1
|
Angula MA, Ishola A, Tjiurutue M, Sulyok M, Krska R, Ezekiel CN, Misihairabgwi J. Mycotoxin exposure through the consumption of processed cereal food for children (< 5 years old) from rural households of Oshana, a region of Namibia. Mycotoxin Res 2025; 41:249-265. [PMID: 39808410 PMCID: PMC11759469 DOI: 10.1007/s12550-024-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry. Aflatoxin B1 (AFB1, 35.8%), zearalenone (27.2%), fumonisin B1 (FB1, 24.1%), citrinin (CIT, 12.4%) and deoxynivalenol (10.5%) were the major mycotoxins quantified. Food samples (35.8% (n = 58) and 6.2% (n = 10)) exceeded the 0.1 µg/kg AFB1 and 200 µg/kg FB1 EU limit for children's food, respectively. Several emerging mycotoxins including the neurotoxic 3-nitropropionic acid, moniliformin (MON), and tenuazonic acid were quantified in over 50% of all samples. Co-occurrence of AFB1, CIT, and FB1 detected in 4.9% (n = 8) samples, which could heighten food safety concerns. Regarding exposure assessment and risk characterization, average probable dietary intake for AFB1 from all ready-to-eat-foods was 0.036 µg/kg bw/day, which resulted in margin of exposures (MOE) of 11 and 0.65 risk cancer cases/year/100,000 people, indicating a risk of chronic aflatoxicosis. High tolerable daily intake values for FB1, and MOE for beauvericin and MON exceeded reference values. Consumption of a diversified diet and interventions including timely planting and harvesting, best grain storage, and other standard postharvest food handling practices are needed to mitigate mycotoxin exposure through contaminated cereal foods and to safeguard the health of the rural children in Namibia.
Collapse
Affiliation(s)
- Maria A Angula
- Department of Human, Biological, and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia.
| | - Anthony Ishola
- Department of Pharmaceutical Sciences, School of Pharmacy, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Muvari Tjiurutue
- Department of Biochemistry, Microbiology and Biotechnology, School of Science, University of Namibia, Windhoek, Namibia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen'S University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
| | - Jane Misihairabgwi
- Department of Human, Biological, and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| |
Collapse
|
2
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
3
|
Shen H, Cai Y, Zhu K, Wang D, Yu R, Chen X. Enniatin B1 induces damage to Leydig cells via inhibition of the Nrf2/HO-1 and JAK/STAT3 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116116. [PMID: 38387140 DOI: 10.1016/j.ecoenv.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Dong Wang
- Shanghai Houyu Medical Equiment Co., Ltd, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningbo University, China.
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
4
|
Emerging Alternaria and Fusarium mycotoxins in tomatoes and derived tomato products from the China market: Occurrence, methods of determination, and risk evaluation. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Gallardo JA, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V. Occurrence and Dietary Exposure Assessment to Enniatin B through Consumption of Cereal-Based Products in Spain and the Catalonia Region. Toxins (Basel) 2022; 15:24. [PMID: 36668844 PMCID: PMC9863481 DOI: 10.3390/toxins15010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Enniatin B (ENNB) is a mycotoxin produced by moulds from the Fusarium genera and its toxic effects are still not fully elucidated, hence a safe reference exposure value has not been established yet. ENNB is the most prevalent emerging mycotoxin and is widely found in cereal-based products, nevertheless, there are no comprehensive exposure assessment studies. For that reason, the aim of this study was to characterise the occurrence of ENNB and estimate the exposure of the Spanish and Catalan populations. A total of 347 cereal-based products were collected in 2019 and were analysed using liquid chromatography-tandem mass spectrometry. Consumption data were obtained from the national food consumption surveys (ENALIA) and a regional survey conducted in Catalonia. The global exposure was estimated using deterministic and probabilistic methods. The results showed a high occurrence of close to 100% in all foodstuffs, with a range from 6 to 269 µg/kg, and a strong correlation with the levels of deoxynivalenol. Children aged one-nine years were the most exposed, showing mean estimates in the range 308-324 ng/kg bw/day and 95th percentiles 697-781 ng/kg bw/day. This study stresses the need for further toxicological data to establish reference doses and conclude formal risk assessment, accounting for the co-occurrence with deoxynivalenol.
Collapse
Affiliation(s)
- Jose A. Gallardo
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | - Sonia Marín
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | - Antonio J. Ramos
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | | | - Vicente Sanchis
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
6
|
Chiminelli I, Spicer LJ, Maylem ERS, Caloni F. In Vitro Effects of Enniatin A on Steroidogenesis and Proliferation of Bovine Granulosa Cells. Toxins (Basel) 2022; 14:toxins14100714. [PMID: 36287982 PMCID: PMC9607026 DOI: 10.3390/toxins14100714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The emerging Fusarium mycotoxins enniatins (ENNs) have been the focus of new research because of their well-documented existence in various cereal and grain products. Research findings indicate that reproductive disorders may be caused by exposure to Fusarium mycotoxins, but little work has evaluated ENNs on reproductive function. Therefore, to determine the effects of ENNA on the proliferation and steroidogenesis of granulosa cells (GC), experiments were conducted using bovine GC cultures. In vitro, ENNA (1−5 μM) inhibited (p < 0.05) hormone-induced GC progesterone and estradiol production. The inhibitory effect of ENNA on estradiol production was more pronounced in small- than large-follicle GC. In large-follicle GC, 0.3 μM ENNA had no effect (p > 0.10) whereas 1 and 3 μM ENNA inhibited GC proliferation. In small-follicle GC, ENNA (1−5 μM) dramatically decreased (p < 0.05) GC proliferation. Using cell number data, the IC50 of ENNA was estimated at 2 μM for both follicle sizes. We conclude that ENNA can directly inhibit ovarian function in cattle, decreasing the proliferation and steroid production of GC.
Collapse
Affiliation(s)
- Ilaria Chiminelli
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
| | - Leon J. Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Excel Rio S. Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
7
|
Natural and Anthropogenic Radioactivity Content and Radiation Hazard Assessment of Baby Food Consumption in Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The natural (40K) and anthropogenic (137Cs) radioactivity concentration in four different typologies of early childhood (up to two years old) foods, i.e., homogenized fruit, homogenized meat, childhood biscuits and baby pasta, produced in Italy and sold in Italian large retailers, was investigated through High Purity Germanium (HPGe) gamma spectrometry. The present study is carried out with the aim to: (i) evaluate the background levels of the investigated radionuclides in the analyzed early childhood foods, (ii) identify whether the twenty analyzed samples were appropriate for infant consumption and (iii) contribute to construct a database on the radioactivity of early childhood foods sold in Italy.
