1
|
Fatima Hashmi S, Saleem H, Khurshid U, Khursheed A, Tauquir Alam M, Imran M, Abida, Nayeem N, Shoaib Ali Gill M. Genus Berberis: A Comprehensive and Updated Review on Ethnobotanical Uses, Phytochemistry and Pharmacological Activities. Chem Biodivers 2024; 21:e202400911. [PMID: 38923729 DOI: 10.1002/cbdv.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Genus Berberis is an excellent choice for research due to its history in traditional medicine, diverse pharmacological properties, and it has potential for drug discovery. This review presents information on the ethnobotany, pharmacological activities, and many phytochemicals identified from Berberis species. It examines the existing literature on the genus Berberis, drawn from online databases, including PubMed, Web of Science, Science Direct, Elsevier, and Google Scholar, etc encompassing the data from 1960 to 2023. This review focuses on the structural details of reported phytochemicals of Berberis species and pharmacological actions. Different extraction techniques were evaluated for extracts preparation. According to literature review, phytochemical analysis exhibited the presence of alkaloids, flavonoids, and phenolic compounds. A major bioactive alkaloid, berberine exhibits its main role in treatment of many gastric, infectious, and chronic disorders. This literature indicates that Berberis genus exhibits a variety of biological activities, i.e anti-inflammatory, cytotoxic, hepatoprotective, antimicrobial, antidiabetic and antioxidant activities and utilization of these effects in the treatment and management of various diseases, like diabetes, microbial infections, inflammation, liver disorders, and cancer. However, conventional medicines, validation of traditional uses, and in-depth phytochemical analysis are areas of research in genus Berberis.
Collapse
Affiliation(s)
- Samar Fatima Hashmi
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Naira Nayeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
2
|
Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024; 16:2953. [PMID: 39275269 PMCID: PMC11397700 DOI: 10.3390/nu16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
| | - Giorgio Cappellucci
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Elisabetta Miraldi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Biagi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Cheng X, Liang J, Wu D, Guo X, Cao H, Zhang C, Liu P, Hu R, Hu G, Zhuang Y. Blunting ROS/TRPML1 pathway protects AFB1-induced porcine intestinal epithelial cells apoptosis by restoring impaired autophagic flux. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114942. [PMID: 37086622 DOI: 10.1016/j.ecoenv.2023.114942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Aflatoxin B1 (AFB1) is a stable mycotoxin that contaminates animal feed on a large scale and causes severe damage to intestinal cells, induces inflammation and stimulates autophagy. Transient receptor potential mucolipin subfamily 1 (TRPML1) is a regulatory factor of autophagy, but the underlying mechanisms of TRPML1-mediated autophagy in AFB1 intestine toxicity remain elucidated. In the present study, AFB1 (0, 5, 10 μg/mL) was shown to reduce cell viability, increase reactive oxygen species (ROS) accumulation and apoptosis rate. Additionally, AFB1 caused structural damage to mitochondria and lysosomes and increased autophagosomes numbers. Furthermore, AFB1 promoted Ca2+ release by activating the TRPML1 channel, stimulated the expression of autophagy-related proteins, and induced autophagic flux blockade. Moreover, pharmacological inhibition of autophagosome formation by 3-methyladenine attenuated AFB1-induced apoptosis by downregulating the levels of TRPML1 and ROS, whereas blockade of autophagosome-lysosomal fusion by chloroquine alleviated AFB1-induced apoptosis by upregulating TRPML1 expression and exacerbating ROS accumulation. Intriguingly, blocking AFB1-induced autophagic flux generated ROS- and TRPML1-dependent cell death, as shown by the decreased apoptosis in the presence the free radical scavenger N-Acetyl-L-cysteine and the TRPML1 inhibitor ML-SI1. Overall, these results showed that AFB1 promoted apoptosis of IPEC-J2 cells by disrupting autophagic flux through activation of the ROS/TRPML1 pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jiahua Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Dan Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
4
|
Zou HY, Zhang HJ, Zhao YC, Li XY, Wang YM, Zhang TT, Xue CH. N-3 PUFA Deficiency Aggravates Streptozotocin-Induced Pancreatic Injury in Mice but Dietary Supplementation with DHA/EPA Protects the Pancreas via Suppressing Inflammation, Oxidative Stress and Apoptosis. Mar Drugs 2023; 21:md21010039. [PMID: 36662212 PMCID: PMC9861647 DOI: 10.3390/md21010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional β-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development of pancreatic injury are still not clear. In the present study, an n-3 PUFA deficiency mouse model was established by feeding them with n-3 PUFA deficiency diets for 30 days. Results showed that n-3 PUFA deficiency aggravated streptozotocin (STZ)-induced pancreas injury by reducing the insulin level by 18.21% and the HOMA β-cell indices by 31.13% and the area of islet by 52.58% compared with the STZ group. Moreover, pre-intervention with DHA and EPA for 15 days could alleviate STZ-induced pancreas damage by increasing the insulin level by 55.26% and 44.33%, the HOMA β-cell indices by 118.81% and 157.26% and reversed the area of islet by 196.75% and 205.57% compared to the n-3 Def group, and the effects were significant compared to γ-linolenic acid (GLA) and alpha-linolenic acid (ALA) treatment. The possible underlying mechanisms indicated that EPA and DHA significantly reduced the ration of n-6 PUFA to n-3 PUFA and then inhibited oxidative stress, inflammation and islet β-cell apoptosis levels in pancreas tissue. The results might provide insights into the prevention and alleviation of pancreas injury by dietary intervention with PUFAs and provide a theoretical basis for their application in functional foods.
