1
|
Álvares AA, Garcêz A, Silva LT, Averbuch N, Garavaglia J. Olive leaf extract effect on cardiometabolic risk factors: a systematic review and meta-analysis of randomized clinical trials. Nutr Rev 2024; 82:1710-1725. [PMID: 38287654 DOI: 10.1093/nutrit/nuad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
CONTEXT Olive leaf extract (OLE) is rich in phenolic compounds, which are known for their health benefits. Cardiovascular diseases, primarily coronary heart disease and stroke, are leading causes of mortality globally. OBJECTIVE This systematic review aimed to assess the impact of OLE on cardiometabolic risk factors in adults. The selection of studies was based on intervention and outcomes, using relevant search descriptors. DATA SOURCES The databases PubMed, EMBASE, and Web of Science were systematically searched for pertinent studies published up to August 2021. DATA EXTRACTION Only randomized clinical trials, either cross-over or parallel, involving adult individuals aged ≥18 years, were considered. Additionally, trials that had a comparative or placebo group and used pure OLEs for oral treatment were included. DATA ANALYSIS Twelve randomized clinical trials (RCTs) met the inclusion criteria. These trials had follow-up periods ranging from 2 days to 12 weeks and involved 703 patients aged 18 years-79 years. The outcomes demonstrated a positive correlation between the intervention group and glucose metabolism (4 RCTs), blood pressure (2 RCTs), lipid profile (2 RCTs), and inflammatory markers (2 RCTs). The RoB2 tool and the GRADE system were used to evaluate the risk of bias and the quality of evidence in the studies. CONCLUSIONS In the meta-analysis, fasting glycemia, as evaluated in studies using a low dose of OLE, showed a significant result favoring the control group. To obtain more consistent results, further clinical studies in humans, using similar methodologies, are required. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020200877.
Collapse
Affiliation(s)
- Andressa Anelo Álvares
- Nutrition Sciences Graduate Program, Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Anderson Garcêz
- Nutrition Sciences Graduate Program, Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Lucas Tolio Silva
- Gastronomy Undergraduate Course, Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Natália Averbuch
- Nutrition Sciences Graduate Program, Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Juliano Garavaglia
- Nutrition Sciences Graduate Program, Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| |
Collapse
|
2
|
de Aguiar Sobral P, Miyahira RF, Zago L. Health Outcomes Related to the Consumption of Olive Products: A Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:643-653. [PMID: 37932611 DOI: 10.1007/s11130-023-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Olive oil, as well as by-products and waste that are left after production, particularly olive pomace and olive leaf, have been extensively researched as sources of phenolic compounds. These compounds are known for their biological properties and have been associated with the prevention of chronic non-communicable diseases. Metabolomics has been used as a methodological tool to elucidate the molecular mechanisms underlying these properties. The present review explores the health outcomes and changes in endogenous metabolite profiles induced by olive derivatives. A literature search was conducted using the scientific databases Scopus, Web of Science and PubMed, and the selected articles were published between the years 2012 and 2023. The reviewed studies have reported several health benefits of olive derivatives and their phenolic components, including appetite regulation, fewer cardiovascular disorders, and antiproliferative properties. This review also addressed the bioavailability of these compounds, their impact on the microbiota, and described biomarkers of their intake. Therefore, there should be further research using this methodology for a better understanding of the performance and therapeutic potential of olive derivatives.
