1
|
Peng S, Wang J, Farag MA, Salah M, Liu L, Fang Y, Zhang W. Impact of refining on phytochemicals and anti-inflammatory activity of papaya (Carica papaya L.) seed oil in LPS-stimulated THP-1 cells. Food Chem 2024; 459:140299. [PMID: 38986200 DOI: 10.1016/j.foodchem.2024.140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the changes in phytochemical composition and inflammatory response of crude papaya (Carica papaya L.) seed oil (CPO) and its refined forms (degummed, PDG; deacidified, PDA; decolorized, PDC; deodorized, PDO). Oils were analyzed for their phytochemical composition, oil quality parameters, antioxidant activity, and their inflammatory response in LPS-stimulated THP-1 macrophages. At higher refining degrees, particularly after deacidification, the contents of phytochemicals (sterols, tocopherols, and polyphenols) decreased while oxidation products increased. Both CPO (0.1-1.0 mg/mL) and PDG reduced the secretion and mRNA expression of LPS-stimulated inflammatory cytokines and mediators and also blocked the activation of the NF-κB pathway. PDA, PDC, and PDO showed low anti-inflammatory or even pro-inflammatory activity. Correlation analysis showed that 4 polyphenols and 2 phytosterols were responsible for the oil's anti-inflammatory effects. These findings indicated that moderate refining is suggested for papaya seed oil processing for retaining bioactive ingredients and anti-inflammatory ability.
Collapse
Affiliation(s)
- Siqi Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Jing Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt
| | - Mahmoud Salah
- Mahmoud Salah Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| |
Collapse
|
2
|
I S, Jayadeep A. Enzyme-treated red rice (Oryza sativa L.) bran extracts mitigate inflammatory markers in RAW 264.7 macrophage cells and exhibit anti-inflammatory efficacy greater/comparable to ferulic acid, catechin, γ-tocopherol, and γ-oryzanol. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117616. [PMID: 38142877 DOI: 10.1016/j.jep.2023.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rice (Oryza sativa L.), a staple food for a significant portion of the global population, has been recognized for its traditional medicinal properties for centuries. Rice bran, a by-product of rice milling, contains many bioactive compounds with potential pharmaceutical and therapeutic benefits. In recent years, research has highlighted the anti-inflammatory potential of rice bran, contributed by the bioactive components concentrated in their bran but, unfortunately, entrapped in the bran matrix, with limited bioavailability. Previous studies have reported that the enzymatic treatment of rice bran improves the bran's bioactive compound profile but did not investigate its impact on chronic conditions such as inflammation. AIM OF THE STUDY This study investigates the anti-inflammatory effects of endo-1,4-β-xylanase (ERB) and Viscozyme (VRB) treated red rice bran extracts against lipopolysaccharide-induced inflammation in RAW264.7 macrophages in comparison with non-enzyme-treated bran (CRB). Further established their efficacy with known anti-inflammatory compounds-ferulic acid (FA), catechin (CAT), γ-tocopherol (GTP), and γ-oryzanol (ORZ). MATERIALS AND METHODS The RAW 264.7 macrophage cells were pre-treated with non-toxic concentrations (10-200 μg/mL) of FA, CAT, GTP, ORZ, CRB, ERB, and VRB, followed by inflammatory stimulation with LPS for 24 h. Further, the cell supernatant and pellets were harvested to study the anti-inflammatory effects by evaluating and measuring their efficacy in inhibiting pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IL-1β) and mediators (ROS, NO, PGE2, COX2, iNOS) through biochemical, ELISA, and mRNA expression studies. RESULTS The findings showed that both ERB and VRB effectively inhibited the production of pro-inflammatory markers (TNF-α, IL-6) and mediators (ROS, NO, PGE2) by downregulating mRNA expressions of inflammatory genes (TNF-α, IL-1β, IL-6, IL-10, COX2, iNOS) and demonstrated anti-inflammatory efficacy higher than CRB. On comparison, ERB demonstrated exceptional efficacy by causing a reduction of 48% in ROS, 20% in TNF-α, and 23% in PGE2 at 10 μg/mL, surpassing the anti-inflammatory capabilities of all the bioactive compounds, FA and ORZ, respectively. At the same time, VRB exhibited remarkable efficacy by reducing NO production by 52% at 200 μg/mL and IL-6 by 66% at 10 μg/mL, surpassing FA, CAT, ORZ, and GTP. Further, ERB downregulated the mRNA expression of IL-10 and iNOS, while VRB downregulated TNF-α, IL-1β, and COX2 expression. Both extracts equally downregulated IL-6 expression at 10 μg/mL, demonstrating the efficacy more remarkable/on par with established anti-inflammatory compounds. CONCLUSIONS Overall, enzyme-treated rice bran/extract, particularly ERB, possesses excellent anti-inflammatory properties, making them promising agents for alternatives to contemporary nutraceuticals/functional food against inflammatory diseases.