Collapse
Affiliation(s)
- Hong-Yu Zou
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Hui-Juan Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| |
Collapse
|
5
|
Dou Y, Ai G, Huang R, Huang Z, Li Y, Liu Y, Xie J, Chen J, Su Z. In vitro and in vivo hypoglycemia effect of oxyberberine, a novel HO-1 agonist: A renewed evidence linking HO-1 to diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154135. [PMID: 35509133 DOI: 10.1016/j.phymed.2022.154135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Oxyberberine (OBB), an important in vivo metabolite of berberine, exerts superior hypoglycemia effect. However, the underlying mechanism remains obscure. Heme oxygenase-1 (HO-1) holds a crucial status in the pathogenesis of diabetes. Previous research has indicated that OBB can specifically bind to hemoglobin and significantly up-regulated the HO-1 expression in diabetic rat. Based on cellular protection features of HO-1, this work aimed to probe the anti-diabetic effect of OBB and the association with the potential induction of HO-1 expression. METHODS A type 2 diabetic mellitus rat model was established. Glucolipid metabolism and insulin sensitivity were analyzed. Immunohistochemistry, Western blotting and in silico simulations were also performed. RESULTS Administration of OBB or HO-1 inducer hemin significantly reduced fasting blood glucose level, blood fat, and inflammatory cytokine levels, while increased antioxidant capacity of pancreas. Meanwhile, OBB treatment remarkably stimulated liver glycogenesis and inhibited gluconeogenesis. Besides, OBB improved the glucose utilizing of muscle. Noteworthily, OBB inhibited the islet cell apoptosis and improved pancreatic function. In addition, OBB effectively improved the consumption of glucose in insulin-resistant HepG2 cells. Moreover, OBB also reduced oxidative stress, promoted glucose-elicited insulin secretion and enhanced expression of β-cell function proteins in INS-1 cells. Nevertheless, these effects were significantly reversed by treatment with Zincprotoporphrin (ZnPP). Additionally, in silico simulations indicated that OBB exhibited superior affinity with HO-1. CONCLUSION OBB effectively ameliorated hyperglycemia, dyslipidemia, and insulin resistance, improved oral glucose tolerance, and maintained glucose metabolism homeostasis, at least in part, by promoting HO-1-mediated activation of phosphoinositide 3-kinase / protein kinase B (PI3K/Akt) and AMP-activated protein kinase (AMPK) pathways. These data eloquently suggest that OBB, as a novel HO-1 agonist, has good potential to be a promising candidate drug for the management of diabetes, and support a therapeutic role of HO-1 induction in diabetes that potentially paves the way to translational research.
