1
|
Akkewar AS, Mishra KA, Kamble MG, Kumar S, Dey J, Sethi KK. A mechanistic review on growing multiple therapeutic applications of lutein and its global market research. Phytother Res 2024; 38:3190-3217. [PMID: 38634408 DOI: 10.1002/ptr.8197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Lutein is a naturally occurring carotenoid synthesized by plants and algae that has a beneficial effect on several biological processes and associated ailments. Its immediate application is in ophthalmology, where it significantly lowers the incidences of age-related macular degeneration (AMD). It also has anti-inflammatory action, treatment of diabetic retinopathy, and cataracts, and enhancement of visual contrast. To critically assess lutein biosynthesis, therapeutic applicability, and market research literature. We have discussed its theoretical frameworks, experimental evidence, limitations, as well as clinical trial results, and future research prospects. The literature for this review article was mined and compiled by collecting and analyzing articles from several databases, including ScienceDirect, Google Scholar, PubMed, Wiley Online Library, Patentscope, and ClinicalTrials.gov published until March 30, 2022. Patent publications were identified using the search terms like IC:(C07C67/56) AND EN_AB:(lutein) OR EN_TI:(lutein) OR EN_AB:(extraction) OR EN_TI:(process). According to the literature, lutein is an essential nutrient given that it cannot be synthesized in the human body and acts as an antioxidant, affecting AMD, diabetic retinopathy, Rheumatic diseases, inflammation, and cancer. Due to inadequate production and laborious extraction, lutein is expensive despite its high demand and applicability. Market research predicts a 6.3% compound annual growth rate for lutein by 2032. Optimizing lutein extraction for high yield and purity is necessary. Lutein has proven applicability in various ailments as well as cosmetics that can be developed as a candidate drug for various diseases discussed in the review.
Collapse
Affiliation(s)
- Ashish Sunil Akkewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Mahesh Gopichand Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Sanjay Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Juhi Dey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Kalyan Kumar Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| |
Collapse
|
2
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
3
|
Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int 2023; 169:112773. [DOI: 10.1016/j.foodres.2023.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
|
4
|
Jung H, Shin S. Association between Tomato and Lycopene Consumption and Risk of All-Cause and Cause-Specific Mortality: Korean Genome and Epidemiology Study Cohort. Mol Nutr Food Res 2023; 67:e2200452. [PMID: 36583486 DOI: 10.1002/mnfr.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/03/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Tomato has well-known beneficial health effects and is an important source of lycopene. The study aims to clarify the evidence for the association between tomato and lycopene consumption and all-cause and cause-specific mortality in Korean adults. METHODS AND RESULTS Data analyzed in the current study are obtained from the Korean Genome and Epidemiology Study Cohort. Mortality outcomes are determined based on death records from 2001 to 2020. Tomato and lycopene consumption is assessed using food frequency questionnaires and antioxidant databases and divided into quintiles. Over a mean follow-up of 11.5 years, 5863 deaths are recorded among 139913 participants aged over 40 years. Tomato consumption is not associated with the risk of all-cause and cancer mortality. However, the highest tomato consumption group has a lower risk of cardiovascular disease (CVD) mortality (HR = 0.779; 95% CI = 0.633, 0.957). Lycopene consumption is inversely associated with all-cause (HR = 0.872; 95% CI = 0.801, 0.950), and CVD (HR = 0.680; 95% CI = 0.548, 0.845) mortality. CONCLUSION A higher intake of tomatoes and lycopene is inversely related to the risk of CVD mortality, and lycopene consumption is associated with a lower risk of all-cause mortality.
Collapse
Affiliation(s)
- Hyein Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, South Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, South Korea
| |
Collapse
|
5
|
Zhao J, Wang X, Wang Y, Lv G, Lin H, Lin Z. UPLC-MS/MS profiling, antioxidant and anti-inflammatory activities, and potential health benefits prediction of phenolic compounds in hazel leaf. Front Nutr 2023; 10:1092071. [PMID: 36819681 PMCID: PMC9929368 DOI: 10.3389/fnut.2023.1092071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Hazel leaf, one of the by-products of hazelnut, which is widely used in traditional folk medicine around the world. In the present study, the profile of free, conjugated, and bound phenolic compounds from hazel leaf was detected and their antioxidant and anti-inflammatory activities were investigated. The potential health benefits of different phenolic compounds were also predicted. The results showed that the 35 phenolic substances of free, conjugated and bound forms were identified including phenolic acids, flavonoids and catechins. Most of the hazel leaf phenolics were presented in free form, followed by conjugated and bound form. All the fractions effectively inhibited the production of reactive oxygen species and malondialdehyde in TBHP-stimulated human umbilical vein endothelial cells by enhancing endogenous superoxide dismutase, and accordingly alleviated inflammatory cytokines (NO, IL-1β, TNF-α, and IL-6) in LPS-stimulated RAW264.7 cells, showing obvious antioxidant and anti-inflammatory capacity. Moreover, combined with network pharmacology, the potential therapeutic effects and functional pathways of hazel leaf phenolics were predicted, which provided value basis for exploring their treatment on diseases and developing health products in the future.