Collapse
|
8
|
Yang X, Ali S, Zhao M, Richter L, Schäfer V, Schliehe-Diecks J, Frank M, Qi J, Larsen PK, Skerra J, Islam H, Wachtmeister T, Alter C, Huang A, Bhatia S, Köhrer K, Kirschning C, Weighardt H, Kalinke U, Kalscheuer R, Uhrberg M, Scheu S. The Mycotoxin Beauvericin Exhibits Immunostimulatory Effects on Dendritic Cells via Activating the TLR4 Signaling Pathway. Front Immunol 2022; 13:856230. [PMID: 35464417 PMCID: PMC9024221 DOI: 10.3389/fimmu.2022.856230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte–macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNβ production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manman Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Schäfer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Qi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Heba Islam
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Institute of Molecular Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anfei Huang
- Institute for Systems Immunology, Julius-Maximilians-Universität of Würzburg (JMU), Würzburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Weighardt
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Stefanie Scheu,
| |
Collapse
|
9
|
Chiminelli I, Spicer LJ, Maylem ERS, Caloni F. Emerging mycotoxins and reproductive effects in animals: A short review. J Appl Toxicol 2022; 42:1901-1909. [PMID: 35229323 DOI: 10.1002/jat.4311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/09/2022]
Abstract
Emerging Fusarium mycotoxins beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) are gaining increasing interest due to their wide presence especially in cereals and grain-based products. In vitro and in vivo studies indicate that Fusarium mycotoxins can be implicated in reproductive disorders in animals. Of these mycotoxins BEA may affect reproductive functions, impairing the development of oocytes in pigs and sheep. Studies show dramatic inhibitory effects of BEA and ENNA on bovine granulosa cell steroidogenesis. ENNs also inhibit boar sperm motility and cause detrimental effects on embryos in mice and pigs. Although little data are reported on reproductive effects of MON, in vitro studies show inhibitory effects of MON on Chinese hamster ovary cells. The present review aims to summarize the reproductive toxicological effects of emerging Fusarium mycotoxins BEA, ENNs and MON on embryo development, ovarian function, and testicular function of animals. In vitro and in vivo toxicological data are reported although additional studies are needed for proper risk assessment.
Collapse
Affiliation(s)
- I Chiminelli
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Milan, Italy
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - F Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Sá SVMD, Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Emerging mycotoxins in infant and children foods: A review. Crit Rev Food Sci Nutr 2021; 63:1707-1721. [PMID: 34486889 DOI: 10.1080/10408398.2021.1967282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A proper nutrition is crucial for children's healthy development. Regardless of the usual recommendations to follow a varied diet, some foods can be a source of toxic natural contaminants such as mycotoxins, potent secondary metabolites produced by filamentous fungi. In addition to the most well-known mycotoxins, many of which are subject to tight regulation regarding the maximum levels allowed in different types of food, there is a large group of mycotoxins, the so-called emerging mycotoxins, about which less knowledge has already been acquired, which have gradually been the target of interest from the scientific community due to their prevalence in most foodstuffs, particularly in cereals and cereal-based products. Alternariol and his metabolite alternariol mono-methyl ether, beauvericin, citrinin, culmorin, enniatins, ergot alkaloids, fusaproliferin, kojic acid, moniliformin, sterigmatocystin, tentoxin and tenuazonic acid are the most representative of them. The current review gathered the information of the last ten years that have been published on the levels of emerging mycotoxins in food products dedicated for infants and children. European Union countries are responsible for most of the reported studies, which showed levels that can reach hundreds of mg/kg.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Serra V, Salvatori G, Pastorelli G. Pilot Study: Does Contamination with Enniatin B and Beauvericin Affect the Antioxidant Capacity of Cereals Commonly Used in Animal Feeding? PLANTS (BASEL, SWITZERLAND) 2021; 10:1835. [PMID: 34579368 PMCID: PMC8469406 DOI: 10.3390/plants10091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Increasing consumption of cereals has been associated with reduced risk of several chronic diseases, as they contain phytochemicals that combat oxidative stress. Cereal contamination by the "emerging mycotoxins" beauvericin (BEA) and enniatins (ENs) is a worldwide health problem that has not yet received adequate scientific attention. Their presence in feeds represents a risk for animals and a potential risk for humans because of their carry-over to animal-derived products. This preliminary study aimed to investigate if the total antioxidant capacity (TAC) of corn, barley, and wheat flours could be influenced by contamination with increasing levels of BEA and ENN B. The highest TAC value was observed in barley compared with wheat and corn (p < 0.001) before and after contamination. No effect of mycotoxin or mycotoxin level was found, whereas cereal x mycotoxin exhibited a significant effect (p < 0.001), showing a lower TAC value in wheat contaminated by ENN B and in barley contaminated by BEA. In conclusion, barley is confirmed as a source of natural antioxidants with antiradical potentials. Additional studies with a larger sample size are necessary to confirm the obtained results, and investigations of the toxic effects of these emergent mycotoxins on animals and humans should be deepened.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Giancarlo Salvatori
- Department of Medicine and Science for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
12
|
Braun D, Eiser M, Puntscher H, Marko D, Warth B. Natural contaminants in infant food: The case of regulated and emerging mycotoxins. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
García-Nicolás M, Arroyo-Manzanares N, Campillo N, Viñas P. Cellulose-ferrite nanocomposite for monitoring enniatins and beauvericins in paprika by liquid chromatography and high-resolution mass spectrometry. Talanta 2021; 226:122144. [PMID: 33676695 DOI: 10.1016/j.talanta.2021.122144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/20/2023]
Abstract