Collapse
Affiliation(s)
- Yaoxing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Chen J, Wang M, Wang H, Long M. Zearalenone promotes apoptosis of mouse Leydig cells by targeting phosphatase and tensin homolog and thus inhibiting the PI3K/AKT signal pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67779-67787. [PMID: 34264493 DOI: 10.1007/s11356-021-15282-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogenic activity whose main effect is to impair the reproductive systems of animals. It leads to reproductive disorders in livestock and thus causes serious losses to agriculture and animal husbandry. This study aims to examine whether ZEA induces toxicity in Leydig cells through the PI3K/AKT signaling pathway and also to investigate the role played by the upstream phosphatase and tensin homolog (PTEN) gene. An adenovirus vector model was constructed to interfere with the PTEN gene to investigate whether ZEA promotes the apoptosis of TM3 cells through the PI3K/AKT pathway. Apoptosis was detected cytometrically and the protein expression levels of PTEN, AKT, p-AKT, Bax, and Bcl-2 were evaluated via western blot analysis. The results show that ZEA induces apoptosis of TM3 cells. PTEN expression is significantly increased (P < 0.01), Bax expression is increased (P < 0.05), AKT and p-AKT expression of anti-apoptotic protein is significantly decreased (P < 0.01), and Bcl-2 protein expression is decreased (P < 0.05) in the ZEA group compared with the control group. In the shRNA+ZEA group, the expression levels of PTEN and Bax proteins are significantly decreased (P < 0.01), AKT protein is significantly increased (P < 0.01), and p-AKT protein is increased (P < 0.05) compared with the ZEA group. This study thus demonstrates that ZEA promotes apoptosis of TM3 cells by targeting PTEN and thus inhibiting the PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hanli Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Liu X, Jiang X, Yu Q, Shen W, Tian H, Mei X, Wu C. Sodium alginate and Naloxone loaded macrophage-derived nanovesicles for the treatment of spinal cord injury. Asian J Pharm Sci 2021; 17:87-101. [PMID: 35261646 PMCID: PMC8888181 DOI: 10.1016/j.ajps.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) causes Ca2+ overload, which can lead to inflammation and neuronal apoptosis. In this study, we prepared a nanovesicle derived from macrophage membrane (MVs), which encapsulated sodium alginate (SA) and naloxone (NAL) to inhibit inflammation and protect neurons by reducing the free Ca2+concentration at the SCI site. Based on the transmission electron microscopy (TEM) image, the encapsulated sample (NAL–SA–MVs) had a particle size of approximately 134 ± 11 nm and exhibited a sustained release effect. The encapsulation rate of NAL and SA was 82.07% ± 3.27% and 72.13% ± 2.61% in NAL–SA–MVs, respectively. Targeting tests showed that the NAL–SA–MVs could accumulate in large quantities and enhance the concentration of SA and NAL at the lesion sites. In vivo and in vitro studies indicated that the NAL–SA–MVs could decrease the concentration of free Ca2+, which should further alleviate the inflammatory response and neuronal apoptosis. Anti-inflammation results demonstrated that the NAL–SA–MVs could reduce the pro-inflammation factors (iNOS, TNF-α, IL-1β, IL-6) and increase the expression of anti-inflammation factors (IL-10) at the cell and animal level. Concurrently, fluorescence, flow cytometry and western blot characterization showed that the apoptotic condition of the neurons was significantly inhibited. In addition, the motor function of C57 mice were significantly improved after NAL–SA–MVs treatment. In conclusion, it is suggested that the NAL–SA–MVs has tremendous potential in the treatment of SCI.
Collapse
Affiliation(s)
- Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, China
- Corresponding author.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
- Corresponding author.
| |
Collapse
|
8
|
Zhou JY, Lin HL, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol Nutr Food Res 2021; 65:e2100406. [PMID: 34216418 DOI: 10.1002/mnfr.202100406] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Indexed: 12/23/2022]
Abstract
SCOPE The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| |
Collapse
|
9
|
Lin HC, Lin JY. Pharmacological Effects of Guava ( Psidium guajava L.) Seed Polysaccharides: GSF3 Inhibits PC-3 Prostate Cancer Cell Growth through Immunotherapy In Vitro. Int J Mol Sci 2021; 22:3631. [PMID: 33807287 PMCID: PMC8036945 DOI: 10.3390/ijms22073631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
The inhibitory effects of purified fractions isolated from guava seed polysaccharides (GSPS) including guava seed polysaccharide fraction 1 (GSF1), GSF2, and GSF3 on prostate cancer cells remain unclear. To clarify the anti-prostate cancer potential, GSPS, GSF1, GSF2, and GSF3 were isolated using Sepharose 6B gel filtration chromatography to assay their inhibitory effects on prostate PC-3 cell growth with direct action or indirect immunotherapy using either splenocyte conditioned media (SCM) or macrophage conditioned media (MCM). Correlations between cytokine profiles in the conditioned media and pro-apoptotic gene expression levels in the corresponding treated PC-3 cells were analyzed. Results showed that GSPS, GSF1, GSF2, and GSF3, particularly GSF3, through either direct action or indirect treatments using SCM or MCM, significantly (p < 0.05) inhibited PC-3 cell growth. GSF3 direct treatments increased pro-apoptotic Bax/anti-apoptotic Bcl-2 mRNA expression ratios in corresponding treated PC-3 cells. Either SCM or MCM cultured with GSF3 increased Fas mRNA expression levels in corresponding treated PC-3 cells. Both Th2-polarized and anti-inflammatory cytokine IL-10 either secreted in SCM or MCM were positively correlated with Fas mRNA expression levels in corresponding treated PC-3 cells. Our results suggest that GSF3 is a potent biological response modifier to decrease PC-3 cell growth through inducing apoptosis.