Collapse
Affiliation(s)
| | | | | | | | - He Lin
- *Correspondence: He Lin ✉
| | | |
Collapse
|
6
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
7
|
Tang S, Kan J, Sun R, Cai H, Hong J, Jin C, Zong S. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. J Food Biochem 2021; 45:e13869. [PMID: 34287964 DOI: 10.1111/jfbc.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
In this study, anthocyanins were extracted and purified from purple sweet potato anthocyanins (PSPA) and the alleviative effect of PSPA on doxorubicin (DOX)-induced cardiotoxicity was investigated. High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) results showed that 10 kinds of substances were identified in PSPA and the PSPA was mainly composed of cyanidin (62.9%) and peonidin (21.46%). In in vitro experiments, PSPA reduced the excessive release of inflammatory factors (NO and TNF-α) induced by DOX and decreased the secretion of trimethylamine oxide (TMAO), lactic dehydrogenase (LDH), and creatine kinase (CK) caused by myocardial injury. In in vivo experiments, PSPA inhibited the release of NO and MDA levels in heart tissue. Meanwhile, mice treated with PSPA decreased the levels of LDH, CK, TNF-α, and TMAO in serum and heart tissue when compared with the DOX group. In addition, the histopathological results of the heart tissue also showed a protective effect of PSPA on the pathological changes in heart. These results provide a reference for the application of PSPA as a functional food to intervene in DOX-induced cardiotoxicity. PRACTICAL APPLICATIONS: The effects of anthocyanins from purple sweet potato anthocyanins (PSPA) on doxorubicin (DOX)-induced cardiotoxicity were investigated in vitro and in vivo. The results indicated that PSPA could significantly ameliorate DOX-induced heart failure. The obtained results could provide the potential application of PSPA as an alternative therapy for cardiotoxicity caused by DOX in the functional food industry.
Collapse
Affiliation(s)
- Sixue Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
8
|
Synergistic antioxidant effects of phenolic acids and carotenes on H 2O 2-induced H9c2 cells: Role of cell membrane transporters. Food Chem 2020; 341:128000. [PMID: 33059273 DOI: 10.1016/j.foodchem.2020.128000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Phenolic acids (caffeic acid, p-coumaric acid,) and carotenes (β-carotene, lycopene) were mixed in different ratios to investigate antioxidant interactions on H2O2-induced H9c2 cells with ezetimibe (inhibitor of carotenes membrane transporters). Cellular uptake of carotenes, expression of membrane transporters, reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase quinone1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC) were analyzed. Results revealed that phenolic acids increased cellular uptake of carotenes and expression of their membrane transporters. Combination groups contained more phenolic acids showed synergistic effects. For example, β-carotene: caffeic acid = 1:2 significantly suppressed the intracellular ROS (+EZT, 66.34 ± 51.53%) and enhanced the accumulation of nucleus-Nrf2 (+EZT, 30.23 ± 5.30) compared to the groups contained more β-carotene (+EZT, ROS: 75.48 ± 2.55%, nucleus-Nrf2: 19.48 ± 4.22). This study provided an implication of functional foods formulation and demonstrated that antioxidant synergism may due to the up-regulation of carotenes membrane transporters by phenolic acids.
Collapse
|
9
|
Zheng S, Deng Z, Chen F, Zheng L, Pan Y, Xing Q, Tsao R, Li H. Synergistic antioxidant effects of petunidin and lycopene in H9c2 cells submitted to hydrogen peroxide: Role of Akt/Nrf2 pathway. J Food Sci 2020; 85:1752-1763. [PMID: 32476138 DOI: 10.1111/1750-3841.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
Abstract
Phenolics and carotenoids coexist in fruits and vegetables and could possess interaction effects after consumption. The present study aims to elucidate the possible mechanisms of the antioxidant interactions between anthocyanins and carotenoids using petunidin and lycopene as examples in hydrogen peroxide (H2 O2 )-induced heart myofibroblast cell (H9c2) line model. The results revealed that petunidin and lycopene showed antioxidant effects and petunidin in a larger proportion mixed with lycopene, for example, petunidin: lycopene = 9:1 significantly protected against the loss of the cell viability (8.98 ± 1.03%) and intracellular antioxidant enzyme activities of superoxide dismutase (SOD, 27.07 ± 3.51%), catalase (CAT, 29.51 ± 6.12%), and glutathione peroxidase (GSH-Px, 20.33 ± 2.65%). Moreover, the messenger RNA (mRNA) and protein expressions of NAD(P)H quinone reductase (NQO1) and heme oxygenase (HO-1) of the nuclear factor erythrocyte 2-related factor 2 (Nrf2) signaling pathway were significantly induced in petunidin, lycopene, and synergistic combinations, suggesting that the antioxidant action was through activating the Nrf2 antioxidant response pathway. This was further validated by Nrf2 siRNA, and the results that petunidin significantly induced more of NQO1 expression and lycopene more of HO-1 suggested that the synergism may be a result of concerted actions by the two compounds on these two different target genes of the Nrf2 pathway. The two compounds also significantly increased the phosphorylation of Akt in synergistic combinations. Findings of the present study demonstrated that petunidin and lycopene exerted synergistic antioxidant effects when petunidin in a larger proportion in the combinations and contribute to the prevention of cellular redox homeostasis, which might provide a theoretical basis for phenolics and carotenoids playing beneficial effects on the cardiovascular risk. PRACTICAL APPLICATION: In this study, we revealed that the combined treatments of petunidin and lycopen inhibited H2 O2 -induced oxidative damage in myocardial cells. Moreover, the treatments contributed to the Nrf2 pathway and the restoration of cellular redox homeostasis might provide a theoretical basis for phenolics and carotenoids playing beneficial effects on the cardiovascular risk.