Paprika is considered a high-quality product being one of the most consumed spices in the world. Contamination with mycotoxins may appear due to inappropriate practices during processing or resulting from invading mould in the final manufactured products. A sample treatment based on dispersive magnetic solid-phase extraction (DMSPE) has been proposed for emerging mycotoxin determination, enniatins (ENNs) and beauvericins (BEAs), in paprika. Different magnetic nanoparticles were tested, and cellulose-ferrite nanocomposite was selected for the extraction and preconcentration of the mycotoxins. Nanocomposite was characterised using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy in terms of morphology and elemental composition. High-resolution mass spectrometry allowed the quantification of the five main emerging mycotoxins and the monitoring of unexpected members of this class of toxic fungal secondary metabolites. The method has been validated, obtaining limits of quantification between 9.5 and 9.9 μg kg-1 and testing its trueness through recovery studies, with satisfactory values of between 89.5 and 97.7%. Relative standard deviations were calculated to evaluate the intra- and inter-day precision and values lower than 8% were obtained in all cases. The analysis of 26 samples, including conventional and organic, demonstrated the presence of ENNB1 at 12.0 ± 0.6 μg kg-1 in one of the samples studied. Other analogues ENNs and BEAs were not detected.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
14
|
Okano H, Okamura T, Takahashi Y, Takashima K, Ojiro R, Tang Q, Jin M, Kikuchi S, Ogawa B, Yoshida T, Yoshinari T, Shibutani M. A 28-day repeated oral dose toxicity study of enniatin complex in mice. J Toxicol Sci 2021; 46:157-165. [PMID: 33814509 DOI: 10.2131/jts.46.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Enniatins are so-called "emerging mycotoxins" that commonly occur in milligrams per kilogram levels in grains and their derived products, as well as in fish, dried fruits, nuts, spices, cocoa, and coffee. The present study investigated the 28-day repeated oral dose toxicity of enniatin complex in CD1(ICR) mice. Enniatin B, enniatin B1, and enniatin A1 at a ratio of 4:4:1 were administered to male and female mice at doses of 0 (vehicle controls), 0.8, 4, and 20 mg/kg body weight/day. In life parameters did not change during the study period, with the exception of slight reductions in food consumption in male mice administered 4 and 20 mg/kg and in female mice administered 20 mg/kg. Body and organ weights did not change, and no alterations in hematology, blood biochemistry, or histopathology parameters were observed at the end of the administration period. Thus, we determined that the no-observed-adverse-effect level of enniatin complex was 20 mg/kg/day for both sexes under the present experimental conditions.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Toshiya Okamura
- Toxicology Division, Gotemba Laboratory, BoZo Research Center Inc
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, China
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | | | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
15
|
Li Y, He N, Luo M, Hong B, Xie Y. Application of untargeted tandem mass spectrometry with molecular networking for detection of enniatins and beauvericins from complex samples. J Chromatogr A 2020; 1634:461626. [DOI: 10.1016/j.chroma.2020.461626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
|
16
|
Mwihia EW, Lyche JL, Mbuthia PG, Ivanova L, Uhlig S, Gathumbi JK, Maina JG, Eshitera EE, Eriksen GS. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins (Basel) 2020; 12:E627. [PMID: 33008105 PMCID: PMC7600487 DOI: 10.3390/toxins12100627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
This study determined the presence, levels and co-occurrence of mycotoxins in fish feeds in Kenya. Seventy-eight fish feeds and ingredients were sampled from fish farms and fish feed manufacturing plants and analysed for 40 mycotoxins using high-performance liquid chromatography-high resolution mass spectrometry. Twenty-nine (73%) mycotoxins were identified with 76 (97%) samples testing positive for mycotoxins presence. Mycotoxins with the highest prevalences were enniatin B (91%), deoxynivalenol (76%) and fumonisin B1 (54%) while those with the highest maximum levels were sterigmatocystin (<30.5-3517.1 µg/kg); moniliformin (<218.9-2583.4 µg/kg) and ergotamine (<29.3-1895.6 µg/kg). Mycotoxin co-occurrence was observed in 68 (87%) samples. Correlations were observed between the fumonisins; enniatins B and zearalenone and its metabolites. Fish dietary exposure estimates ranged between <0.16 and 43.38 µg/kg body weight per day. This study shows evidence of mycotoxin presence and co-occurrence in fish feeds and feed ingredients in Kenya. Fish exposure to these levels of mycotoxins over a long period of time may lead to adverse health effects due to their possible additive, synergistic or antagonist toxic effects. Measures to reduce fish feed mycotoxin contamination should be taken to avoid mycotoxicosis in fish and subsequently in humans and animals through residues.
Collapse
Affiliation(s)
- Evalyn Wanjiru Mwihia
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536, Egerton 20115, Kenya
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Jan Ludvig Lyche
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
| | - Paul Gichohi Mbuthia
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Joyce G. Maina
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya;
| | - Eric Emali Eshitera
- Department of Animal Health and Production, School of Natural Resource and Animal Sciences, Maasai Mara University, P.O. Box 861, Narok 20500, Kenya;
| | - Gunnar Sundstøl Eriksen
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| |
Collapse
|
17
|
Predicting Virulence of Fusarium Oxysporum f. sp. Cubense Based on the Production of Mycotoxin Using a Linear Regression Model. Toxins (Basel) 2020; 12:toxins12040254. [PMID: 32295210 PMCID: PMC7232494 DOI: 10.3390/toxins12040254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f.sp. cubense (Foc) is one of the most destructive diseases for banana. For their risk assessment and hazard characterization, it is vital to quickly determine the virulence of Foc isolates. However, this usually takes weeks or months using banana plant assays, which demands a better approach to speed up the process with reliable results. Foc produces various mycotoxins, such as fusaric acid (FSA), beauvericin (BEA), and enniatins (ENs) to facilitate their infection. In this study, we developed a linear regression model to predict Foc virulence using the production levels of the three mycotoxins. We collected data of 40 Foc isolates from 20 vegetative compatibility groups (VCGs), including their mycotoxin profiles (LC-MS) and their plant disease index (PDI) values on Pisang Awak plantlets in greenhouse. A linear regression model was trained from the collected data using FSA, BEA and ENs as predictor variables and PDI values as the response variable. Linearity test statistics showed this model meets all linearity assumptions. We used all data to predict PDI with high fitness of the model (coefficient of determination (R2 = 0.906) and adjust coefficient (R2adj = 0.898)) indicating a strong predictive power of the model. In summary, we developed a linear regression model useful for the prediction of Foc virulence on banana plants from the quantification of mycotoxins in Foc strains, which will facilitate quick determination of virulence in newly isolated Foc emerging Fusarium wilt of banana epidemics threatening banana plantations worldwide.