Collapse
Affiliation(s)
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan;
| |
Collapse
|
10
|
Mohi-Ud-Din R, Mir RH, Mir PA, Farooq S, Raza SN, Raja WY, Masoodi MH, Singh IP, Bhat ZA. Ethnomedicinal uses, Phytochemistry and Pharmacological Aspects of the Genus Berberis Linn: A Comprehensive Review. Comb Chem High Throughput Screen 2020; 24:624-644. [PMID: 33143603 DOI: 10.2174/1386207323999201102141206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. OBJECTIVE The present review is focussed to summarize and collect the updated review of information of Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. CONCLUSION A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, antiinflammatory both in vitro and in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Saeema Farooq
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Syed Naiem Raza
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), S.A.S. Nagar, Mohali-160062, Punjab, India
| | - Weekar Younis Raja
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Inder Pal Singh
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001, India
| | - Zulfiqar Ali Bhat
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| |
Collapse
|
11
|
Efficiency and Safety of Chinese Herbal Medicine in the Treatment of Prediabetes: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3628036. [PMID: 33123206 PMCID: PMC7584953 DOI: 10.1155/2020/3628036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022]
Abstract
Objective The aim of this study was to review existing evidence on the efficiency and safety of Chinese herbal medicine for the treatment of prediabetes. Methods Randomized controlled trials (RCTs) of Chinese herbal medicine (CHM) to treat prediabetes were searched in the following databases from their inception date onwards until 2 May 2020: MEDLINE, Cochrane, EMBASE, Web of Science, EBSCO, CINAHL, CNKI, VIP database, CBM, and Wanfang database. Quality assessment of included trials was accessed according to the guidance in Cochrane. Researchers independently assessed the validity of included trials and extracted outcome data for synthesis. RevMan 5.3 was used for the meta-analysis. Results Twenty-two RCTs including 3923 participants were included in the study. Our findings upon the 22 RCTs showed CHM is effective in the treatment of prediabetes, which can statistically reduce the incidence of diabetes (RR = 0.48; 95% CI = (0.41, 0.57); P < 0.001), increase the incidence of normalization of prediabetes (RR = 1.76; 95% CI = (1.57, 1.96); P < 0.001), and lower FPG (MD = −0.38; 95% CI = (−0.60, −0.16); P < 0.001), 2hPG (MD = −1.13; 95% CI = (−1.60, −0.67); P < 0.001), TG (MD = −0.23; 95% CI = (−0.33, −0.13); P < 0.001), TC (MD = −0.34; 95% CI = (−0.52, −0.16); P < 0.001), and BMI (MD = −0.48; 95% CI = (−0.78, −0.18); P < 0.001) after treatment, and there was no difference of HbA1c (P > 0.05). Conclusion CHM is effective for the treatment of prediabetes. CHM can statistically reduce the incidence of diabetes, increase the incidence of normalization of prediabetes, and lower the FPG, 2hPG, TG, TC, and BMI levels, but with no significant difference in HbA1c. In addition, CHM was relatively safe in clinical practice. More high-quality RCTs should be conducted to strengthen the finding.