Collapse
Affiliation(s)
- Shilian Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.,Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Fang Chen
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Qian Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
10
|
Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1635027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Nan Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Xu W, Yang Y, Xue SJ, Shi J, Lim LT, Forney C, Xu G, Bamba BSB. Effect of In Vitro Digestion on Water-in-Oil-in-Water Emulsions Containing Anthocyanins from Grape Skin Powder. Molecules 2018; 23:E2808. [PMID: 30380666 PMCID: PMC6278365 DOI: 10.3390/molecules23112808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/01/2023] Open
Abstract
The effects of in vitro batch digestion on water-in-oil-in-water (W/O/W) double emulsions encapsulated with anthocyanins (ACNs) from grape skin were investigated. The double emulsions exhibited the monomodal distribution (d = 686 ± 25 nm) showing relatively high encapsulation efficiency (87.74 ± 3.12%). After in vitro mouth digestion, the droplet size (d = 771 ± 26 nm) was significantly increased (p < 0.05). The double W₁/O/W₂ emulsions became a single W₁/O emulsion due to proteolysis, which were coalesced together to form big particles with significant increases (p < 0.01) of average droplet sizes (d > 5 µm) after gastric digestion. During intestinal digestion, W₁/O droplets were broken to give empty oil droplets and released ACNs in inner water phase, and the average droplet sizes (d < 260 nm) decreased significantly (p < 0.05). Our results indicated that ACNs were effectively protected by W/O/W double emulsions against in vitro mouth digestion and gastric, and were delivered in the simulated small intestine phase.
Collapse
Affiliation(s)
- Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Sophia Jun Xue
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - John Shi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada.
| | - Guihua Xu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Bio Sigui Bruno Bamba
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
12
|
Ahmadi L, Hao X, Tsao R. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4427-4435. [PMID: 29435999 DOI: 10.1002/jsfa.8965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The effect of light transmission (direct and diffuse) on the phenolic compounds of five tomato cultivars was investigated under controlled conditions in greenhouses covered with different covering materials. RESULTS The type of covering material and type of diffusion of light simultaneously affected the reducing power of cultivars. Two-way analysis of variance showed statistically significant differences in total phenolic content for the different cultivars (P < 0.05) but not for the covering materials. Analysis by ultrahigh-performance liquid chromatography with diode array detection and liquid chromatography/tandem mass spectrometry showed the presence of major phenolic acid compounds such as chlorogenic acid, hydroxycinnamic acid/rutin, caffeic acid, ferulic acid and coumaric acid as well as flavonoid compounds such as myricetin, quercetin and naringenin. Most of the identified compounds showed a significant difference in different treatments due to both cultivar and covering material (P < 0.05). Statistical analysis showed that the type of covering material used influenced the total carotenoid and lycopene content (P < 0.05); however, the amount of lutein was not influenced by the type of covering material (P > 0.05). CONCLUSION This study showed that the use of solar energy transmission could positively affect the reducing power of cultivars and alter the biosynthesis of certain phytochemicals that are health-beneficial. Further study could lead to applications for producing greenhouse vegetables with greater health attributes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Latifeh Ahmadi
- School of Food and Nutritional Sciences, Brescia University College at the University of Western Ontario, London, Ontario, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Pan Y, Deng ZY, Zheng SL, Chen X, Zhang B, Li H. Daily Dietary Antioxidant Interactions Are Due to Not Only the Quantity but Also the Ratios of Hydrophilic and Lipophilic Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9107-9120. [PMID: 30085667 DOI: 10.1021/acs.jafc.8b03412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrophilic extracts of mulberry (HEM) and blueberry (HEB) and lipophilic extracts of mango (LEM) and watermelon (LEW) were mixed in different ratios to assess the antioxidant interactions by chemical-based (DPPH and ABTS assays) and H9c2 cell-based models. There were both synergistic and antagonistic antioxidant interactions among these fruits. Some groups with combinational extracts showed stronger synergistic antioxidant effects than the individual groups, and others (HEM-LEW F1/10, LEW-LEM F5/10, and HEB-LEM F3/10) showed stronger antagonistic effects than the individual groups based on the indicators [the values of DPPH, ABTS, and MTT; the expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA); the release of lactate dehydrogenase (LDH); and the quantification of cellular antioxidant activity]. The principal component analysis (PCA) showed that samples could be defined by two principal components: PC1, the main phenolic acids and anthocyanins, and PC2, carotenoids. From our results, primarily, carotenoids were in the majority in antagonistic groups, and phenolics and anthocyanins were in the majority in synergistic groups. However, the combinational groups containing only hydrophilic compounds did not always show synergistic effects. Therefore, the compatibility of diets indicates balancing the ratios of hydrophilic and lipophlic compounds in our daily food. In addition, the expression of enzymes (SOD, GSH-Px, and CAT) may not be sensitive to the changes of antioxidant activity caused by the combinations with different ratios of hydrophilic and lipophilc compounds. The different structures of lipophilic compounds (β-carotene and lycopene) could influence the antagonistic effects.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