Collapse
Affiliation(s)
- Sapna I
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore -570020, Karnataka, India.
| | - A Jayadeep
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore -570020, Karnataka, India.
| |
Collapse
|
3
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
5
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Effects of refining process on Camellia vietnamensis oil: Phytochemical composition, antioxidant capacity, and anti-inflammatory activity in THP-1 macrophages. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:ph15091103. [PMID: 36145324 PMCID: PMC9502270 DOI: 10.3390/ph15091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
A metabolic disease called hypercholesterolemia is connected to both oxidative damage and inflammation. The goal of the current investigation was to determine if olive oil and palm oil could prevent hypercholesterolemia-induced oxidative stress in the liver of rats fed a high-cholesterol diet (HCD). The experimental mice were given HCD for three months while also receiving 0.5 mL/kg of either palm or olive oil. Serum triglycerides, total cholesterol, LDL cholesterol, vLDL cholesterol, and the atherogenic index all significantly increased in HCD-fed rats, while HDL cholesterol significantly dropped. Additionally, HCD caused a notable rise in proinflammatory cytokines and serum transaminases in liver tissue. Additionally, HCD significantly increased the production of nitric oxide and lipid peroxidation in the liver while decreasing antioxidant enzymes. Treatment with palm and olive oils dramatically reduced the levels of pro-inflammatory cytokines and lipid peroxidation, improved antioxidant defenses, and considerably improved liver function indicators. Additionally, the examined oils dramatically decreased the expression of fatty acid synthase (FAS) in the liver of rats receiving HCD. In conclusion, HCD-fed rats exhibit significant antihyperlipidemic and cholesterol-lowering benefits from palm and olive oils. The improved antioxidant defenses, lower inflammation and lipid peroxidation, and altered hepatic FAS mRNA expression were the main mechanisms by which palm and olive oils produced their advantageous effects.
Collapse
|
8
|
Thompson MA, Zuniga K, Sousse L, Christy R, Gurney J. The Role of Vitamin E in Thermal Burn Injuries, Infection, and Sepsis: A Review. J Burn Care Res 2022; 43:1260-1270. [PMID: 35863690 PMCID: PMC9629418 DOI: 10.1093/jbcr/irac100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thermal burn injuries are still a serious public health concern in the United States, due to the initial insult and resulting comorbidities. Burned patients are increasingly susceptible to colonization by endogenous and exogenous microorganisms after having lost skin, which acts as the primary protective barrier to environmental contaminants. Furthermore, the onset of additional pathophysiologies, specifically sepsis, becomes more likely in burned patients compared to other injuries. Despite improvements in the early care of burn patients, infections, and sepsis, these pathophysiologies remain major causes of morbidity and mortality and warrant further investigation of potential therapies. Vitamin E may be one such therapy. We aimed to identify publications of studies that evaluated the effectiveness of vitamin E as it pertains to thermal burn injuries, infection, and sepsis. Several investigations ranging from in vitro bench work to clinical studies have examined the impact on, or influence of, vitamin E in vitro, in vivo, and in the clinical setting. To the benefit of subjects it has been shown that enteral or parenteral vitamin E supplementation can prevent, mitigate, and even reverse the effects of thermal burn injuries, infection, and sepsis. Therefore, a large-scale prospective observational study to assess the potential benefits of vitamin E supplementation in patients is warranted and could result in clinical care practice paradigm changes.
Collapse
Affiliation(s)
- Marc A Thompson
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Kameel Zuniga
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Linda Sousse
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Robert Christy
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Jennifer Gurney
- Burn Center, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, TX, USA
| |
Collapse
|
9
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Teo CWL, Png SJY, Ung YW, Yap WN. Therapeutic effects of intranasal tocotrienol-rich fraction on rhinitis symptoms in platelet-activating factor induced allergic rhinitis. Allergy Asthma Clin Immunol 2022; 18:52. [PMID: 35698169 PMCID: PMC9195334 DOI: 10.1186/s13223-022-00695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background Platelet-activating factor (PAF) has been suggested to be a potent inflammatory mediator in Allergic rhinitis (AR) pathogenesis. Vitamin E, an essential nutrient that comprises tocopherol and tocotrienol, is known as a potential therapeutic agent for airway allergic inflammation. This study aimed to investigate the beneficial effects of intranasal Tocotrienol-rich fraction (TRF) on PAF-induced AR in a rat model. Methods Sprague Dawley rats were randomly assigned into 3 groups: Control, PAF-induced AR and PAF-induced AR with TRF treatment. To induce AR, 50 μl of 16 μg/ml PAF was nasally instilled into each nostril. From day 1 to 7 after AR induction, 10 μl of 16 μg/μl TRF was delivered intranasally to the TRF treatment group. Complete upper skulls were collected for histopathological evaluation on day 8. Results The average severity scores of AR were significantly higher in the PAF-induced AR rats compared to both control and PAF-induced AR with TRF treatment. The histologic examination of the nasal structures showed moderate degree of inflammation and polymorphonuclear cells infiltration in the lamina propria, mucosa damage and vascular congestion in the PAF-induced AR rats. TRF was able to ameliorate the AR symptoms by restoring the nasal structures back to normal. H&E staining demonstrated a statistically significant benefit upon TRF treatment, where minimal degree of inflammation, and a reduction in the infiltration of polymorphonuclear cells, mucosa damage and vascular congestion were observed. Conclusion TRF exhibited symptomatic relief action in AR potentially due to its antioxidant, anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore. .,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| | - Stephanie Jia Ying Png
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore.,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Ungurianu A, Zanfirescu A, Nițulescu G, Margină D. Vitamin E beyond Its Antioxidant Label. Antioxidants (Basel) 2021; 10:634. [PMID: 33919211 PMCID: PMC8143145 DOI: 10.3390/antiox10050634] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Georgiana Nițulescu
- Department Pharmaceutical Technology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
12
|
Tan SW, Israf Ali DAB, Khaza'ai H, Wong JW, Vidyadaran S. Cellular uptake and anti-inflammatory effects of palm oil-derived delta (δ)-tocotrienol in microglia. Cell Immunol 2020; 357:104200. [PMID: 32979761 DOI: 10.1016/j.cellimm.2020.104200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 μg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p < 0.05). This was accompanied by decreased inducible nitric oxide synthase protein expression by 67 ± 5% compared to untreated controls (p < 0.05). In primary microglia, δ-tocotrienol downregulated IL-1β production, but TNF-α and IL-6 were not affected. δ-Tocotrienol also reduced prostaglandin E2 production by ~78%% and decreased transcription of COX-2 and 5-LOX, but not COX-1. This study showed the anti-inflammatory effects of δ-tocotrienol derived from palm oil and opens up interest for tocotrienol supplementation to reduce the effects of inflammatory conditions.