Collapse
|
18
|
Pallarés N, Righetti L, Generotti S, Cavanna D, Ferrer E, Dall'Asta C, Suman M. Investigating the in vitro catabolic fate of Enniatin B in a human gastrointestinal and colonic model. Food Chem Toxicol 2020; 137:111166. [PMID: 32001315 DOI: 10.1016/j.fct.2020.111166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
Enniatin B is an emerging mycotoxin known to present biological activity because of its ionophoric characteristics. This compound has demonstrated strong in vitro cytotoxicity against different cancer cells, also at low molecular concentrations. Its natural occurrence in food commodities and feed is highly reported world-wide, but few information is available about its stability in the human gastro-intestinal tract. The present work evaluates the catabolic fate of enniatin B upon in vitro simulated digestion and colonic fermentation. LC-MS target and untargeted analysis have been performed to quantify the extent of enniatin B degradation and the formation of catabolic products. The results obtained showed significant degradation of enniatin B (degradation rate 79 ± 5%) along the gastrointestinal tract and further degradation of residual enniatin B was observed during colonic fermentation after 24 h of incubation. Moreover, 5 catabolic metabolites of enniatin B were putatively identified after gastrointestinal digestion resulting from the oxidation and opening of the depsipeptide ring. As a final step, the pharmacokinetic properties of enniatin B degradation products were tested in silico revealing that some of them may be adsorbed at the gastrointestinal level more than the parent compound. Additionally, the smaller degradation products showed moderate blood-brain-barrier crossing.
Collapse
Affiliation(s)
- Noelia Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Silvia Generotti
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, Parma, Italy
| | - Daniele Cavanna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy; Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, Parma, Italy
| | - Emilia Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Michele Suman
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, Parma, Italy
| |
Collapse
|
19
|
Arroyo-Manzanares N, Peñalver-Soler R, Campillo N, Viñas P. Dispersive Solid-Phase Extraction using Magnetic Carbon Nanotube Composite for the Determination of Emergent Mycotoxins in Urine Samples. Toxins (Basel) 2020; 12:E51. [PMID: 31952350 PMCID: PMC7020456 DOI: 10.3390/toxins12010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
Dispersive magnetic solid-phase extraction (DMSPE) has received growing attention for sample treatment preconcentration prior to the separation of analytes due to its many advantages. In the present work, the potential of DMSPE for the determination of emergent mycotoxins (enniatins A, A1, B and B1, and beauvericin) is investigated for the first time. Different magnetic nanoparticles were tested and a magnetic multiwalled carbon nanotube (Fe3O4@MWCNT) composite was selected for the extraction and preconcentration of the five target mycotoxins in human urine samples before their analysis by ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS). The nanocomposite was characterized by energy dispersive X-ray spectrometry, scanning electron microscopy, Fourier transform infrared spectrophotometry, and X-ray diffraction. Several parameters affecting the adsorption and desorption of DMSPE steps were optimized and the method was fully validated. Due to a matrix effect, matrix-matched calibration curves were necessary to carry out quantification. In this way, limits of quantification of between 0.04 and 0.1 μg/L, relative standard deviation values lower than 12% and recoveries between 89.3% and 98.9% were obtained. Finally, a study of the reuse of the Fe3O4@MWCNT composite was carried out, confirming that it can be reused at least four times.
Collapse
Affiliation(s)
| | | | | | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, E-30100 Murcia, Spain; (N.A.-M.); (R.P.-S.); (N.C.)
| |
Collapse
|
20
|
Ornelis V, Rajkovic A, Decleer M, Sas B, De Saeger S, Madder A. Counteracting in Vitro Toxicity of the Ionophoric Mycotoxin Beauvericin-Synthetic Receptors to the Rescue. J Org Chem 2019; 84:10422-10435. [PMID: 31393120 DOI: 10.1021/acs.joc.9b01665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beauvericin (BEA) and enniatins are toxic ionophoric cyclodepsipeptides that mainly occur in grains. As such, their presence in food commodities poses a concern for public health. To date, despite recent European Food Safety Authority emphasis on the need for more data to evaluate long-term toxicity effects, no suitable affinity reagents are available to detect the presence of BEA and derivatives in food samples. We here report on the synthesis of a small library of artificial receptors with varying cavity sizes and different hydrophobic building blocks. Immobilization of one of the receptors on solid support resulted in a strong retention of beauvericin, thus revealing promising properties as solid-phase extraction material for sample pretreatment. Furthermore, treatment of HepG2 cells with the most promising receptor markedly reduced beauvericin-induced cytotoxicity, hinting toward the possibility of using synthetic receptors as antidotes against ionophoric toxins.
Collapse
Affiliation(s)
- Vincent Ornelis
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | | | - Marlies Decleer
- Department of Bioanalysis, Laboratory of Food Analysis , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | | | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| |
Collapse
|
21
|
Kim DB, Song NE, Nam TG, Lee S, Seo D, Yoo M. Occurrence of emerging mycotoxins in cereals and cereal-based products from the Korean market using LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:289-295. [PMID: 30676884 DOI: 10.1080/19440049.2018.1562233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study aimed to investigate the occurrence of emerging mycotoxins in cereals (n = 61) and cereal-based products (n = 36) collected from Korean market. First of all, using the quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction method, and ultrahigh-pressure liquid chromatography (UPLC) with triple quadruple tandem mass spectrometry (MS/MS), we developed a simple and fast method for quantitative determination of eight emerging mycotoxins including alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), beauvericin (BEA) and enniatins (ENs; ENA, ENA1, ENB and ENB1). The developed analytical method was validated in parameters of linearity, precision and accuracy. For UPLC-MS/MS analysis, the recoveries of emerging mycotoxins from spiked samples at three concentration levels ranged from 82.7% to 108.8% with RSDs between 0.4% and 14.7%. Analytical methods were applied to determine the contamination of mycotoxins in cereal and cereal-based product samples. Sixty-three of the total 97 samples were contaminated with at least one emerging mycotoxin. The maximum number of emerging mycotoxins observed in a single sample was six out of eight analytes. The highest level of contamination was detected in cereal at 70.9 μg/kg for alternariol monomethyl ether (AME). However, currently there is no international standard for emerging mycotoxins in food. Accordingly, it is necessary to establish a database of emerging mycotoxins contamination through continuous monitoring.