- Institute for Advanced Study , University of Nanchang , Nanchang 330031 , Jiangxi , China
| | - Shi-Lian Zheng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Xuan Chen
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
14
|
Pan Y, Li H, Zheng S, Zhang B, Deng ZY. Implication of the Significance of Dietary Compatibility: Based on the Antioxidant and Anti-Inflammatory Interactions with Different Ratios of Hydrophilic and Lipophilic Antioxidants among Four Daily Agricultural Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7461-7474. [PMID: 29920091 DOI: 10.1021/acs.jafc.8b01690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrophilic extracts of eggplant peel (HEEP) and purple sweet potato (HEPP) and lipophilic extracts of tomato (LET) and carrot (LEC) were mixed in different ratios to assess the significance of the compatibility of aliments, based on their antioxidant and anti-inflammatory interactions in H9c2 cells. The results indicated that groups of some combinational extracts (HEPP-HEEP F1/10, LEC-HEEP F3/10, LEC-HEPP F3/10) showed stronger synergistic antioxidant and anti-inflammatory effects than individual groups. For example, the glutathione peroxidase (GPx) activity of the LEC-HEEP (F3/10) group (86.71 ± 1.88) was higher than that in the HEEP (79.97 ± 1.68) and LEC (77.31 ± 1.85) groups. The level of reactive oxygen species (ROS) was 30.37 ± 0.25 in the LEC-HEEP (F3/10) group while the levels were 34.34 ± 0.36 and 46.23 ± 0.51 in the HEEP and LEC groups, respectively. And the level of malondialdehyde (MDA) was 1.82 ± 0.24 in the LEC-HEEP (F3/10) group while the levels were 2.48 ± 0.13 and 3.01 ± 0.24 in the HEEP and LEC groups, respectively. The expressions of inflammatory mediators (IL-1β, IL-6, IL-8) and cell adhesion molecules (VCAM-1, ICAM-1) showed similar tendencies. However, some groups (LET-LEC F5/10, LET-LEC F9/10, LET-HEPP F7/10) showed antagonistic effects based on these indicators. The principal component analysis showed that samples could be defined by two principal components: PC1, the main phenolic acids and flavonoids; PC2, carotenoids. Moreover, phenolics and anthoyanins were in the majority in synergistic groups, and carotenoids were in the majority in antagonistic groups. These results indicated that there exist synergistic or antagonistic interactions of aliments on antioxidation and anti-inflammation, which implied the significance of food compatibility.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
- Institute for Advanced Study , University of Nanchang , Nanchang 330031 , Jiangxi , China
| |
Collapse
|
15
|
Spinelli S, Lecce L, Likyova D, Del Nobile MA, Conte A. Bioactive compounds from orange epicarp to enrich fish burgers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2582-2586. [PMID: 29064562 DOI: 10.1002/jsfa.8750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. RESULTS A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg-1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. CONCLUSION Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Italy
| | - Lucia Lecce
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Italy
| | - Desislava Likyova
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Italy
| | | | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Italy
| |
Collapse
|
16
|
González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R. In Vitro Bioaccessibility of Colored Carotenoids in Tomato Derivatives as Affected by Ripeness Stage and the Addition of Different Types of Oil. J Food Sci 2018; 83:1404-1411. [PMID: 29660792 DOI: 10.1111/1750-3841.14140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/02/2018] [Accepted: 03/04/2018] [Indexed: 11/29/2022]
Abstract
The simultaneous effect of tomato ripeness stage (mature green, pink, and red-ripe), mechanical processing (dicing and grinding), and oil addition (coconut, sunflower, and olive oils) on the amount and bioaccessible fraction of carotenoids were evaluated. Tomato products obtained from fruits at the most advanced ripeness stage exhibited the greatest values of both concentration and bioaccessible fraction of total carotenoids and lycopene. The type of processing also exerted an important influence on carotenoids content, as well as on its bioaccessibility. Thus, despite the concentration of carotenoids in tomato puree significantly decreased (36% to 59%), their bioaccessibility was greater (up to 2.54-fold increase) than in tomato cubes. Moreover, the addition of oil significantly improved the carotenoid bioaccessibility, especially when olive oil was added, reaching up to 21-fold increase with respect to samples without oil. The results obtained clearly indicate that carotenoids bioaccessibility of tomato derivatives was strongly influenced by the ripeness stage of the fruit, processing and the addition of oil. PRACTICAL APPLICATION Bioaccessibility of carotenoids is known to be affected by different factors. This study provides useful information about the synergic effect of different factors affecting the amount and the bioaccessible fraction of carotenoids, especially lycopene, in two common tomato derivatives. The findings of this work may contribute to develop tomato derivatives with high content of bioaccessible carotenoids, leading to the enhancement of their health-promoting properties.