Collapse
Affiliation(s)
- Shi Wei Tan
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Daud Ahmad Bin Israf Ali
- Cell Signaling Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Huzwah Khaza'ai
- Biochemistry Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Jia Woei Wong
- Attest Research Sdn Bhd, Kompleks EUREKA, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Sharmili Vidyadaran
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| |
Collapse
|
13
|
Minter BE, Lowes DA, Webster NR, Galley HF. Differential Effects of MitoVitE, α-Tocopherol and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in Endothelial Cells Cultured under Conditions Mimicking Sepsis. Antioxidants (Basel) 2020; 9:E195. [PMID: 32110961 PMCID: PMC7139367 DOI: 10.3390/antiox9030195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a life-threatening response to infection associated with inflammation, oxidative stress and mitochondrial dysfunction. We investigated differential effects of three forms of vitamin E, which accumulate in different cellular compartments, on oxidative stress, mitochondrial function, mRNA and protein expression profiles associated with the human Toll-like receptor (TLR) -2 and -4 pathways. Human endothelial cells were exposed to lipopolysaccharide (LPS)/peptidoglycan G (PepG) to mimic sepsis, MitoVitE, α-tocopherol, or Trolox. Oxidative stress, mitochondrial function, mitochondrial membrane potential and metabolic activity were measured. NFκB-P65, total and phosphorylated inhibitor of NFκB alpha (NFκBIA), and STAT-3 in nuclear extracts, interleukin (IL)-6 and IL-8 production in culture supernatants and cellular mRNA expression of 32 genes involved in Toll-like receptor-2 and -4 pathways were measured. Exposure to LPS/PepG caused increased total radical production (p = 0.022), decreased glutathione ratio (p = 0.016), reduced membrane potential and metabolic activity (both p < 0.0001), increased nuclear NFκB-P65 expression (p = 0.016) and increased IL-6/8 secretion (both p < 0.0001). MitoVitE, α- tocopherol and Trolox were similar in reducing oxidative stress, NFκB activation and interleukin secretion. MitoVitE had widespread downregulatory effects on gene expression. Despite differences in site of actions, all forms of vitamin E were protective under conditions mimicking sepsis. These results challenge the concept that protection inside mitochondria provides better protection.
Collapse
Affiliation(s)
| | | | | | - Helen F. Galley
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB41 8TJ, UK; (B.E.M.); (D.A.L.); (N.R.W.)
| |
Collapse
|
14
|
Wallert M, Ziegler M, Wang X, Maluenda A, Xu X, Yap ML, Witt R, Giles C, Kluge S, Hortmann M, Zhang J, Meikle P, Lorkowski S, Peter K. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol 2019; 26:101292. [PMID: 31419755 PMCID: PMC6831864 DOI: 10.1016/j.redox.2019.101292] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Myocardial infarction (MI) is a leading cause of mortality and morbidity worldwide and new treatment strategies are highly sought-after. Paradoxically, reperfusion of the ischemic myocardium, as achieved with early percutaneous intervention, results in substantial damage to the heart (ischemia/reperfusion injury) caused by cell death due to aggravated inflammatory and oxidative stress responses. Chronic therapy with vitamin E is not effective in reducing the cardiovascular event rate, presumably through failing to reduce atherosclerotic plaque instability. Notably, acute treatment with vitamin E in patients suffering a MI has not been systematically investigated. METHODS AND RESULTS We applied alpha-tocopherol (α-TOH), the strongest anti-oxidant form of vitamin E, in murine cardiac ischemia/reperfusion injury induced by ligation of the left anterior descending coronary artery for 60 min. α-TOH significantly reduced infarct size, restored cardiac function as measured by ejection fraction, fractional shortening, cardiac output, and stroke volume, and prevented pathological changes as assessed by state-of-the-art strain and strain-rate analysis. Cardioprotective mechanisms identified, include a decreased infiltration of neutrophils into cardiac tissue and a systemic anti-inflammatory shift from Ly6Chigh to Ly6Clow monocytes. Furthermore, we found a reduction in myeloperoxidase expression and activity, as well as a decrease in reactive oxygen species and the lipid peroxidation markers phosphatidylcholine (PC) (16:0)-9-hydroxyoctadecadienoic acid (HODE) and PC(16:0)-13-HODE) within the infarcted tissue. CONCLUSION Overall, α-TOH inhibits ischemia/reperfusion injury-induced oxidative and inflammatory responses, and ultimately preserves cardiac function. Therefore, our study provides a strong incentive to test vitamin E as an acute therapy in patients suffering a MI.