Collapse
Affiliation(s)
- Dan-Bi Kim
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| | - Nho-Eul Song
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| | - Tae Gyu Nam
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| | - Sanghee Lee
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| | - Dongwon Seo
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| | - Miyoung Yoo
- a Food Analysis Center , Korea Food Research Institute , Wanju , Korea
| |
Collapse
|
22
|
Decleer M, Landschoot S, De Saeger S, Rajkovic A, Audenaert K. Impact of fungicides and weather on cyclodepsipeptide-producing Fusarium spp. and beauvericin and enniatin levels in wheat grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:253-262. [PMID: 29851099 DOI: 10.1002/jsfa.9167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) is a well-known disease of wheat caused by a complex of Fusarium species. In this research, an extensive study on the occurrence of the emerging Fusarium cyclodepsipeptide mycotoxins beauvericin and enniatins was conducted in Belgian wheat grains harvested in 2015 and 2016. To assess the link between Fusarium species and their mycotoxin production, ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify the cyclodepsipeptide mycotoxins, while quantitative polymerase chain reaction was applied to quantify the presence of Fusarium species. RESULTS It was shown that enniatins were mainly associated with the presence of F. avenaceum, while beauvericin, despite its low incidence, correlated significantly with F. poae. The application of fungicides resulted in a species shift and in the occurring mycotoxins. Concerning the effect of weather conditions, it was seen that levels of enniatins were positively correlated with the rainfall in May and June, while a negative correlation was observed with rainfall in the first half of July. CONCLUSION Our study provides new insights into the occurrence of the emerging cyclodepsipeptide mycotoxins in an agro-ecosystem in which fungicides are the main control measure against FHB. It seems that beauvericin and enniatin levels are affected by different parameters and behave differently upon application of fungicides. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Andrea Rajkovic
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Applied Mycology and Phenomics, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Rodríguez-Carrasco Y, Castaldo L, Gaspari A, Graziani G, Ritieni A. Development of an UHPLC-Q-Orbitrap HRMS method for simultaneous determination of mycotoxins and isoflavones in soy-based burgers. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
25
|
Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: A review. Food Chem Toxicol 2018; 121:666-675. [DOI: 10.1016/j.fct.2018.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
|
26
|
Ojuri OT, Ezekiel CN, Sulyok M, Ezeokoli OT, Oyedele OA, Ayeni KI, Eskola MK, Šarkanj B, Hajšlová J, Adeleke RA, Nwangburuka CC, Elliott CT, Krska R. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem Toxicol 2018; 121:37-50. [DOI: 10.1016/j.fct.2018.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
27
|
Mamur S, Yuzbasioglu D, Yılmaz S, Erikel E, Unal F. Assessment of cytotoxic and genotoxic effects of enniatin-A in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1633-1644. [PMID: 29889654 DOI: 10.1080/19440049.2018.1486513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enniatin A (EN-A) is a Fusarium mycotoxin which is a common contaminant in grains and especially in maize and it causes serious loss of product. The aim of this study was to investigate the cytotoxic effects using 3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide (MTT) assay in human cervix carcinoma (HeLa) cell line, and genotoxic effects of EN-A using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (MN) and comet assays in human lymphocytes. The cells were treated with 0.07, 0.14, 0.29, 0.57, 1.15, 2.29, 4.59 and 9.17 μM concentrations of EN-A. It exhibited cytotoxic effects in HeLa cell lines especially when the concentrations were increased. The half-inhibitory value (IC50) was determined as 1.15 μM concentration for 24 h and 0.57 μM concentration for 48 h. However, EN-A failed to affect the frequency of CAs, SCEs and MN in human lymphocytes. Only a slight increase was observed in the frequency of SCEs at 0.57 μM concentration over 48 h. The replication (RI) and nuclear division (NDI) indices were not affected. On the contrary, EN-A decreased the mitotic index (MI) significantly at all concentrations compared to the negative control and solvent control (except at 0.29 μM for 24 h, and except at 0.14, 0.29 and 0.57 μM for 48 h). Treatments over 2.29 μM showed toxic effects in human lymphocytes. EN-A significantly increased comet tail intensity (except at 0.07 and 0.57 μM) in isolated human lymphocytes. The results of this study demonstrate that EN-A has an obvious cytotoxic effect especially when the EN-A concentration was increased. In addition, EN-A could exhibit a mild genotoxic effect.
Collapse
Affiliation(s)
- Sevcan Mamur
- a Life Sciences Application and Research Center , Gazi University , Ankara , Turkey
| | - Deniz Yuzbasioglu
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| | - Serkan Yılmaz
- c Faculty of Health Sciences, Department of Midwifery , Ankara University , Ankara , Turkey
| | - Esra Erikel
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| | - Fatma Unal
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| |
Collapse
|
28
|
Bianchi F, Riboni N, Termopoli V, Mendez L, Medina I, Ilag L, Cappiello A, Careri M. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1308167. [PMID: 29850370 PMCID: PMC5937452 DOI: 10.1155/2018/1308167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Lucia Mendez
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Achille Cappiello
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
29
|
Oueslati S, Berrada H, Mañes J, Juan C. Presence of mycotoxins in Tunisian infant foods samples and subsequent risk assessment. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
In vitro mechanisms of Beauvericin toxicity: A review. Food Chem Toxicol 2017; 111:537-545. [PMID: 29154952 DOI: 10.1016/j.fct.2017.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
Abstract
Beauvericin (BEA) is a mycotoxin produced by many species of fungus Fusarium and by Beauveria bassiana; BEA is a natural contaminant of cereals and cereals based products and possesses a wide variety of biological properties. The mechanism of action seems to be related to its ionophoric activity, that increases ion permeability in biological membranes. As a consequence, BEA causes cytotoxicity in several cell lines and is capable to produce oxidative stress at molecular level. Moreover, BEA is genotoxic (produces DNA fragmentation, chromosomal aberrations and micronucleus) and causes apoptosis with the involvement of mitochondrial pathway. However, several antioxidant mechanisms protect cells against oxidative stress produced by BEA. Despite its strong cytotoxicity, no risk assessment have been still carried out by authorities due to a lack of toxicity data, so research on BEA toxicological impact is still going on. This review reports information available regarding BEA mechanistic toxicology with the aim of updating information regarding last researches on this mycotoxin.
Collapse
|
31
|
Prosperini A, Berrada H, Ruiz MJ, Caloni F, Coccini T, Spicer LJ, Perego MC, Lafranconi A. A Review of the Mycotoxin Enniatin B. Front Public Health 2017; 5:304. [PMID: 29201864 PMCID: PMC5697211 DOI: 10.3389/fpubh.2017.00304] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 12/29/2022] Open
Abstract
Mycotoxin enniatin B (ENN B) is a secondary metabolism product by Fusarium fungi. It is a well-known antibacterial, antihelmintic, antifungal, herbicidal, and insecticidal compound. It has been found as a contaminant in several food commodities, particularly in cereal grains, co-occurring also with other mycotoxins. The primary mechanism of action of ENN B is mainly due to its ionophoric characteristics, but the exact mechanism is still unclear. In the last two decades, it has been a topic of great interest since its potent mammalian cytotoxic activity was demonstrated in several mammalian cell lines. Moreover, the co-exposure in vitro with other mycotoxins enhances its toxic potential through synergic effects, depending on the concentrations tested. Despite its clear cytotoxic effect, European Food Safety Authority stated that acute exposure to ENNs, such as ENN B, does not indicate concern for human health, but a concern might be the chronic exposure. However, given the lack of relevant toxicity data, no firm conclusion could be drawn and a risk assessment was not possible. In fact, very few studies have been carried out in vivo and, in these studies, no adverse effects were observed. So, research on toxicological effects induced by ENN B is still on-going. Recently, some studies are dealing with new advances regarding ENN B. This review summarizes the information on biochemical and biological activity of ENN B, focusing on toxicological aspects and on the latest advances in research on ENN B.