Collapse
Affiliation(s)
- Sandra González-Casado
- Dept. of Food Technology, Agrotecnio Center, Univ. of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Dept. of Food Technology, Agrotecnio Center, Univ. of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Pedro Elez-Martínez
- Dept. of Food Technology, Agrotecnio Center, Univ. of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Dept. of Food Technology, Agrotecnio Center, Univ. of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
17
|
PEIXOTO JVM, GARCIA LGC, NASCIMENTO ADR, MORAES ERD, FERREIRA TAPDC, FERNANDES MR, PEREIRA VDA. Post-harvest evaluation of tomato genotypes with dual purpose. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, Chen Y, Sun Y, Zhang L, Tsao R. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 2017; 249:66-76. [PMID: 29407933 DOI: 10.1016/j.foodchem.2017.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
A rapid method for producing 9Z- and 13'Z-isomers from all-E-lutein was developed using I-TiO2 as catalyst. In a simulated in vitro gastrointestinal digestion model, both trans-cis isomerization of all-E-lutein and cis-trans isomerization of Z-luteins occurred during the intestinal phase. The bioaccessibility of all isomers was between 14 and 23%, and it was higher for Z-luteins. In a Caco-2 cell monolayer model, all isomers were relatively stable during cellular uptake and transport across the membrane as no significant isomerization and degradation was detected, but all-E-lutein exhibited significantly higher cellular uptake and transport efficiencies. These results suggest that Z-luteins found in human plasma may likely be formed before intestinal absorption. 13'Z-Lutein also exhibited highest antioxidant activity in FRAP, DPPH and ORAC-L assays, but no significant difference in cell-based antioxidant assay compared with other isomers. Future studies on the different antioxidant activities of cis isomers of lutein in vivo will provide further explanation.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Maike Fischer
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Chris Kirby
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Ronghua Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| |
Collapse
|
19
|
Padhi EM, Liu R, Hernandez M, Tsao R, Ramdath DD. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Xia N, Liu T, Wang Q, Xia Q, Bian X. In vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery. J Microencapsul 2017; 34:571-581. [PMID: 28830289 DOI: 10.1080/02652048.2017.1367852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aimed at in vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery, which was prepared by hot high-pressure homogenisation. Stable particles could be formed and particle size was 148.54 ± 2.31 nm with polydispersity index below 0.15. Encapsulation efficiency and drug loading of α-lipoic acid were 95.23 ± 0.45% and 2.81 ± 0.37%. Antioxidant study showed α-lipoic acid could be protected by lipid nanocapsules without loss of antioxidant activity. Sustained release of α-lipoic acid from lipid nanocapsules was obtained and cumulative release was 62.18 ± 1.51%. In vitro percutaneous study showed the amount of α-lipoic acid distributed in skin was 1.7-fold than permeated. Cytotoxicity assay and antioxidant activity on L929 cells indicated this formulation had low cytotoxicity and ability of protecting cells from oxidative damage within specific concentration. These studies suggested α-lipoic acid-loaded lipid nanocapsules could be potential formulation for topical delivery.
Collapse
Affiliation(s)
- Nan Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Tian Liu
- b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| | - Qiang Wang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Qiang Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Xiaoli Bian
- d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
21
|
Del Giudice R, Petruk G, Raiola A, Barone A, Monti DM, Rigano MM. Carotenoids in fresh and processed tomato (Solanum lycopersicum) fruits protect cells from oxidative stress injury. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1616-1623. [PMID: 27434883 DOI: 10.1002/jsfa.7910] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipophilic antioxidants in tomato (Solanum lycopersicum) fruits exert important functions in reducing the risk of human diseases. Here the effect of thermal processing on the antioxidant activity of lipophilic extracts from the commercial tomato hybrid 'Zebrino' was analysed. Carotenoid content and lipophilic antioxidant activity were determined and the ability of tomato extracts in rescuing cells from oxidative stress was assessed. RESULTS Lipophilic antioxidant activity was completely retained after heat treatment and extracts were able to mitigate the detrimental effect induced by oxidative stress on different cell lines. Lycopene alone was able to rescue cells from oxidative stress, even if to a lower extent compared with tomato extracts. These results were probably due to the synergistic effect of tomato compounds in protecting cells from oxidative stress injury. CONCLUSION The current study provides valuable insights into the health effect of the dietary carotenoids present in fresh and processed tomato fruits. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| |
Collapse
|
22
|
Li Q, Li T, Liu C, Dai T, Zhang R, Zhang Z, McClemnets DJ. Enhancement of Carotenoid Bioaccessibility from Tomatoes Using Excipient Emulsions: Influence of Particle Size. FOOD BIOPHYS 2017. [DOI: 10.1007/s11483-017-9474-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Ramos-Bueno RP, Romero-González R, González-Fernández MJ, Guil-Guerrero JL. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:488-496. [PMID: 27060896 DOI: 10.1002/jsfa.7750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Previous studies indicated that tomato is a rich source of phytochemicals that act on different tumours. In this research, the phytochemical composition of selected tomato varieties was assessed by GLC and UHPLC/HPLC-MS, as well as their anti-tumour activities on HT-29 colorectal cancer cells. RESULTS Significant differences were found among tomato varieties; lycopene was high in Racimo, phenolics in Pera, sterols in Cherry, and linoleic acid predominated in all varieties. The MTT and LDH assays showed significant time- and concentration-dependent inhibitory/cytotoxic effects of all tomato varieties on HT-29 cells. Furthermore, the joint addition of tomato carotenoids and olive oil to HT-29 cell cultures induced inhibitory effects significantly higher than those obtained from each of them acting separately, while no actions were exercised in CCD-18 normal cells. CONCLUSION Tomato fruits constitute a healthy source of phytochemicals, although differences exist among varieties. In vitro, all of them inhibit colorectal cancer cell proliferation with Racimo variety at the top, and exercising a selective action on cancer cells by considering the lack of effects on CCD-18 cells. Furthermore, synergy was observed between olive oil and tomato carotenoids in inhibiting HT-29 cancer cell proliferation; conversely, phenolics showed no significant effects and hindered carotenoids actions. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| | - Roberto Romero-González
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, E-04071, Almeria, Spain
| | - María J González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| | - José L Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| |
Collapse
|
24
|
Yu BW, Li JL, Guo BB, Fan HM, Zhao WM, Wang HY. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H 2O 2-induced apoptosis. Acta Pharmacol Sin 2016; 37:1413-1422. [PMID: 27593219 DOI: 10.1038/aps.2016.79] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
AIM Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. METHODS H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. RESULTS Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. CONCLUSION Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2 cardiomyoblasts against H2O2-induced apoptosis, possibly by inhibiting intrinsic apoptosis and the ERK/JNK pathway.