Collapse
|
12
|
Lin HC, Lin JY. GSF3, a polysaccharide from guava (Psidium guajava L.) seeds, inhibits MCF-7 breast cancer cell growth via increasing Bax/Bcl-2 ratio or Fas mRNA expression levels. Int J Biol Macromol 2020; 161:1261-1271. [PMID: 32531360 DOI: 10.1016/j.ijbiomac.2020.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Guava seed polysaccharide fraction 3 (GSF3) is an immunomodulatory polysaccharide from guava (Psidium guajava L.) seed polysaccharides. However, effects of GSF3 on the growth of breast cancer cells were not understood, yet. To clarify the GSF3 effects on breast cancer cell growth, GSF3 was subjected to treat MCF-7 cells using direct action or indirect immunotherapy using immune cells conditioned media, respectively. The viabilities of MCF-7 cells were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Changes in pro-(Bax)/anti-apoptotic (Bcl-2) and Fas mRNA expression levels in the treated MCF-7 cells were measured using two-step reverse transcription quantitative polymerase chain reaction. Our results showed that GSF3 inhibited MCF-7 cell growth through either direct action or indirect immunotherapy. GSF3 direct action significantly (P < 0.05) decreased Bcl-2 mRNA expression amount but increased pro-(Bax)/anti-apoptotic (Bcl-2) mRNA expression ratios in the treated cells. The splenocytes conditioned media cultured with GSF3 increased Fas mRNA expression amounts in the treated MCF-7 cells. There was a significant negative correlation between Th2-polarized cytokines secreted by immune cells and Fas mRNA expression levels in the corresponding treated MCF-7 cells. Our findings suggested that GSF3 is a potent anti-cancerous polysaccharide by direct action or indirectly modulating immune cell cytokine secretion profiles.
Collapse
Affiliation(s)
- Hsiao-Chien Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
| |
Collapse
|
13
|
Liao YR, Lin JY. Quercetin Modulates Cytokine Expression and Inhibits TLR2 Expression and STAT3 Activation in Mouse Activated Inflammatory Macrophages. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2020; 000:1-11. [DOI: 10.14218/jerp.2020.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
15
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
16
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
17
|
Cai X, Yang F, Zhu L, Xia Y, Wu Q, Xue H, Lu Y. Rosmarinic Acid, the Main Effective Constituent of Orthosiphon stamineus, Inhibits Intestinal Epithelial Apoptosis Via Regulation of the Nrf2 Pathway in Mice. Molecules 2019; 24:E3027. [PMID: 31438521 PMCID: PMC6749311 DOI: 10.3390/molecules24173027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Many studies have shown that Orthosiphon stamineus extract (OE) has antioxidant activity, and we previously reported that OE protects the intestine against injury from a high-fat diet. However, the molecular mechanism underlying this protective effect of OE was unclear. Here, OE was separated according to polarity and molecular weight, and the antioxidant activity of each component was compared. The components with the highest antioxidant activity were analyzed by HPLC, which confirmed that rosmarinic acid (RA) was the main effective constituent in OE. OE and RA were then tested in a mouse high-fat diet-induced intestinal injury model. The antioxidant indices and morphological characteristics of the mouse jejunum were measured, and activation of the nuclear factor E2-related factor 2 (Nrf2) pathway and apoptosis of jejunal epithelial cells were analyzed. Of all the constituents in OE, RA contributed the most. Both RA and OE activated the Nrf2 pathway and increased downstream antioxidant enzyme activity. RA and OE protected the mouse intestine against high-fat diet-induced oxidative stress by preventing intestinal epithelial cell apoptosis via both extracellular and intracellular pathways. Thus, RA, the main effective constituent in OE, inhibits intestinal epithelial apoptosis by regulating the Nrf2 pathway in mice.
Collapse
Affiliation(s)
- Xuan Cai
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China.
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Fan Yang
- Biology Department, College of Life and Environment Science, Shanghai Normal University,100 Guilin Road, Shanghai 200234, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lihui Zhu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Ye Xia
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Qingyuan Wu
- Biology Department, College of Life and Environment Science, Shanghai Normal University,100 Guilin Road, Shanghai 200234, China
| | - Huiqin Xue
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
| | - Yonghong Lu
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China.