Collapse
Affiliation(s)
- Maria Wallert
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Ana Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaoqiu Xu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - May Lin Yap
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Roman Witt
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Stefan Kluge
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Marcus Hortmann
- Department for Cardiology and Angiology, University Heart Centre, Freiburg, Germany
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peter Meikle
- Department of Medicine, Monash University, Melbourne, Australia; Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
15
|
Zhang J, Nie S, Zu Y, Abbasi M, Cao J, Li C, Wu D, Labib S, Brackee G, Shen CL, Wang S. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. J Control Release 2019; 303:263-273. [PMID: 30999008 PMCID: PMC6579691 DOI: 10.1016/j.jconrel.2019.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
Intimal macrophages play a critical role in atherosclerotic lesion initiation and progression by taking up oxidized low-density lipoprotein (oxLDL) and promoting inflammatory process. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC), a major type of oxidized phosphatidylcholines (PC) found on oxLDL, has a high binding affinity to the macrophage scavenger receptor CD36 and participates in CD36-mediated recognition and uptake of oxLDL by intimal macrophages. We successfully synthesized epigallocatechin gallate (EGCG)-loaded nanoparticles (Enano), which were composed of EGCG, PC, (+) alpha-tocopherol acetate, and surfactant. We also incorporated KOdiA-PC on the surface of Enano to make ligand-coated Enano (L-Enano) to target intimal macrophages. The objectives of this study were to determine the anti-atherogenic effects of Enano and L-Enano in LDL receptor null (LDLr-/-) mice. Our in vitro data demonstrated that L-Enano had a higher binding affinity to mouse peritoneal macrophages than Enano. This high binding affinity was diminished by CD36 antibodies or knockdown of the CD36 receptor in mouse peritoneal macrophages, confirming the specific binding of L-Enano to the macrophage CD36 receptor. LDLr-/- mice were randomly divided to six groups and received weekly tail vein injection with PBS, EGCG, void nanoparticles (Vnano), Enano, ligand-coated Vnano (L-Vnano), or L-Enano once per week for 22 weeks. The dose of EGCG was 25 mg per kg body weight. L-Enano at 20 μg/mL significantly decreased production of monocyte chemoattractant protein-1, tumor necrosis factor alpha, and interleukin-6 from mouse macrophages, while having no effect on their plasma levels compared to the PBS control. There were no significant differences in blood lipid profiles among six treatment groups. Mice treated with L-Enano also had significantly smaller lesion surface areas on aortic arches compared to the PBS control. Liver EGCG content was decreased by treatments in the order of EGCG>Enano>L-Enano. Native EGCG had inhibitory effects on liver and body fat accumulation. This molecular target approach signals an important step towards inhibiting atherosclerosis development via targeted delivery of bioactive compounds to intimal macrophages.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jun Cao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Chuan Li
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Dayong Wu
- Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Safaa Labib
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Gordon Brackee
- Laboratory Animal Resources Center, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA; Comparative Biology Resources Center, University of Rhode Island, Kingston, RI 02881, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
16
|
Smith AD, Panickar KS, Urban JF, Dawson HD. Impact of Micronutrients on the Immune Response of Animals. Annu Rev Anim Biosci 2019; 6:227-254. [PMID: 29447473 DOI: 10.1146/annurev-animal-022516-022914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamins and minerals (micronutrients) play an important role in regulating and shaping an immune response. Deficiencies generally result in inadequate or dysregulated cellular activity and cytokine expression, thereby affecting the immune response. Decreased levels of natural killer, granulocyte, and phagocytic cell activity and T and B cell proliferation and trafficking are associated with inadequate levels of micronutrients, as well as increased susceptibility to various adverse health conditions, including inflammatory disorders, infection, and altered vaccine efficacy. In addition, most studies of micronutrient modulation of immune responses have been done in rodents and humans, thus limiting application to the health and well-being of livestock and companion animals. This exploratory review elucidates the role of vitamins and minerals on immune function and inflammatory responses in animals (pigs, dogs, cats, horses, goats, sheep, and cattle), with reference to rodents and humans.
Collapse
Affiliation(s)
- Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hills Pet Nutrition Center, Topeka, Kansas 66617, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| |
Collapse
|
17
|
Wallert M, Bauer J, Kluge S, Schmölz L, Chen YC, Ziegler M, Searle AK, Maxones A, Schubert M, Thürmer M, Pein H, Koeberle A, Werz O, Birringer M, Peter K, Lorkowski S. The vitamin E derivative garcinoic acid from Garcinia kola nut seeds attenuates the inflammatory response. Redox Biol 2019; 24:101166. [PMID: 30897408 PMCID: PMC6426704 DOI: 10.1016/j.redox.2019.101166] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/05/2023] Open
Abstract
The plant Garcinia kola is used in African ethno-medicine to treat various oxidation- and inflammation-related diseases but its bioactive compounds are not well characterized. Garcinoic acid (GA) is one of the few phytochemicals that have been isolated from Garcinia kola. We investigated the anti-inflammatory potential of the methanol extract of Garcinia kola seeds (NE) and purified GA, as a major phytochemical in these seeds, in lipopolysaccharide (LPS)-activated mouse RAW264.7 macrophages and its anti-atherosclerotic potential in high fat diet fed ApoE-/- mice. This study outlines an optimized procedure for the extraction and purification of GA from Garcinia kola seeds with an increased yield and a purity of >99%. We found that LPS-induced upregulation of iNos and Cox2 expression, and the formation of the respective signaling molecules nitric oxide and prostanoids, were significantly diminished by both the NE and GA. In addition, GA treatment in mice decreased intra-plaque inflammation by attenuating nitrotyrosinylation. Further, modulation of lymphocyte sub-populations in blood and spleen have been detected, showing immune regulative properties of GA. Our study provides molecular insights into the anti-inflammatory activities of Garcinia kola and reveals GA as promising natural lead for the development of multi-target drugs to treat inflammation-driven diseases.