Collapse
|
25
|
Mirdehghan SH, Valero D. Bioactive compounds in tomato fruit and its antioxidant activity as affected by incorporation ofAloe, eugenol, and thymol in fruit package during storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1223128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seyed Hossein Mirdehghan
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University, Rafsanjan, Kerman, Iran
| | - Daniel Valero
- Department of Food Technology, University of Miguel Hernandez, Alicante, Spain
| |
Collapse
|
26
|
Zhou JM, Xu ZL, Li N, Zhao YW, Wang ZZ, Xiao W. Identification of cardioprotective agents from traditional Chinese medicine against oxidative damage. Mol Med Rep 2016; 14:77-88. [PMID: 27176126 PMCID: PMC4918535 DOI: 10.3892/mmr.2016.5243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species are damaging to cardiomyocytes. H9c2 cardiomyocytes are commonly used to study the cellular mechanisms and signal transduction in cardiomyocytes, and to evaluate the cardioprotective effects of drugs following oxidative damage. The present study developed a robust, automated high throughput screening (HTS) assay to identify cardioprotective agents from a traditional Chinese medicine (TCM) library using a H2O2-induced oxidative damage model in H9c2 cells. Using this HTS format, several hits were identified as cardioprotective by detecting changes to cell viability using the cell counting kit (CCK)-8 assay. Two TCM extracts, KY-0520 and KY-0538, were further investigated. The results of the present study demonstrated that treatment of oxidatively damaged cells with KY-0520 or KY-0538 markedly increased the cell viability and superoxide dismutase activity, decreased lactate dehydrogenase activity and malondialdehyde levels, and inhibited early growth response-1 (Egr-1) protein expression. The present study also demonstrated that KY-0520 or KY-0538 treatment protected H9c2 cells from H2O2-induced apoptosis by altering the Bcl-2/Bax protein expression ratio, and decreasing the levels of cleaved caspase-3. In addition, KY-0520 and KY-0538 reduced the phosphorylation of ERK1/2 and p38-MAPK proteins, and inhibited the translocation of Egr-1 from the cytoplasm to nucleus in H2O2-treated H9c2 cells. These findings suggested that oxidatively damaged H9c2 cells can be used for the identification of cardioprotective agents that reduce oxidative stress by measuring cell viabilities using CCK-8 in an HTS format. The underlying mechanism of the cardioprotective activities of KY-0520 and KY-0538 may be attributed to their antioxidative activity, regulation of Egr-1 and apoptosis-associated proteins, and the inhibition of ERK1/2, p38-MAPK and Egr-1 signaling pathways.
Collapse
Affiliation(s)
- Jian-Ming Zhou
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhi-Liang Xu
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Na Li
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Yi-Wu Zhao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhen-Zhong Wang
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
27
|
Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1134.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury. Nutrients 2016; 8:138. [PMID: 26950150 PMCID: PMC4808867 DOI: 10.3390/nu8030138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022] Open
Abstract
Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.
Collapse
|
29
|
Abstract
Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.
