC3429532 DOI: 10.4161/adna.20603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes.
Collapse
Affiliation(s)
- Stefano Rossi
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
He Y, Hou P, Fan G, Song Z, Arain S, Shu H, Tang C, Yue Q, Zhang Y. Authentication of Angelica anomala Avé-Lall cultivars through DNA barcodes. ACTA ACUST UNITED AC 2012; 23:100-5. [PMID: 22397381 DOI: 10.3109/19401736.2012.660924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angelica anomala Avé-Lall (Chuanbaizhi in Chinese) is an important medicinal plant which can be used in traditional Chinese medicines; however, there are no authentic and universal methods to differentiate this Sichuan famous-region drug of A. anomala from a large number of non-famous-region and false drugs. It has been demonstrated that DNA barcoding is a molecular diagnostic method for species identification, which uses a single standardized DNA fragment. In this study, we tested five DNA barcoding candidates (matK, ITS, ITS2, rbcL, and psbA-trnH), and we found that ITS was the best candidate to authenticate the famous-region drug of A. anomala. Moreover, through comparative analysis of these five DNA barcodes between A. anomala and Angelica dahurica, we found that ITS had the most and ITS2 had more variable regions, but the psbA-trnH, rbcL, and matK regions were identical. Hence, we suggest ITS as the DNA barcoding to identify A. anomala and A. dahurica. Moreover, we are determined to adopt the A. anomala as the accurate Latin name of Chuanbaizhi.
Collapse
Affiliation(s)
- Yang He
- College of Ethnomedicines, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Gary R. Takeoka
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Susan E. Ebeler
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|