Collapse
Affiliation(s)
- Maria Wallert
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Julia Bauer
- Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany; Institute of Human Genetics, University Medical Center Goettingen, Göttingen, Germany
| | - Stefan Kluge
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Lisa Schmölz
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Yung-Chih Chen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Amy K Searle
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Science, University of Applied Sciences Fulda, Fulda, Germany
| | - Martin Schubert
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Science, University of Applied Sciences Fulda, Fulda, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Australia
| | - Stefan Lorkowski
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
18
|
Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW. Comparing the effects of vitamin E tocotrienol-rich fraction supplementation and α-tocopherol supplementation on gene expression in healthy older adults. Clinics (Sao Paulo) 2019; 74:e688. [PMID: 30864639 PMCID: PMC6438703 DOI: 10.6061/clinics/2019/e688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults. METHODS A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis. RESULTS The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways. CONCLUSION Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.
Collapse
Affiliation(s)
- Siti Madiani Abdul Ghani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Corresponding author. E-mail:
| | - Nor Helwa Ezzah Nor Azman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Nor Asyikin Zakaria
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zalina Hamid
- Sime Darby Foods & Beverages Marketing Sdn Bhd, Petaling Jaya, Selangor, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Agostini-Costa TDS. Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas - A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:202-229. [PMID: 29842962 DOI: 10.1016/j.jep.2018.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to previous ethno-medicinal reviews, Cocos nucifera, Elaeis guineensis and Phoenix dactylifera are among the main palms which are often used on the American and African continents to treat infections, infestations and disorders in the digestive, respiratory, genito-urinary, dermal, endocrine, cardiovascular, muscular-skeletal, mental and neural systems, as well as neoplasms, dental issues and metabolic and nutritional disorders. In addition, one or more species of the wild genera Acrocomia, Areca, Astrocaryum, Attalea, Bactris, Borassus, Calamus, Chamaedorea, Chamaerops, Euterpe, Hyphaene, Mauritia, Oenocarpus and Syagrus have a high number of records of these ethno-medicinal uses. The most used parts of the palm tree are the fruits, followed by roots, seeds, leaves and flower sap. AIM OF THE STUDY This review discusses the phytochemical composition and the pharmacological properties of these important ethno-medicinal palms, aiming to provide a contribution to future research prospects. MATERIALS AND METHODS Significant information was compiled from an electronic search in widely used international scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley on line Library, Scielo, ACS Publications), and additional information was obtained from dissertations, theses, books and other relevant websites. RESULTS Palms, in general, are rich in oils, terpenoids and phenolic compounds. Fruits of many species are notable for their high content of healthy oils and fat-soluble bioactive compounds, mainly terpenoids, such as pigment carotenoids (and provitamin A), phytosterols, triterpene pentacyclics and tocols (and vitamin E), while other species stood out for their phenolic compounds derived from benzoic and cinnamic acids, along with flavan-3-ol, flavone, flavonol, and stilbene compounds or anthocyanin pigments. In addition to fruits, other parts of the plant such as seeds, leaves, palm heart, flowers and roots are also sources of many bioactive compounds. These compounds are linked to the ethno-medicinal use of many palms that improve human health against infections, infestations and disorders of human systems. CONCLUSIONS Palms have provided bioactive samples that validate their effectiveness in traditional medicine. However, the intensive study of all palm species related to ethno-medicinal use is needed, along with selection of the most appropriate palm accessions, ripe stage of the fruit and /or part of the plant. Furthermore, the complete profiles of all phytochemicals, their effects on animal models and human subjects, and toxicological and clinical trials are suggested, which, added to the incorporation of improved technological processes, should represent a significant advance for the implementation of new opportunities with wide benefits for human health.
Collapse
|
20
|
δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages. Int J Mol Sci 2018; 19:ijms19103022. [PMID: 30287730 PMCID: PMC6212927 DOI: 10.3390/ijms19103022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
δ-Tocotrienol, an important component of vitamin E, has been reported to possess some physiological functions, such as anticancer and anti-inflammation, however their molecular mechanisms are not clear. In this study, δ-tocotrienol was isolated and purified from rice bran. The anti-inflammatory effect and mechanism of δ-tocotrienol against lipopolysaccharides (LPS) activated pro-inflammatory mediator expressions in RAW264.7 cells were investigated. Results showed that δ-tocotrienol significantly inhibited LPS-stimulated nitric oxide (NO) and proinflammatory cytokine (TNF-α, IFN-γ, IL-1β and IL-6) production and blocked the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 (ERK1/2). δ-Tocotrienol repressed the transcriptional activations and translocations of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), which were closely related with downregulated cytokine expressions. Meanwhile, δ-tocotrienol also affected the PPAR signal pathway and exerted an anti-inflammatory effect. Taken together, our data showed that δ-tocotrienol inhibited inflammation via mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR) signalings in LPS-stimulated macrophages.