Collapse
Affiliation(s)
- Pamela de Aguiar Sobral
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Roberta Fontanive Miyahira
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Lilia Zago
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
3
|
Di Renzo L, Smeriglio A, Ingegneri M, Gualtieri P, Trombetta D. The Pharmaceutical Formulation Plays a Pivotal Role in Hydroxytyrosol Pharmacokinetics. Pharmaceutics 2023; 15:pharmaceutics15030743. [PMID: 36986604 PMCID: PMC10059125 DOI: 10.3390/pharmaceutics15030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Current evidence supports the use of extra virgin olive oil (EVOO) and its minor components such as hydroxytyrosol or 3,4-dihydroxyphenyl ethanol (DOPET), to improve cardiovascular and metabolic health. Nevertheless, more intervention studies in humans are needed because some gaps remain in its bioavailability and metabolism. The aim of this study was to investigate the DOPET pharmacokinetics on 20 healthy volunteers by administering a hard enteric-coated capsule containing 7.5 mg of bioactive compound conveyed in EVOO. The treatment was preceded by a washout period with a polyphenol and an alcohol-free diet. Blood and urine samples were collected at baseline and different time points, and free DOPET and metabolites, as well as sulfo- and glucuro-conjugates, were quantified by LC-DAD-ESI-MS/MS analysis. The plasma concentration versus time profiles of free DOPET was analyzed by a non-compartmental approach, and several pharmacokinetic parameters (Cmax, Tmax, T1/2, AUC0–440 min, AUC0–∞, AUCt–∞, AUCextrap_pred, Clast and Kel) were calculated. Results showed that DOPET Cmax (5.5 ng/mL) was reached after 123 min (Tmax), with a T1/2 of 150.53 min. Comparing the data obtained with the literature, the bioavailability of this bioactive compound is about 2.5 times higher, confirming the hypothesis that the pharmaceutical formulation plays a pivotal role in the bioavailability and pharmacokinetics of hydroxytyrosol.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765630
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022; 14:3773. [PMID: 36145149 PMCID: PMC9504511 DOI: 10.3390/nu14183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Consumption of olive products has been established as a health-promoting dietary pattern due to their high content in compounds with eminent pharmacological properties and well-described bioactivities. However, their metabolism has not yet been fully described. The present critical review aimed to gather all scientific data of the past two decades regarding the absorption and metabolism of the foremost olive compounds, specifically of the phenylalcohols hydroxytyrosol (HTyr) and tyrosol (Tyr) and the secoiridoids oleacein (Olea), oleocanthal (Oleo) and oleuropein (Oleu). A meticulous record of the in vitro assays and in vivo (animals and humans) studies of the characteristic olive compounds was cited, and a critical discussion on their bioavailability and metabolism was performed taking into account data from their gut microbial metabolism. The existing critical review summarizes the existing knowledge regarding the bioavailability and metabolism of olive-characteristic phenylalchohols and secoiridoids and spotlights the lack of data for specific chemical groups and compounds. Critical observations and conclusions were derived from correlating structure with bioavailability data, while results from in vitro, animal and human studies were compared and discussed, giving significant insight to the future design of research approaches for the total bioavailability and metabolism exploration thereof.
Collapse
Affiliation(s)
| | | | | | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
5
|
Polia F, Horcajada MN, Poquet L, Tomás-Barberán FA, García-Villalba R. A novel combined analytical UV and MS approach for the quantification of oleuropein metabolites in human biological samples when authentic standards are not available. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123457. [PMID: 36150306 DOI: 10.1016/j.jchromb.2022.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
The beneficial health effects of phytochemicals depend on their bioavailability and the form under which they reach systemic circulation, usually as phase II metabolites. The lack of authentic standards for these metabolites makes their quantification in biological samples challenging. A new analytical approach to get a more accurate quantification of oleuropein metabolites in biological samples after ingestion of olive leaf extract was proposed. This approach was based on the calculation of a response factor in QTOF MS for each metabolite, comparing their quantification in UV and MS using urine samples concentrated in the metabolites of interest. Glucuronide and sulfate conjugates of hydroxytyrosol and homovanillyl alcohol were more accurately quantified in plasma and urine and for the first time, oleuropein aglycone conjugates and their hydroxylated and hydrogenated derivatives were quantified after consumption of olive products. This approach could be extensible to the analysis of other phenolic metabolites when authentic standards are not available, opening a valuable method for bioavailability studies.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Innovation EPFL Park, 1015 Lausanne, Switzerland.
| | - Laure Poquet
- Nestlé Institute of Health Sciences, Nestlé Research, Innovation EPFL Park, 1015 Lausanne, Switzerland.
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
6
|
A Comprehensive Review on the Anti-Cancer Effects of Oleuropein. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081140. [PMID: 36013319 PMCID: PMC9409738 DOI: 10.3390/life12081140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
In Mediterranean cuisine and culture, olive oil and olive fruits play a significant role. Many people believe that those who consume olive oil and its fruit live longer and have a decreased risk of illness. Olive leaves were used to treat a range of diseases in ancient times, including malaria fever and lower earaches. Although it was not understood at the time what key components were responsible for these effects because they had not yet been discovered, Oleuropein is now recognized as one of the primary elements in immature olive fruits and leaves. Later research was carried out to determine the effects of this molecule, and it was determined that it functions as an antioxidant. Oleuropein consumption has aided in cancer treatment over the years, and this was assumed to be owing to its antioxidant properties. Oleuropein’s effects on cancer, however, go beyond that; it is now known that Oleuropein functions as both an anti-proliferative and an apoptotic promoter in many cancer cells. The kinetics and dosages of Oleuropein and the mechanisms behind its involvement and effects in cancer are explored in this review. Finally, the effects of Oleuropein in combination with anticancer medicines are investigated.