Collapse
Affiliation(s)
- Alessandra Prosperini
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Houda Berrada
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, Maugeri Clinical Scientific Institutes SpA-BS, IRCCS Pavia, Pavia, Italy
| | - Leon J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Maria Chiara Perego
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Alessandra Lafranconi
- Centro di Studio e Ricerca sulla Sanità Pubblica (CESP), Università Milano Bicocca, Milan, Italy.,Department of International Health, FHML, CAPHRI, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Luz C, Saladino F, Luciano FB, Mañes J, Meca G. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food Chem Toxicol 2017; 107:430-439. [PMID: 28720287 DOI: 10.1016/j.fct.2017.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Emerging Fusarium mycotoxins include the toxic secondary metabolites fusaproliferin, enniatins, beauvericin (BEA), and moniliform. BEA is produced by some entomo- and phytopathogenic Fusarium species and occurs naturally on corn and corn-based foods and feeds infected by Fusarium spp. BEA has shown various biological activities (antibacterial, antifungal, and insecticidal) and possesses toxic activity, including the induction of apoptosis, increase cytoplasmic calcium concentration and lead to DNA fragmentation in mammalian cell lines. Cereals food processing has an important effect on mycotoxin stability, leading to less-contaminated food compared to the raw materials. Different industrial processes have shown to be effective practices to reduce BEA contents due to thermal food processing applied, such as cooking, boiling, baking, frying, roasting and pasteurization. Some studies demonstrated the capacity of lactic acid bacteria to reduce the presence of the BEA in model solution and in food chain through fermentation processes, modifying this mycotoxin in a less toxic derivate. Prebiotic and probiotic ingredient can modulate the bioaccessibility of BEA reducing the risk of intake of this minor Fusarium mycotoxin. This review summarizes the existing data on occurrence, toxicity and especially on BEA reduction strategies in food and feed such as chemical reduction, biocontrol and food processing.
Collapse
Affiliation(s)
- C Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - F Saladino
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - F B Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - J Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - G Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain.
| |
Collapse
|
33
|
Mallebrera B, Maietti A, Tedeschi P, Font G, Ruiz MJ, Brandolini V. Antioxidant capacity of trans -resveratrol dietary supplements alone or combined with the mycotoxin beauvericin. Food Chem Toxicol 2017; 105:315-318. [DOI: 10.1016/j.fct.2017.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
|
34
|
Stanciu O, Juan C, Miere D, Loghin F, Mañes J. Presence of Enniatins and Beauvericin in Romanian Wheat Samples: From Raw Material to Products for Direct Human Consumption. Toxins (Basel) 2017; 9:E189. [PMID: 28604626 PMCID: PMC5488039 DOI: 10.3390/toxins9060189] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, a total of 244 wheat and wheat-based products collected from Romania were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in order to evaluate the presence of four enniatins (ENs; i.e., ENA, ENA1, ENB, and ENB1) and beauvericin (BEA). For the wheat samples, the influence of agricultural practices was assessed, whereas the results for the wheat-based products were used to calculate the estimated daily intake of emerging mycotoxins through wheat consumption for the Romanian population. ENB presented the highest incidence (41% in wheat and 32% in wheat-based products), with its maximum levels of 815 μg kg-1 and 170 μg kg-1 in wheat and wheat-based products, respectively. The correlation between the concentrations of ENB and ENB1 in wheat grain samples and farm practices (organic or conventional) was confirmed statistically (p < 0.05). This is the first study that provides comprehensive information about the influence of agricultural practice on emerging Fusarium mycotoxin presence in Romanian wheat samples and the estimated daily intake of ENs and BEA present in wheat-based products for human consumption commercialized in Romania.
Collapse
Affiliation(s)
- Oana Stanciu
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania.
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania.
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania.
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
35
|
Svingen T, Lund Hansen N, Taxvig C, Vinggaard AM, Jensen U, Have Rasmussen P. Enniatin B and beauvericin are common in Danish cereals and show high hepatotoxicity on a high-content imaging platform. ENVIRONMENTAL TOXICOLOGY 2017; 32:1658-1664. [PMID: 27628925 DOI: 10.1002/tox.22367] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/10/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Mycotoxins are fungi-born metabolites that can contaminate foods through mould-infected crops. They are a significant food/feed-safety issue across the globe and represent a substantial financial burden for the world economy. Moreover, with a changing climate and fungal biota, there is now much discussion about emerging mycotoxins that are measurable at significant levels in crops world-wide. Unfortunately, we still know very little about the bioavailability and toxic potentials of many of these less characterized mycotoxins, including the large family of enniatins. In this study, we present new occurrence data for enniatin A, A1, B, B1 and beauvericin in four Danish crops: oat, wheat, and barley from the 2010 harvest, and rye from 2011 harvest. The occurrence of the four enniatins were B > B1 > A1 > A. Enniatin B was detected in 100% of tested samples regardless of crop type. In addition to occurrence data, we report a proof-of-concept study using a human-relevant high-content hepatotoxicity, or "quadroprobe," assay to screen mycotoxins for their cytotoxic potential. The assay was sensitive for most cytotoxic compounds in the 0.009-100 µM range. Among eight tested mycotoxins (enniatin B, beauvericin, altenariol, deoxynivalenol, aflatoxin B1, andrastin A, citrinin, and penicillic acid), enniatin B and beauvericin showed significant cytotoxicity at a concentration lower than that for aflatoxin B1, which is the archetypal acute hepatotoxic and liver-carcinogenic mycotoxin. Hence, the quadroprobe hepatotoxicity assay may become a valuable assessment tool for toxicity assessment of mycotoxins in the future. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1658-1664, 2017.