Collapse
|
21
|
Chen CF, Su CH, Lai MN, Ng LT. Differences in water soluble non-digestible polysaccharides and anti-inflammatory activities of fruiting bodies from two cultivated Xylaria nigripes strains. Int J Biol Macromol 2018; 116:728-734. [DOI: 10.1016/j.ijbiomac.2018.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
|
22
|
Shikonofuran E plays an anti-inflammatory role by down-regulating MAPK and NF-κB signaling pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. J Nat Med 2018; 73:244-251. [DOI: 10.1007/s11418-018-1238-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023]
|
23
|
Schmölz L, Wallert M, Rozzino N, Cignarella A, Galli F, Glei M, Werz O, Koeberle A, Birringer M, Lorkowski S. Structure–Function Relationship Studies In Vitro Reveal Distinct and Specific Effects of Long‐Chain Metabolites of Vitamin E. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Lisa Schmölz
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| | - Maria Wallert
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Baker Heart and Diabetes Institute Melbourne Australia
| | - Nicolò Rozzino
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova Padova Italy
| | | | - Francesco Galli
- Department of Pharmaceutical SciencesLaboratory of Nutrition and Clinical BiochemistryUniversity of Perugia Perugia Italy
| | - Michael Glei
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Department of Nutritional ToxicologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Marc Birringer
- Department of NutritionalFood and Consumer ScienceUniversity of Applied Sciences Fulda Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| |
Collapse
|
24
|
Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP. Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 2017; 22:1765-1781. [PMID: 28789906 DOI: 10.1016/j.drudis.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
Abstract
Vitamin E family members: tocotrienols and tocopherols are widely known for their health benefits. Decades of research on tocotrienols have shown they have diverse biological activities such as antioxidant, anti-inflammatory, anticancer, neuroprotective and skin protection benefits, as well as improved cognition, bone health, longevity and reduction of cholesterol levels in plasma. Tocotrienols also modulate several intracellular molecular targets and, most importantly, have been shown to improve lipid profiles, reduce total cholesterol and reduce the volume of white matter lesions in human clinical trials. This review provides a comprehensive update on the little-known therapeutic potentials of tocotrienols, which tocopherols lack in a variety of inflammation-driven diseases.
Collapse
Affiliation(s)
- Madhu M Kanchi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University Cancer Institute, National University Health System, 119074, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chem 2017; 220:400-405. [DOI: 10.1016/j.foodchem.2016.09.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 11/21/2022]
|
26
|
Rahman TA, Hassim NF, Zulkafli N, Muid S, Kornain NK, Nawawi H. Atheroprotective effects of pure tocotrienol supplementation in the treatment of rabbits with experimentally induced early and established atherosclerosis. Food Nutr Res 2016; 60:31525. [PMID: 27799085 PMCID: PMC5088347 DOI: 10.3402/fnr.v60.31525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 12/17/2022] Open
Abstract
Background Atherosclerosis is the main cause of coronary artery disease -related deaths worldwide. The atheroprotective properties of pure tocotrienols (T3) in the absence of alpha-tocopherol (α-TCP) in vitamin E has not been extensively examined. Aim To determine the atheroprotective properties of T3 in early and established atherosclerosis rabbits. Methods Thirty New Zealand white rabbits were divided into two groups, B1 and B2 which represent early [fed 1% high cholesterol diet (HCD) for 2 weeks] and established (fed 1% HCD for 8 weeks) atherosclerosis. Each group was subdivided into three intervention arms: 1) T3–4 mg/kg, 2) T3–15 mg/kg and 3) vehicle without T3 (T3 negative) for 8 weeks. Serial fasting blood samples were obtained for lipid profile, and whole lengths of aorta were used to determine tissue markers of endothelial activation, inflammation and plaque stability. Results In B1, atherosclerotic lesion in T3–4 mg/kg group was significantly reduced (p=0.008), while aortic tissue expression of vascular cellular adhesion molecule 1 (VCAM-1), interleukin-6 (IL-6) and matrix metalloproteinase (MMP-12) was reduced in T3–4 mg/kg compared to T3-negative rabbits group (0.2±0.1 vs. 28.5±3.1%; 3.0±1.6 vs. 14.0±1.7%; and 5.2±2.2 vs. 27.7±0.8%, respectively, p<0.05). T3–15 mg/kg group showed reduction in VCAM-1, E-selectin, IL-6 and MMP-12 (3.9±1.9 vs. 28.5±3.1%; 10.3±0.5 vs. 59.8±8.5%; 2.6±1.7 vs. 14.0±1.7%; and 16.2±3.2 vs. 27.7 0.8%, respectively, p<0.05). In B2, T3–4 mg/kg group reduced aortic tissue expression of intercellular adhesion molecule 1 (ICAM-1), E-selectin, IL-6, MMP-12 and MMP-9 compared to T3-negative rabbits group (29.9±2.4 vs. 55.3±1.3%; 26.7±1.5 vs. 60.5±7.6%; 15.7±0.7 vs. 27.7±4.8%; 34.8±2.7 vs. 46.5±3.4%; and 25.89±3.9 vs. 45.9±1.7%, respectively, p<0.05). T3–15 mg/kg group showed reduced VCAM-1, ICAM-1, E-selectin, IL-6, MMP-12 and MMP-9 (20.5±3.3 vs. 35.6±2.5%; 24.9±1.3 vs. 55.3±1.3%; 29.9±6.7 vs. 60.5±7.6; 11.3±2.2 vs. 27.7±4.8%; 23.0±1.7 vs. 46.5±3.4%; and 17.6±1.9 vs. 45.9±1.7%, respectively, p<0.05. Conclusion These findings suggest the possible atheroprotective role T3 plays as an adjunct supplementation to standard treatment in the prevention of CAD.