Collapse
|
7
|
Galmés S, Reynés B, Palou M, Palou-March A, Palou A. Absorption, Distribution, Metabolism, and Excretion of the Main Olive Tree Phenols and Polyphenols: A Literature Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5281-5296. [PMID: 33908772 DOI: 10.1021/acs.jafc.1c00737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of olive tree (poly)phenols (OPs) are largely dependent upon their bioavailability and metabolization by humans. Absorption, distribution, metabolism, and excretion (ADME) are fundamental for the nutritional efficacy and toxicological impact of foods containing OPs. This review includes studies on the administration of hydroxytyrosol (HT), oleuropein (Ole), or other OPs and foods, products, or mixtures that contain them. Briefly, data from in vivo studies indicate that OPs are absorbable by intestinal cells. Both absorption and bioavailability depend upon each compound and/or the matrix in which it is contained. OPs metabolism begins in enterocytes and can also continue in the liver. Metabolic phase I mainly consists of the hydrolysis of Ole, which results in an increase in the HT content. Phase II metabolic reactions involve the conjugation of (poly)phenols mainly with glucuronide and sulfate groups. This review offers a complete perspective of the ADME processes of OPs, which could support the future nutritional and/or toxicological studies in this area.
Collapse
Affiliation(s)
- Sebastià Galmés
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Bàrbara Reynés
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
| | - Mariona Palou
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Andreu Palou-March
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Andreu Palou
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| |
Collapse
|
8
|
Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem 2020; 310:125976. [DOI: 10.1016/j.foodchem.2019.125976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
|
9
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
10
|
Romani A, Ieri F, Urciuoli S, Noce A, Marrone G, Nediani C, Bernini R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019; 11:nu11081776. [PMID: 31374907 PMCID: PMC6724211 DOI: 10.3390/nu11081776] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022] Open
Abstract
Olea europaea L. fruit is a peculiar vegetal matrix containing high levels of fatty acids (98–99% of the total weight of extra-virgin olive oil, EVOO) and low quantities (1–2%) of phenolics, phytosterols, tocopherols, and squalene. Among these minor components, phenolics are relevant molecules for human health. This review is focused on their beneficial activity, in particular of hydroxytyrosol (HT), oleuropein (OLE), oleocanthal (OLC), and lignans found in EVOO, olive oil by-products and leaves. Specifically, the cardioprotective properties of the Mediterranean diet (MD) related to olive oil consumption, and the biological activities of polyphenols recovered from olive oil by-products and leaves were described. Recent European projects such as EPIC (European Prospective Investigation into Cancer and Nutrition) and EPICOR (long-term follow-up of antithrombotic management patterns in acute coronary syndrome patients) have demonstrated the functional and preventive activities of EVOO showing the relation both between cancer and nutrition and between consumption of EVOO, vegetables, and fruit and the incidence of coronary heart disease. The data reported in this review demonstrate that EVOO, one of the pillars of the MD, is the main product of Olea europaea L. fruits; leaves and by-products are secondary but precious products from which bioactive compounds can be recovered by green technologies and reused for food, agronomic, nutraceutical, and biomedical applications according to the circular economy strategy.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Ieri
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
11
|
Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem 2019; 279:40-48. [DOI: 10.1016/j.foodchem.2018.11.127] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
|
12
|
Žugčić T, Abdelkebir R, Alcantara C, Collado MC, García-Pérez JV, Meléndez-Martínez AJ, Režek Jambrak A, Lorenzo JM, Barba FJ. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Boss A, Bishop KS, Marlow G, Barnett MPG, Ferguson LR. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016; 8:nu8080513. [PMID: 27548217 PMCID: PMC4997426 DOI: 10.3390/nu8080513] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022] Open
Abstract
The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.