Collapse
|
30
|
Del Giudice R, Raiola A, Tenore GC, Frusciante L, Barone A, Monti DM, Rigano MM. Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
31
|
Saini RK, Nile SH, Park SW. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 2015; 76:735-750. [DOI: 10.1016/j.foodres.2015.07.047] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022]
|
32
|
Kuang P, Zhang H, Bajaj PR, Yuan Q, Tang J, Chen S, Sablani SS. Physicochemical Properties and Storage Stability of Lutein Microcapsules Prepared with Maltodextrins and Sucrose by Spray Drying. J Food Sci 2015; 80:E359-69. [DOI: 10.1111/1750-3841.12776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Pengqun Kuang
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
- State Key Laboratory of Chemical Resource Engineering; Beijing Univ. of Chemical Technology; Beijing P.R. China
| | - Hongchao Zhang
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
| | - Poonam R. Bajaj
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering; Beijing Univ. of Chemical Technology; Beijing P.R. China
| | - Juming Tang
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
| | - Shulin Chen
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
| | - Shyam S. Sablani
- Dept. of Biological Systems Engineering; Washington State Univ; Pullman WA 99164-6120 U.S.A
| |
Collapse
|
33
|
Singh A, Ahmad S, Ahmad A. Green extraction methods and environmental applications of carotenoids-a review. RSC Adv 2015. [DOI: 10.1039/c5ra10243j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers and discusses various aspects of carotenoids including their chemistry, classification, biosynthesis, extraction methods (conventional and non-conventional), analytical techniques and biological roles in living beings.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
- India
| | - Anees Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
34
|
Chen F, Sun ZW, Ye LF, Fu GS, Mou Y, Hu SJ. Lycopene protects against apoptosis in hypoxia/reoxygenation‑induced H9C2 myocardioblast cells through increased autophagy. Mol Med Rep 2014; 11:1358-65. [PMID: 25351505 DOI: 10.3892/mmr.2014.2771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
Lycopene (Ly), the most common type of antioxidant in the majority of diet types, provides tolerance to ischemia/reperfusion injury. However, the underlying mechanism of the protective effects observed following Ly administration remains poorly investigated. The aim of the current study was to investigate whether Ly prevents damage to hypoxia/reoxygenation (HR)‑induced H9C2 myocardioblasts in an autophagy‑dependent manner. The levels of autophagic markers were detected using western blotting, the level of apoptosis was detected using western blotting and flow cytometry. The activation of autophagy was impaired via knockdown of the expression of 'microtubule‑associated protein 1‑light chain 3β (MAP1LC3B)' and 'Beclin 1'. After 16 h hypoxia, followed by 2 h reoxygenation, the expression levels of the microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and Βeclin 1 autophagic biomarkers, and cell viability were reduced, whereas the percentage of apoptotic cells, and the expression levels of the Bax/B‑cell lymphoma 2 (Bcl‑2) and active caspase‑3 apoptotic biomarkers were increased. Pre‑incubation of the cells with different Ly concentrations reversed the HR‑induced inhibition of autophagy and cell viability, and the HR‑induced elevation in apoptotic levels. The induction of autophagy was accompanied by reduced apoptosis, and decreased expression levels of Bax/Bcl‑2 and active caspase‑3. In addition, the impairment of autophagy by silencing the expression of MAP1LC3B and Beclin 1 accelerated HR‑induced H9C2 cell apoptosis and the Ly‑mediated protective effects disappeared. Furthermore, Bax/Bcl‑2 and active caspase‑3 expression levels were increased. Moreover, Ly‑induced autophagy was associated with increased adenosine monophosphate kinase (AMPK) phosphorylation. Suppressed AMPK phosphorylation using compound C terminates Ly‑mediated cytoprotective effects. Ly treatment improves cell viability and reduces apoptosis as a result of the activation of the adaptive autophagic response on HR‑induced H9C2 myocardioblasts. AMPK phosphorylation may be involved in the progression.
Collapse
Affiliation(s)
- Fei Chen
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ze-Wei Sun
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Fang Ye
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, P.R. China
| | - Yun Mou
- Department of Ultrasound, The Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
35
|
Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 2014; 172:862-72. [PMID: 25442631 DOI: 10.1016/j.foodchem.2014.09.144] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Phenolic extracts from 20 Canadian lentil cultivars (Lens culinaris) were evaluated for total phenolic contents and composition, antioxidant activities (DPPH, FRAP, ORAC), and inhibitory properties against α-glucosidase and pancreatic lipase. Twenty one phenolic compounds were identified in the present study, with the majority being flavonoids, including kaempeferol glycosides, catechin/epicatechin glucosides and procyanidins. These phenolic compounds not only contributed significantly to the antioxidant activities, but they were also good inhibitors of α-glucosidase and lipase, two enzymes, respectively, associated with glucose and lipid digestion in the human intestine, thus contributing significantly to the control of blood glucose levels and obesity. More interestingly, it was the flavonols, not the flavanols, which showed the inhibitory activities against α-glucosidase and pancreatic lipase. Our result provides supporting information for developing lentil cultivars and functional foods with improved health benefits and suggests a potential role of lentil consumption in managing weight and control of blood glucose.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - D Dan Ramdath
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Yao Tang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada; Key Laboratory of Food Nutrition & Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China
| | - Peter X Chen
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada; Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ronghua Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Qiang Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
36
|
Li H, Deng Z, Liu R, Loewen S, Tsao R. Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.). Food Chem 2014; 159:353-60. [DOI: 10.1016/j.foodchem.2014.03.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/04/2023]
|
37
|
Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. Colloids Surf B Biointerfaces 2014; 121:299-306. [PMID: 25009101 DOI: 10.1016/j.colsurfb.2014.05.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/27/2014] [Accepted: 05/16/2014] [Indexed: 01/09/2023]
Abstract
A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities.