| |
Collapse
|
18
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Miranda CTCBCD, Fagundes DJ, Miranda ED, Simões RS, Carbonel AAF, Florencio-Silva R, Taha MO. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury. Acta Cir Bras 2019; 34:e201900501. [PMID: 31166464 PMCID: PMC6583933 DOI: 10.1590/s0102-865020190050000001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/25/2019] [Indexed: 03/17/2023] Open
Abstract
Purpose: To analyze the effects of ischemic preconditioning (IPC) in the expression of apoptosis-related genes in rat small intestine subjected to ischemia and reperfusion. Methods: Thirty anesthetized rats underwent laparotomy and were drive into five groups: control (CG); ischemia (IG); ischemia and reperfusion (IRG); IPC and ischemia (IG+IPC); IPC and ischemia and reperfusion (I/RG+IPC). Intestinal ischemia was performed by clamping the superior mesenteric artery for 60 minutes, whereas reperfusion lasted for 120 minutes. IPC was carried out by one cycle of 5 minutes of ischemia followed by 10 minutes of reperfusion prior to the prolonged 60-minutes-ischemia and 120-minutes-reperfusion. Thereafter, the rats were euthanized and samples of small intestine were processed for histology and gene expression. Results: Histology of myenteric plexus showed a higher presence of neurons presenting pyknotic nuclei and condensed chromatin in the IG and IRG. IG+IPC and I/RG+IPC groups exhibited neurons with preserved volume and nuclei, along with significant up-regulation of the anti-apoptotic protein Bcl2l1 and down-regulation of pro-apoptotic genes. Moreover, Bax/Bcl2 ratio was lower in the groups subjected to IPC, indicating a protective effect of IPC against apoptosis. Conclusion: Ischemic preconditioning protect rat small intestine against ischemia/reperfusion injury, reducing morphologic lesions and apoptosis.
Collapse
Affiliation(s)
| | - Djalma José Fagundes
- Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Cao C, Zhang Y, Zhang Z, Chen Q. Small interfering LncRNA-TUG1 (siTUG1) decreases ketamine-induced neurotoxicity in rat hippocampal neurons. Int J Neurosci 2019; 129:937-944. [PMID: 30995880 DOI: 10.1080/00207454.2019.1594805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunni Cao
- Department of Hyperbaric Oxygen Therapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yanxiang Zhang
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| | - Zuofu Zhang
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Chen
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
21
|
Fagundes DJ, Carrara FL, Teixeira WA, Simões RS, Taha MO. The role of the exogenous supply of adenosine triphosphate in the expression of Bax and Bcl2L1 genes in intestinal ischemia and reperfusion in rats 1. Acta Cir Bras 2019; 33:889-895. [PMID: 30484498 DOI: 10.1590/s0102-865020180100000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/12/2018] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To investigate the role of the exogenous supply of adenosine triphosphate (ATP) in the expression of Bax and Bcl2L1 genes in intestinal ischemia and reperfusion (IR) in rats. METHODS The study was designed as a randomized controlled trial with a blinded assessment of the outcome. Eighteen adult male Wistar-EPM1 rats were housed under controlled temperature and light conditions (22-23°C, 12 h light/dark cycle). The animals were randomly divided into 3 groups: 1. Sham group (SG): no clamping of the superior mesenteric artery; 2. Ischemia and reperfusion group (IRG): 3. Ischemia and reperfusion plus ATP (IRG + ATP). ATP was injected in the femoral vein before and after ischemia. Afterwards, intestinal segments were appropriately removed and processed for Endothelial Cell Biology Rat RT2 Profiler PCR Array. RESULTS ATP promoted the upregulation of Bcl2L1 gene expression, whereas it did not have significant effects on Bax gene expression. In addition, the relation of Bax/Bcl2L1 gene expression in the IRG group was 1.39, whereas it was 0.43 in the IRG + ATP group. Bcl2L1 plays a crucial role in protecting against intestinal apoptosis after ischemia and reperfusion. Increased Bcl2L1 expression can inhibit apoptosis while decreased Bcl2L1 expression can trigger apoptosis. CONCLUSION Adenosine triphosphate was associated with antiapoptotic effects on the rat intestine ischemia and reperfusion by upregulating of Bcl2L1 gene expression.
Collapse
Affiliation(s)
- Djalma José Fagundes
- PhD, Full Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), Sao Paulo-SP, Brazil. Conception and design of the study, critical revision, final approval
| | - Fernando Lopes Carrara
- Graduate student, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - William Andrade Teixeira
- Graduate student, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - Ricardo Santos Simões
- PhD, Department of Morphology and Genetic, UNIFESP, Sao Paulo-SP, Brazil. Analysis of data, manuscript writing, final approval
| | - Murched Omar Taha
- PhD, Associate Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study, critical revision
| |
Collapse
|
22
|
Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, Nosova EV, Gundala S, Venkatapuram P, Zyryanov GV, Majee A, Chupakhin ON. Studies on the interactions of 5-R-3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels–Alder reaction versus aryne-mediated domino process. Org Biomol Chem 2018; 16:5119-5135. [DOI: 10.1039/c8ob00847g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between substituted 5-R-3-(pyridyl-2)-1,2,4-triazines with in situ generated substituted aryne intermediates have been studied.