Collapse
Affiliation(s)
- Terje Svingen
- Divisions of Diet, Disease Preventative and Toxicology, National Food Institute Technical University of Denmark, Søborg, DK, 2860, Denmark
| | - Niels Lund Hansen
- Divisions of Diet, Disease Preventative and Toxicology, National Food Institute Technical University of Denmark, Søborg, DK, 2860, Denmark
| | - Camilla Taxvig
- Divisions of Diet, Disease Preventative and Toxicology, National Food Institute Technical University of Denmark, Søborg, DK, 2860, Denmark
| | - Anne Marie Vinggaard
- Divisions of Diet, Disease Preventative and Toxicology, National Food Institute Technical University of Denmark, Søborg, DK, 2860, Denmark
| | - Udo Jensen
- Department of Food Chemistry, Danish Veterinary and Food Administration, Søndervang 4, Ringsted, DK, 4100, Denmark
| | - Peter Have Rasmussen
- Research Group for Chemical Food Analysis, National Food Institute, Technical University of Denmark, Søborg, DK, 2860, Denmark
| |
Collapse
|
36
|
Stanciu O, Juan C, Miere D, Loghin F, Mañes J. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Stanciu O, Juan C, Miere D, Loghin F, Mañes J. Analysis of enniatins and beauvericin by LC-MS/MS in wheat-based products. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1288661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Oana Stanciu
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of València, Burjassot, València, Spain
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of València, Burjassot, València, Spain
| |
Collapse
|
38
|
Tolosa J, Graziani G, Gaspari A, Chianese D, Ferrer E, Mañes J, Ritieni A. Multi-Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins (Basel) 2017; 9:toxins9020059. [PMID: 28208797 PMCID: PMC5331438 DOI: 10.3390/toxins9020059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/04/2017] [Indexed: 01/04/2023] Open
Abstract
A simple and rapid multi-mycotoxin method for the determination of 17 mycotoxins simultaneously is described in the present survey on durum and soft wheat pasta samples. Mycotoxins included in the study were those mainly reported in cereal samples: ochratoxin-A (OTA), aflatoxin B1 (AFB1), zearalenone (ZON), deoxynivalenol (DON), 3-and 15-acetyl-deoxynivalenol (3-AcDON and 15-AcDON), nivalenol (NIV), neosolaniol (NEO), fusarenon-X, (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2), fumonisin B1 and B2 (FB1 and FB2), and four emerging mycotoxins: three enniatins (ENA, ENA1, and ENB), and beauvericin (BEA). Twenty-nine samples were analyzed to provide an overview on mycotoxin presence: 27 samples of durum wheat pasta, and two samples of baby food. Analytical results concluded that trichothecenes showed the highest incidence, mainly DON, NIV, and HT-2 toxin, followed by ZON and ENB, while NEO, FUS-X, OTA, AFB1, and FUM were not detected in any sample. The highest contents corresponded to ENB and ranged from 91.15 µg/kg to 710.90 µg/kg.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Anna Gaspari
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Donato Chianese
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Emilia Ferrer
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
39
|
Abstract
Cereals and, most specifically, wheat are described in this chapter highlighting on their safety and quality aspects. Moreover, wheat quality aspects are adequately addressed since they are used to characterize dough properties and baking quality. Determination of dough properties is also mentioned and pasta quality is also described in this chapter. Chemometrics-multivariate analysis is one of the analyses carried out. Regarding production weighing/mixing of flours, kneading, extruded wheat flours, and sodium chloride are important processing steps/raw materials used in the manufacturing of pastry products. Staling of cereal-based products is also taken into account. Finally, safety aspects of cereal-based products are well documented with special emphasis on mycotoxins, acrylamide, and near infrared methodology.
Collapse
Affiliation(s)
- Theo Varzakas
- a Technological Educational Institute of Peloponnese , Kalamata , Greece
| |
Collapse
|
40
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
41
|
Multi-mycotoxin contamination of couscous semolina commercialized in Morocco. Food Chem 2017; 214:440-446. [DOI: 10.1016/j.foodchem.2016.07.098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022]
|
42
|
Saladino F, Quiles JM, Mañes J, Fernández-Franzón M, Luciano FB, Meca G. Dietary exposure to mycotoxins through the consumption of commercial bread loaf in Valencia, Spain. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Decleer M, Rajkovic A, Sas B, Madder A, De Saeger S. Development and validation of ultra-high-performance liquid chromatography-tandem mass spectrometry methods for the simultaneous determination of beauvericin, enniatins (A, A1, B, B1) and cereulide in maize, wheat, pasta and rice. J Chromatogr A 2016; 1472:35-43. [PMID: 27776774 DOI: 10.1016/j.chroma.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023]
Abstract
Rapid and accurate UPLC-MS/MS methods for the simultaneous determination of beauvericin and the related enniatins (A, A1, B, B1), together with cereulide were successfully developed and validated in cereal and cereal-based food matrices such as wheat, maize, rice and pasta. Although these emerging foodborne toxins are of different microbial origin, the similar structural, toxicological and food safety features provided rationale for their concurrent detection in relevant food matrices. A Waters Acquity UPLC system coupled to a Waters Quattro Premier XE™ Mass Spectrometer operating in ESI+ mode was employed. Sample pretreatment involved a fast and simple liquid extraction of the target toxins without any further clean-up step. For all toxins the sample preparation resulted in acceptable extraction recoveries with values of 85-105% for wheat, 87-106% for maize, 84-106% for rice and 85-105% for pasta. The efficient extraction protocol, together with a fast chromatographic separation of 7min allowed substantial saving costs and time showing its robustness and performance. The validation of the developed method was performed based on Commission Decision 2002/657/EC. The obtained limits of detection ranged from 0.1 to 1.0μgkg-1 and the limits of quantification from 0.3 to 2.9μgkg-1 for the targeted toxins in the selected matrices. The obtained sensitivities allow detection of relevant toxicological concentrations. All relative standard deviations for repeatability (intra-day) and intermediate precision (inter-day) were lower than 20%. Trueness, expressed as the apparent recovery varied from 80 to 107%. The highly sensitive and repeatable validated method was applied to 57 naturally contaminated samples allowing detection of sub-clinical doses of the toxins.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium; Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Andreja Rajkovic
- Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Benedikt Sas
- Department of Food Safety and Food Quality, Food2Know, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
44
|
de Nijs M, van den Top H, de Stoppelaar J, Lopez P, Mol H. Fate of enniatins and deoxynivalenol during pasta cooking. Food Chem 2016; 213:763-767. [PMID: 27451245 DOI: 10.1016/j.foodchem.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/13/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The fate of deoxynivalenol and enniatins was studied during cooking of commercially available dry pasta in the Netherlands in 2014. Five samples containing relatively high levels of deoxynivalenol and/or enniatins were selected for the cooking experiment. Cooking was performed in duplicate on different days, under standardised conditions, simulating house-hold preparation. Samples were extracted with a mixture of acetonitrile/water followed by salt-induced partitioning. The extracts were analysed by LC-MS/MS. The method limits of detection were 8μg/kg for deoxynivalenol, 10μg/kg for enniatin A1 and 5μg/kg for enniatins A, B and B1. During the cooking of the five dry pasta samples, 60% of the deoxynivalenol and 83-100% of the enniatins were retained in the cooked pasta. It is recommended to study food processing fate of mycotoxins through naturally contaminated materials (incurred materials).