Collapse
Affiliation(s)
- Anna Boss
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Karen S Bishop
- Auckland Cancer Society Research Centre, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Gareth Marlow
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| | - Matthew P G Barnett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Lynnette R Ferguson
- Discipline of Nutrition, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
- Auckland Cancer Society Research Centre, FM & HS, University of Auckland Medical School, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Targeted and Untargeted Metabolomics to Explore the Bioavailability of the Secoiridoids from a Seed/Fruit Extract (Fraxinus angustifolia Vahl) in Human Healthy Volunteers: A Preliminary Study. Molecules 2015; 20:22202-19. [PMID: 26690403 PMCID: PMC6332458 DOI: 10.3390/molecules201219845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
The bark, seeds, fruits and leaves of the genus Fraxinus (Oleaceae) which contain a wide range of phytochemicals, mostly secoiridoid glucosides, have been widely used in folk medicine against a number of ailments, yet little is known about the metabolism and uptake of the major Fraxinus components. The aim of this work was to advance in the knowledge on the bioavailability of the secoiridoids present in a Fraxinus angustifolia Vahl seed/fruit extract using both targeted and untargeted metabolomic analyses. Plasma and urine samples from nine healthy volunteers were taken at specific time intervals following the intake of the extract and analyzed by UPLC-ESI-QTOF. Predicted metabolites such as tyrosol and ligstroside-aglycone glucuronides and sulfates were detected at low intensity. These compounds reached peak plasma levels 2 h after the intake and exhibited high variability among the participants. The ligstroside-aglycone conjugates may be considered as potential biomarkers of the Fraxinus secoiridoids intake. Using the untargeted approach we additionally detected phenolic conjugates identified as ferulic acid and caffeic acid sulfates, as well as hydroxybenzyl and hydroxyphenylacetaldehyde sulfate derivatives which support further metabolism of the secoiridoids by phase I and (or) microbial enzymes. Overall, the results of this study suggest low uptake of intact secoiridoids from a Fraxinus angustifolia Vahl extract in healthy human volunteers and metabolic conversion by esterases, glycosidases, and phase II sulfo- and glucuronosyl transferases to form smaller conjugated derivatives.
Collapse
|
15
|
Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 2015; 114:75-83. [PMID: 26051429 DOI: 10.1017/s0007114515001269] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10 mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P< 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health.
Collapse
|
16
|
de Bock M, Thorstensen EB, Derraik JGB, Henderson HV, Hofman PL, Cutfield WS. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res 2013; 57:2079-85. [PMID: 23766098 DOI: 10.1002/mnfr.201200795] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/24/2013] [Accepted: 04/05/2013] [Indexed: 01/03/2023]
Abstract
Phenolic compounds derived from the olive plant (Olea europaea L.), particularly hydroxytyrosol and oleuropein, have many beneficial effects in vitro. Olive leaves are the richest source of olive phenolic compounds, and olive leaf extract (OLE) is now a popular nutraceutical taken either as liquid or capsules. To quantify the bioavailability and metabolism of oleuropein and hydroxytyrosol when taken as OLE, nine volunteers (five males) aged 42.8 ± 7.4 years were randomized to receive either capsulated or liquid OLE as a single lower (51.1 mg oleuropein, 9.7 mg hydroxytyrosol) or higher (76.6 mg oleuropein, 14.5 mg hydroxytyrosol) dose, and then the opposite strength (but same formulation) a week later. Plasma and urine samples were collected at fixed intervals for 24 h post-ingestion. Phenolic content was analyzed by LC-ESI-MS/MS. Conjugated metabolites of hydroxytyrosol were the primary metabolites recovered in plasma and urine after OLE ingestion. Peak oleuropein concentrations in plasma were greater following ingestion of liquid than capsule preparations (0.47 versus 2.74 ng/mL; p = 0.004), but no such effect was observed for peak concentrations of conjugated (sulfated and glucuronidated) hydroxytyrosol (p = 0.94). However, the latter peak was reached earlier with liquid preparation (93 versus 64 min; p = 0.031). There was a gender effect on the bioavailability of phenolic compounds, with males displaying greater plasma area under the curve for conjugated hydroxytyrosol (11,600 versus 2550 ng/mL; p = 0.048). All conjugated hydroxytyrosol metabolites were recovered in the urine within 8 h. There was wide inter-individual variation. OLE effectively delivers oleuropein and hydroxytrosol metabolites to plasma in humans.
Collapse
Affiliation(s)
- Martin de Bock
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
|