Collapse
|
23
|
Cheng QL, Li HL, Li YC, Liu ZW, Guo XH, Cheng YJ. CRA(Crosolic Acid) isolated from Actinidia valvata Dunn.Radix induces apoptosis of human gastric cancer cell line BGC823 in vitro via down-regulation of the NF-κB pathway. Food Chem Toxicol 2017; 105:475-485. [DOI: 10.1016/j.fct.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022]
|
24
|
Fu D, Yu JY, Connell AR, Yang S, Hookham MB, McLeese R, Lyons TJ. Beneficial Effects of Berberine on Oxidized LDL-Induced Cytotoxicity to Human Retinal Müller Cells. Invest Ophthalmol Vis Sci 2017; 57:3369-79. [PMID: 27367504 PMCID: PMC4961062 DOI: 10.1167/iovs.16-19291] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal Müller cells. We now explore pathogenic effects of modified LDL on Müller cells, and the efficacy of berberine in mitigating this cytotoxicity. Methods Confluent human Müller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/without pretreatment with berberine (5 μM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 μM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-α), and glial cell activation (glial fibrillary acidic protein). Results Native-LDL had no effect on cultured human Müller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). Conclusions Berberine inhibits modified LDL-induced Müller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Collapse
Affiliation(s)
- Dongxu Fu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Anna R Connell
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Shihe Yang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle B Hookham
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca McLeese
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Timothy J Lyons
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
25
|
Dkhil MA, Metwaly MS, Al-Quraishy S. Berberine improves the intestinal antioxidant status of laboratory mice, Mus musculus. Saudi J Biol Sci 2015; 24:1567-1573. [PMID: 30294226 PMCID: PMC6169441 DOI: 10.1016/j.sjbs.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/10/2015] [Accepted: 10/18/2015] [Indexed: 01/27/2023] Open
Abstract
Oral administration of berberine chloride to mice induced an obvious enhancement in jejunal health status as expressed by the significant reduction of apoptotic cells within the intestinal villi from 15.5 to 8.3 apoptotic cell/10 VCU. In addition, jejunal antioxidant biomarkers were significantly improved as revealed by the increase in the activities of catalase and glutathione peroxidase enzymes with a concurrent increase in reduced glutathione levels and total antioxidant capacity. Also, it was associated with a significant decrease in oxidative damage biomarkers of hydrogen peroxides, malondialdehyde, nitrite/nitrate, inducible nitric oxide synthase and protein carbonyl content. Moreover, BBR treatment induced a reduction in the pro-inflammatory cytokine, TNF-α by about 40%. It is highly recommended to use berberine as food supplements or as natural drug therapy to enhance the antioxidant status within the intestinal tissue.
Collapse
Affiliation(s)
- Mohamed A. Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Corresponding author at: Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia. Tel.: +966 14675754; fax: +966 14678514.
| | - Mahmoud S. Metwaly
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Srivastava S, Srivastava M, Misra A, Pandey G, Rawat AKS. A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI JOURNAL 2015; 14:247-67. [PMID: 26535033 PMCID: PMC4614447 DOI: 10.17179/excli2014-399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022]
Abstract
Berberis is an important genus and well known in the Indian as well as European systems of traditional medicine. It is used since ancient times for curing eye disease, fever, jaundice, rheumatism, vomiting during pregnancy, kidney and gall balder stones and various other ailments due to the presence of biologically active alkaloid berberine. Action of the root extracts of few species are believed to be as powerful as quinine in the treatment of malarial fever. A plethora of literature pertaining to the taxonomy, biology, chemistry, traditional and ethnic uses of Berberis in different countries and indigenous cultures was collected by both offline (library, journals, textbooks etc.) and online mode (electronic search of available databases). In addition to this, books on traditional medicine and ethno pharmacological knowledge were also referred to extract ancient uses of Berberis in different traditional medicine systems. Most of the folklore, traditional and ethno botanical claims about Berberis species were validated by broad spectrum in vitro and vivo pharmacological studies. The present article summarizes its usage in eye and liver disorder, fever, kidney and gall stones along with anticancer activity. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations.