Collapse
|
38
|
Chao HH, Sung LC, Chen CH, Liu JC, Chen JJ, Cheng TH. Lycopene Inhibits Urotensin-II-Induced Cardiomyocyte Hypertrophy in Neonatal Rat Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:724670. [PMID: 24971153 PMCID: PMC4058208 DOI: 10.1155/2014/724670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
Abstract
This study investigated how lycopene affected urotensin-II- (U-II-) induced cardiomyocyte hypertrophy and the possible implicated mechanisms. Neonatal rat cardiomyocytes were exposed to U-II (1 nM) either exclusively or following 6 h of lycopene pretreatment (1-10 μ M). The lycopene (3-10 μ M) pretreatment significantly inhibited the U-II-induced cardiomyocyte hypertrophy, decreased the production of U-II-induced reactive oxygen species (ROS), and reduced the level of NAD(P)H oxidase-4 expression. Lycopene further inhibited the U-II-induced phosphorylation of the redox-sensitive extracellular signal-regulated kinases. Moreover, lycopene treatment prevented the increase in the phosphorylation of serine-threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3 β ) caused by U-II without affecting the protein levels of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). However, lycopene increased the PTEN activity level, suggesting that lycopene prevents ROS-induced PTEN inactivation. These findings imply that lycopene yields antihypertrophic effects that can prevent the activation of the Akt/GSK-3 β hypertrophic pathway by modulating PTEN inactivation through U-II treatment. Thus, the data indicate that lycopene prevented U-II-induced cardiomyocyte hypertrophy through a mechanism involving the inhibition of redox signaling. These findings provide novel data regarding the molecular mechanisms by which lycopene regulates cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Chin Sung
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 40402, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Cheng-Hsien Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jin-Jer Chen
- Division of Cardiology, Department of Internal Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
39
|
Zhang B, Deng Z, Tang Y, Chen P, Liu R, Ramdath DD, Liu Q, Hernandez M, Tsao R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem 2014; 161:296-304. [PMID: 24837953 DOI: 10.1016/j.foodchem.2014.04.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/28/2022]
Abstract
Understanding the profile of lipophilic phytochemicals in lentils is necessary to better understand the health benefits of lentils. The fatty acid, carotenoid and tocopherol compositions and antioxidant activities of the lipophilic extracts of 20 lentil cultivars (10 red and 10 green) were therefore examined. Lentils contained 1.52-2.95% lipids, of which 77.5-81.7% were unsaturated essential fatty acids. Total tocopherols ranged from 37 to 64μg/g DW, predominantly γ-tocopherol (96-98% of the tocopherol content), followed by δ- and α-tocopherol. trans-Lutein was the primary and major carotenoid (64-78%) followed by trans-zeaxanthin (5-13%). Carotenoids and tocopherols showed weak correlation with 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity (r=0.4893 and 0.3259, respectively), but good correlation when combined (r=0.6688), suggesting they may act synergistically. Carotenoids were found to contribute the most to the strong antioxidant activity measured by photochemiluminescence (PCL) assay. Results from this study contribute to the development of lentil cultivars and related functional foods with increased health benefits.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yao Tang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada; Key Laboratory of Food Nutrition & Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China
| | - Peter Chen
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada; Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ronghua Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - D Dan Ramdath
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Qiang Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Marta Hernandez
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
40
|
|
41
|
Demir B, Barlas FB, Guler E, Gumus PZ, Can M, Yavuz M, Coskunol H, Timur S. Gold nanoparticle loaded phytosomal systems: synthesis, characterization and in vitro investigations. RSC Adv 2014. [DOI: 10.1039/c4ra05108d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A novel liposomal formulation was synthesized by encapsulating both gold nanoparticles (AuNPs) andCalendula officinalisextract as AuNP-phytosomes and AuNP-phytosomes were characterized and used atin vitroinvestigations.
Collapse
Affiliation(s)
- B. Demir
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir, Turkey
| | - F. B. Barlas
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir, Turkey
| | - E. Guler
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir, Turkey
| | - P. Z. Gumus
- Ege University
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences
- Izmir, Turkey
| | - M. Can
- Izmir Katip Celebi University
- Faculty of Engineering and Architecture
- Material Science and Engineering Department
- Izmir, Turkey
| | - M. Yavuz
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir, Turkey
- Dicle University
| | - H. Coskunol
- Ege University
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences
- Izmir, Turkey
- Ege University
- School of Medicine
| | - S. Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir, Turkey
- Ege University
| |
Collapse
|
42
|
Siracusa L, Avola G, Patanè C, Riggi E, Ruberto G. Re-evaluation of traditional Mediterranean foods. The local landraces of 'Cipolla di Giarratana' (Allium cepa L.) and long-storage tomato(Lycopersicon esculentum L.): quality traits and polyphenol content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3512-3519. [PMID: 23633295 DOI: 10.1002/jsfa.6199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/10/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The heightened consumer awareness for food safety is reflected in the demand for products with well-defined individual characteristics due to specific production methods, composition and origin. In this context, of pivotal importance is the re-evaluation of folk/traditional foods by properly characterizing them in terms of peculiarity and nutritional value. The subjects of this study are two typical Mediterranean edible products. The main morphological, biometrical and productive traits and polyphenol contents of three onion genotypes ('Cipolla di Giarratana', 'Iblea' and 'Tonda Musona') and three long-storage tomato landraces ('Montallegro', 'Filicudi' and 'Principe Borghese') were investigated. RESULTS Sicilian onion landraces were characterized by large bulbs, with 'Cipolla di Giarratana' showing the highest bulb weight (605 g), yield (151 t ha(-1)) and total polyphenol content (123.5 mg kg(-1)). Landraces of long-storage tomato were characterized by low productivity (up to 20 t ha(-1)), but more than 70% of the total production was obtained with the first harvest, allowing harvest costs to be reduced. High contents of polyphenols were found, probably related to the typical small fruit size and thick skin characterizing these landraces. CONCLUSION The present study overviews some of the most important traits that could support traditional landrace characterization and their nutritional value assessment.
Collapse
Affiliation(s)
- Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126, Catania, Italy
| | | | | | | | | |
Collapse
|
43
|
Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes. Foods 2013; 2:352-363. [PMID: 28239121 PMCID: PMC5302297 DOI: 10.3390/foods2030352] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 11/17/2022] Open
Abstract
Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.
Collapse
|