Collapse
Affiliation(s)
- Monique de Nijs
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Hester van den Top
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Joyce de Stoppelaar
- Netherlands Food and Consumer Product Safety Authority (NVWA), Catharijnesingel 59, 3511 GG Utrecht, The Netherlands.
| | - Patricia Lopez
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Hans Mol
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| |
Collapse
|
45
|
Kirjavainen PV, Täubel M, Karvonen AM, Sulyok M, Tiittanen P, Krska R, Hyvärinen A, Pekkanen J. Microbial secondary metabolites in homes in association with moisture damage and asthma. INDOOR AIR 2016; 26:448-456. [PMID: 25913237 DOI: 10.1111/ina.12213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 (range 8-29) and median sum load 65 (4-865) ng/m(2) . Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years (aOR 0.06 (95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended (P < 0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma.
Collapse
Affiliation(s)
- P V Kirjavainen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - M Täubel
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - A M Karvonen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - M Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - P Tiittanen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - R Krska
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - A Hyvärinen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - J Pekkanen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Quiles JM, Saladino F, Mañes J, Fernández-Franzón M, Meca G. Occurrence of mycotoxins in refrigerated pizza dough and risk assessment of exposure for the Spanish population. Food Chem Toxicol 2016; 94:19-24. [PMID: 27222027 DOI: 10.1016/j.fct.2016.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Mycotoxins are toxic metabolites produced by filamentous fungi, as Aspergillus, Penicillium and Fusarium. The first objective of this research was to study the presence of mycotoxins in 60 samples of refrigerated pizza dough, by extraction with methanol and determination by liquid chromatography associated with tandem mass spectrometry (LC-MS/MS). Then, the estimated dietary intakes (EDIs) of these mycotoxins, among the Spanish population, was calculated and the health risk assessment was performed, comparing the EDIs data with the tolerable daily intake values (TDIs). The mycotoxins detected in the analyzed samples were aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), zearalenone (ZEA), enniatin A (ENA), enniatin A1 (ENA1), enniatin (ENB), enniatin B1 (ENB1) and BEA (beauvericin) with average concentration of the positive samples of 4.09 μg/kg, 0.50 μg/kg, 0.79 μg/kg, 77.78 μg/kg, 14.96 μg/kg, 4.54 μg/kg, 3.37 μg/kg, 1.69 μg/kg and 22.39 μg/kg, respectively. The presence of ZEA, ENA1, ENB and ENB1 was detected in 100% of the samples, AFB2 in 32%, AFB1 in 23%, ENA in 8% and BEA in 3%. Twelve percent of the samples contaminated with AFB1 and 12% of the doughs contaminated with ZEA exceeded the EU legislated maximum limits. The dietary intakes were estimated considering three different age groups of population, and the EDIs calculated for the mycotoxins detected in the samples were all below the established TDI.
Collapse
Affiliation(s)
- Juan Manuel Quiles
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Federica Saladino
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
47
|
Juan-García A, Juan C, Manyes L, Ruiz MJ. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products. Toxicol In Vitro 2016; 34:264-273. [PMID: 27131905 DOI: 10.1016/j.tiv.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
48
|
Serrano AB, Font G, Mañes J, Ferrer E. Effects of technological processes on enniatin levels in pasta. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1756-1763. [PMID: 26031213 DOI: 10.1002/jsfa.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Potential human health risks posed by enniatins (ENs) require their control primarily from cereal products, creating a demand for harvesting, food processing and storage techniques capable to prevent, reduce and/or eliminate the contamination. In this study, different methodologies to pasta processing simulating traditional and industrial processes were developed in order to know the fate of the mycotoxin ENs. The levels of ENs were studied at different steps of pasta processing. The effect of the temperature during processing was evaluated in two types of pasta (white and whole-grain pasta). Mycotoxin analysis was performed by LC-MS/MS. RESULTS High reductions (up to 50% and 80%) were achieved during drying pasta at 45-55°C and 70-90°C, respectively. The treatments at low temperature (25°C) did not change EN levels. The effect of pasta composition did not cause a significant effect on the stability of ENs. The effect of the temperature allowed a marked mycotoxin reduction during pasta processing. Generally, ENA1 and ENB showed higher thermal stability than did ENA and ENB1 . CONCLUSIONS The findings from the present study suggested that pasta processing at medium-high temperatures is a potential tool to remove an important fraction of ENs from the initial durum wheat semolina.
Collapse
Affiliation(s)
- Ana B Serrano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Emilia Ferrer
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
49
|
Smith MC, Madec S, Coton E, Hymery N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins (Basel) 2016; 8:94. [PMID: 27023609 PMCID: PMC4848621 DOI: 10.3390/toxins8040094] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
Some foods and feeds are often contaminated by numerous mycotoxins, but most studies have focused on the occurrence and toxicology of a single mycotoxin. Regulations throughout the world do not consider the combined effects of mycotoxins. However, several surveys have reported the natural co-occurrence of mycotoxins from all over the world. Most of the published data has concerned the major mycotoxins aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), fumonisins (FUM) and trichothecenes (TCTs), especially deoxynivalenol (DON). Concerning cereals and derived cereal product samples, among the 127 mycotoxin combinations described in the literature, AFs+FUM, DON+ZEA, AFs+OTA, and FUM+ZEA are the most observed. However, only a few studies specified the number of co-occurring mycotoxins with the percentage of the co-contaminated samples, as well as the main combinations found. Studies of mycotoxin combination toxicity showed antagonist, additive or synergic effects depending on the tested species, cell model or mixture, and were not necessarily time- or dose-dependent. This review summarizes the findings on mycotoxins and their co-occurrence in various foods and feeds from all over the world as well as in vitro experimental data on their combined toxicity.
Collapse
Affiliation(s)
- Marie-Caroline Smith
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Stéphanie Madec
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Nolwenn Hymery
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
50
|
Juan-García A, Ruiz MJ, Font G, Manyes L. Enniatin A1, enniatin B1 and beauvericin on HepG2: Evaluation of toxic effects. Food Chem Toxicol 2015; 84:188-96. [DOI: 10.1016/j.fct.2015.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 12/28/2022]
|