Collapse
Affiliation(s)
- Sharad Srivastava
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Manjoosha Srivastava
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Ankita Misra
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Garima Pandey
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - AKS Rawat
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| |
Collapse
|
27
|
Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice. Food Chem Toxicol 2013; 58:416-22. [PMID: 23707471 DOI: 10.1016/j.fct.2013.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/06/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
To unravel possible protective effects of a newly isolated lotus plumule polysaccharide (LPPS) on type 1 diabetes (T1D), this study isolated LPPS and administered it to non-obese diabetic (NOD) female mice for 15 weeks. Oral glucose tolerance, serum ketone body, glucose, insulin, and lipid levels, as well as pancreatic islet cell numbers and the insulin secretion ability of the experimental mice were determined. The results showed that LPPS administration in vivo significantly (P<0.05) increased pancreatic islet cell numbers and slightly enhanced the basal insulin secretion ability compared to the control group. LPPS administration improved serum lipid profiles in the diabetic mice via relatively increasing serum high density lipoprotein-cholesterol, but decreasing low density lipoprotein-cholesterol and total cholesterol levels. The present study suggests that LPPS supplementation may ameliorate T1D progress and its complications through protecting pancreatic islets and modulating serum lipid profiles.
Collapse
|
28
|
Liao CH, Lin JY. Purified active lotus plumule (Nelumbo nucifera Gaertn) polysaccharides exert anti-inflammatory activity through decreasing toll-like receptor-2 and -4 expressions using mouse primary splenocytes. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:164-173. [PMID: 23458922 DOI: 10.1016/j.jep.2013.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/17/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Lotus plumule is widely used as traditional Chinese medicine. Among the active components in lotus plumule, polysaccharides exhibit promising potential for its potent anti-inflammatory effects. However, the anti-inflammatory mechanism of purified polysaccharides from lotus plumule remains unknown. To evaluate their anti-inflammatory potential and possible mechanisms of purified polysaccharides in lotus plumule, two active lotus plumule polysaccharides, fractions F1 and F2, were subjected to assay their anti-inflammatory potential and possible mechanisms using murine primary splenocytes in the absence or presence of lipopolysaccharide (LPS). MATERIALS AND METHODS Two purified active lotus plumule polysaccharides, F1 and F2, were cultured independently with murine primary splenocytes in the absence or presence of LPS under four different experiment models in vitro. Changes in pro-inflammatory IL-1β, IL-6 and TNF-α, as well as anti-inflammatory IL-10 cytokines secreted by the treated splenocytes were determined using an enzyme-linked immunosorbent assay (ELISA). The amount of toll-like receptor (TLR)-2 and TLR-4 mRNA expression levels in the cells were quantitated using a two-step real-time polymerase chain reaction (PCR) assay. RESULTS The results showed that F1 and F2 treatments alone, particularly F2, significantly (P<0.05) decreased pro-/anti-inflammatory (IL-1β/IL-10 and TNF-α/IL-10) cytokine secretion ratios dose-dependently. F1 and F2 treatments in the presence of LPS significantly decreased TLR-2 and/or TLR-4 mRNA expression levels in the splenocytes under inflammatory and repair experiment models. CONCLUSIONS The present study proved that F1 and F2 had strong anti-inflammatory effects through inhibiting TLR-2 and/or TLR-4 expressions in the splenocytes in normal, inflammatory and repair situations. Our results further suggest that F2, which is a glycoprotein with low molecular weight of 25.7 kDa, may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China (ROC)
| | | |
Collapse
|
29
|
Kopchuk DS, Kovalev IS, Khasanov AF, Zyryanov GV, Slepukhin PA, Rusinov VL, Chupakhin ON. A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Pre-protective effect of lipoic acid on injury induced by H2O2 in IPEC-J2 cells. Mol Cell Biochem 2013; 378:73-81. [DOI: 10.1007/s11010-013-1595-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/08/2013] [Indexed: 12/18/2022]
|
31
|
Rahigude A, Kaulaskar S, Bhutada P. Possible therapeutic potential of berberine in diabetic osteopathy. Med Hypotheses 2012; 79:440-4. [DOI: 10.1016/j.mehy.2012.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
|
32
|
Chueh WH, Lin JY. Protective effect of berberine on serum glucose levels in non-obese diabetic mice. Int Immunopharmacol 2012; 12:534-8. [DOI: 10.1016/j.intimp.2012.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
|