Collapse
Affiliation(s)
- Thuhairah Abdul Rahman
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia
| | | | | | - Suhaila Muid
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | | | - Hapizah Nawawi
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia;
| |
Collapse
|
27
|
Muid S, Froemming GRA, Rahman T, Ali AM, Nawawi HM. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells. Food Nutr Res 2016; 60:31526. [PMID: 27396399 PMCID: PMC4938891 DOI: 10.3402/fnr.v60.31526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a great potential for TCT isomers as anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Suhaila Muid
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| | - Gabriele R Anisah Froemming
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Thuhairah Rahman
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - A Manaf Ali
- Faculty of Agriculture & Biotechnology, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Hapizah M Nawawi
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia; ;
| |
Collapse
|
28
|
Limtrakul P, Yodkeeree S, Pitchakarn P, Punfa W. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages. Nutr Res Pract 2016; 10:251-8. [PMID: 27247720 PMCID: PMC4880723 DOI: 10.4162/nrp.2016.10.3.251] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS Pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B (NF-κB), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-α, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and NF-κB transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced NF-κB and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, NF-κB, and MAPKs pathways.
Collapse
Affiliation(s)
- Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanisa Punfa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
29
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Xia W, Mo H. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 2015; 31:1-9. [PMID: 27133418 DOI: 10.1016/j.jnutbio.2015.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.
Collapse
Affiliation(s)
- Weiming Xia
- Geriatric Research Education and Clinical Center, ENR Memorial Veterans Hospital, Bedford, MA.
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA; Center for Obesity Reversal, Georgia State University, Atlanta, GA.
| |
Collapse
|
31
|
Wallert M, Schmölz L, Koeberle A, Krauth V, Glei M, Galli F, Werz O, Birringer M, Lorkowski S. α-Tocopherol long-chain metabolite α-13'-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages. Mol Nutr Food Res 2015; 59:1524-34. [PMID: 25943249 DOI: 10.1002/mnfr.201400737] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 01/28/2023]
Abstract
SCOPE Inflammatory response of macrophages is regulated by vitamin E forms. The long-chain metabolite α-13'-carboxychromanol (α-13'-COOH) is formed by hepatic α-tocopherol (α-TOH) catabolism and acts as a regulatory metabolite via pathways that are different from its metabolic precursor. METHODS AND RESULTS Using semisynthetically-derived α-13'-COOH we profiled its action on LPS-induced expression of pro- and anti-inflammatory genes using RT-qPCR and of key proteins by Western blotting. Effects on inflammatory response were assessed by measuring production of nitric oxide and prostaglandin (PG) E2 , PGD2 , and PGF2α. α-13'-COOH inhibits proinflammatory pathways in LPS-stimulated RAW264.7 macrophages more efficiently than α-TOH. Profiling inflammation-related genes showed significant blocking of interleukin (Il)1β by the metabolite and its precursor as well, while upregulation of Il6 was not impaired. However, induction of Il10, cyclooxygenase 2 (Cox2) and inducible nitric oxide synthase (iNos) by LPS and consequently the formation of nitric oxide and PG was significantly reduced by α-13'-COOH. Interestingly, α-13'-COOH acted independently from translocation of NFκB subunit p65. CONCLUSION Our study sheds new light on the mode of action of α-TOH on the inflammatory response in macrophages, which may be mediated in vivo at least in part by its metabolite α-13'-COOH. Our data show that α-13'-COOH is a potent anti-inflammatory molecule.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Friedrich Schiller University Jena, Jena, Germany
| | - Lisa Schmölz
- Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Verena Krauth
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Friedrich Schiller University Jena, Jena, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany.,Department of Nutrition Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, Perugia, Italy
| | - Oliver Werz
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Friedrich Schiller University Jena, Jena, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Studies, HS Fulda - University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
32
|
Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, Bhanger MI. Are bioactive-rich fractions functionally richer? Crit Rev Biotechnol 2015; 36:585-93. [DOI: 10.3109/07388551.2014.995586] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, and
| | - Der Jiun Ooi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
| | - Nur Hanisah Azmi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
| | - Nadarajan Sarega
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
| | - Kim Wei Chan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,
| | - Muhammad Iqbal Bhanger
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
33
|
Ammar NM, Hefnawy MS, Al-Okbi SY, Mohamed DA, El-Sayed NK, El-Anssary AA, Mabry T. Phytochemical and biological studies of Butia capitata Becc. leaves cultivated in Egypt. Asian Pac J Trop Biomed 2014; 4:456-62. [PMID: 25182947 DOI: 10.12980/apjtb.4.2014c1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To study the antioxidant and anti-inflammatory activity of Butia capitata (B. capitata) leaf extracts along with phytochemical analysis of the proposed bioactive constituents. METHODS Different successive extracts of B. capitata Becc. leaves were prepared with selective organic solvents and screened for their anti-inflammatory activities in tested animals and in-vitro antioxidant effect. An extensive phytochemical investigation of the bioactive extracts through paper chromatography, thin layer chromatography, column chromatography, gas-liquid chromatography (GLC), high pressure liquid chromatography and spectral analysis. GC-Mass, ultraviolet, hydrogen and carbon nuclear magnetic resonance, electron ionization-mass spectrometry, heteronuclear multiple bond correlation and heteronuclear multiple quantum correlation were carried out. RESULTS Results showed that different extracts possess promising antioxidant effect and significant anti-inflammatory activity with variable degrees. The results of the phytochemical investigation of the bioactive extracts revealed the presence of volatile substances, lipoidal matter, α-tocopherol, free sugars, polysaccharides and flavonoidal compounds. CONCLUSIONS B. capitata leaf extracts were shown to possess variable antioxidant effect, the most promising was methanol extract. Both polar and non polar extracts were proved to have anti-inflammatory activity, the non polar extract was superior in this respect. The bioactivity of the extracts was ascribed to the presence of flavonoids, sterols and α-tocopherol.
Collapse
Affiliation(s)
- Nagwa Mohamed Ammar
- Pharmacognosy Department, National Research Centre, Dokki, El-Buhouth Street, 12622, Cairo, Egypt
| | | | - Sahar Youssef Al-Okbi
- Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
| | - Doha Abdou Mohamed
- Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nabil Khamis El-Sayed
- Tanning Materials and Protein Chemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Amira Ahmed El-Anssary
- Pharmacognosy Department, National Research Centre, Dokki, El-Buhouth Street, 12622, Cairo, Egypt
| | - Tom Mabry
- Molecular Cell and Developmental Biology, The School of Biological Science, Botany Department, Taxas State University, Austin Texas 78713, USA
| |
Collapse
|
34
|
Shukla P, Dwivedi P, Gupta PK, Mishra PR. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin Drug Deliv 2014; 11:1697-712. [PMID: 25046368 DOI: 10.1517/17425247.2014.932769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The objective of this study is to develop a nanostructured parenteral delivery system, laden with curcumin (CUR), for the therapeutic intervention of sepsis and associated pathologies. METHODS Nanoemulsions were fabricated using sonication and speed homogenization. Size and zeta potential were evaluated by dynamic light scattering and transmission electron microscopy analysis. Pharmacodynamic and pharmacokinetic studies were performed on a rat model of lipopolysaccharide (LPS)-induced sepsis. RESULTS The drug content of optimized nanoemulsion (F5) formulation (particle size 246 ± 08 nm, polydispersity index (PDI) of 0.120, zeta potential of -41.1 ± 1.2 mV) was found to be 1.25 mg/ml. In vitro release studies demonstrated that F5 was able to sustain the release of CUR for up to 24 h. Minimal hemolysis and cellular toxicity demonstrated its suitability for intravenous administration. Significant reduction of inflammatory mediator levels was mediated through enhanced uptake by in RAW 264.7 and THP-1 in absence/presence of LPS. Nanoemulsion resulted in an improvement of plasma concentration (AUCF5/AUC CUR = 8.80) and tissue distribution of CUR in rats leading to a reduction in LPS-induced lung and liver injury due to less neutrophil migration, reduced TNF-α levels and oxidative stress (demonstrated by levels of lipid peroxides as well as carbonylated proteins) as confirmed by histopathological studies. CONCLUSION The findings suggest that the therapeutic performance (i.e., reduction in oxidative damage in tissues) of CUR can be enhanced by employing tocol acetate nanoemulsions (via improving pharmacokinetics and tissue distribution) as a platform for drug delivery in sepsis-induced organ injury.
Collapse
Affiliation(s)
- Prashant Shukla
- CSIR-Central Drug Research Institute, Pharmaceutics Division, Preclinical south PCS 002/011 , Jankipuram Extension, Sitapur Road, Lucknow, 226031 , India +91 9415753171 ;
| | | | | | | |
Collapse
|
35
|
Wallert M, Schmölz L, Galli F, Birringer M, Lorkowski S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol 2014; 2:495-503. [PMID: 24624339 PMCID: PMC3949092 DOI: 10.1016/j.redox.2014.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/07/2023] Open
Abstract
Vitamin E is likely the most important antioxidant in the human diet and α-tocopherol is the most active isomer. α-Tocopherol exhibits anti-oxidative capacity in vitro, and inhibits oxidation of LDL. Beside this, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in uptake, transport and degradation of tocopherols, as well as the uptake, storage and export of lipids such as cholesterol. Despite promising anti-atherogenic features in vitro, vitamin E failed to be atheroprotective in clinical trials in humans. Recent studies highlight the importance of long-chain metabolites of α-tocopherol, which are formed as catabolic intermediate products in the liver and occur in human plasma. These metabolites modulate inflammatory processes and macrophage foam cell formation via mechanisms different than that of their metabolic precursor α-tocopherol and at lower concentrations. Here we summarize the controversial role of vitamin E as a preventive agent against atherosclerosis and point the attention to recent findings that highlight a role of these long-chain metabolites of vitamin E as a proposed new class of regulatory metabolites. We speculate that the metabolites contribute to physiological as well as pathophysiological processes.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Nutritional Biochemistry, Institute of Nutrition, Friedrich Schiller University Jena, Germany
| | - Lisa Schmölz
- Department of Nutritional Biochemistry, Institute of Nutrition, Friedrich Schiller University Jena, Germany
| | - Francesco Galli
- Laboratory of Molecular Modeling and Chemoinformatics, Department of Chemistry, University of Perugia, Perugia, Italy
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Studies, University of Applied Sciences Fulda, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry, Institute of Nutrition, Friedrich Schiller University Jena, Germany
| |
Collapse
|