1
|
Xiao M, Leung AYK, Zhu Z, Zhu L, Xiao K. Optimization of the extraction of duckweed protein and its application as an antioxidant composite membrane in blueberry preservation. Int J Biol Macromol 2025; 311:143847. [PMID: 40318713 DOI: 10.1016/j.ijbiomac.2025.143847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
In this paper, response surface methodology (RSM) was used to optimize the extraction process of proteins from duckweed and the protein extraction rate was increased to 24.11 ± 0.04 %. The duckweed protein extract (DP) was mixed with sodium carboxymethyl cellulose (CMC) and glycerol to prepare DP/CMC antioxidant membranes with different additions (0.5 % ∼ 2.5 %), and 2.0 % DP/CMC antioxidant membranes were used in blueberry preservation experiments. The results showed that the moisture permeability of DP/CMC antioxidant membrane was significantly reduced, the thermal stability was significantly improved, and the antioxidant property was significantly higher than that of CMC membrane (p < 0.05). The lowest oxygen content in the 2.0 % DP/CMC membrane package compared to PE and CMC membranes may be due to the synergistic effect of aerobic respiration of blueberries and oxidation of antioxidants in the membrane, under which the loss of antioxidants in the blueberries was lowest and the quality of blueberries was effectively maintained. In this study, for the first time, antioxidant membranes with significant freshness preservation effects were prepared using duckweed protein extract (DP), demonstrating its great potential as an active packaging material for food preservation, and opening up a new development direction for the application of DP.
Collapse
Affiliation(s)
- Mengge Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - Zhonghao Zhu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liang Zhu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhu Y, Pang X, Zhang W, Zhang C, Zhang B, Fu J, Zhao H, Han W. Green synthesis of silver nanoparticles using persimmon polysaccharides for enhanced polysaccharide-based film performance. Food Res Int 2025; 209:116252. [PMID: 40253137 DOI: 10.1016/j.foodres.2025.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Herein, the polysaccharide-based film was prepared by using persimmon polysaccharides extraction (PPE) and sodium alginate (SA) with the synthesized silver nanoparticles (AgNPs). Firstly, PPE was used as reducing and stabilizing agents for the green synthesis of PPE-AgNPs for the first time. The synthesized AgNPs had face-centered-cubic crystal structure with an average particle size of 55.88 nm. Also, the synthesized AgNPs solution exhibited superior dispersion with yellow-brown, and showed excellent antimicrobial activity (p < 0.05). Then, with incorporating AgNPs, the SA-PPE-AgNPs film showed excellent performance, the tensile strength (TS) and elongation at break (EAB) reached 18.24 MPa and 21.94 %, the water vapor permeability (WVP) decreased to 4.91 × 10-11 g·m-1·s-1 Pa-1, and significantly improved UV-vis barrier property. Moreover, the SA-PPE-AgNPs film showed excellent antibacterial activities (p < 0.05) against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and Aspergillus niger, with the highest antibacterial activity against Escherichia coli (inhibition zone diameter for 16.92 ± 0.14 mm). Preservation tests on sugar oranges showed that the SA-PPE-AgNPs coating treatment maintained the good appearance and color, slowed down the loss of weight (8.34 %), firmness (8.58 N), titratable acid (decreased by 30.23 %) and total soluble solids content (decreased by 10.46 %), and kept the stability of pH (4.26) and Vitamin C (Vc) (decreased by 17.51 %) during the storage period. In summary, SA-PPE-AgNPs film was an effective method for maintaining fruit freshness instead of the traditional films.
Collapse
Affiliation(s)
- Yadong Zhu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xiaohui Pang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Wenlin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Lucas N, Tambe SS, Parate R, Hengne A, Rode CV, Athawale AA. Sustainable UV absorbing bio-plastic films by valorisation of humins and chitosan. Int J Biol Macromol 2025:143710. [PMID: 40316074 DOI: 10.1016/j.ijbiomac.2025.143710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Humins, an inevitable bio-refinery waste by-product of sugar dehydration have been efficiently utilized for the first time for developing biodegradable thin films for UV shielding. The films were prepared from chitosan, and humins, a novel combination, aiming towards simultaneous utilization of marine and bio-refinery waste, rendering simple, effective, robust UV absorbing films. The structure-activity relationship of these films were elucidated with the help of different analytical techniques like X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, UV-vis spectroscopy, Atomic force microscopy, Scanning electron microscopy, Tensile testing, Contact angle measurements and water absorption studies. Intrinsic biodegradability was studied using fungi i.e. Aspergillus niger. Different feedstocks (corncob, rice husk, glucose and xylose) were explored for generating humins. Amongst them, humins derived from xylose were utilized for the preparation of the bio-plastic films of chitosan. The results revealed that, addition of 5.0 % humins was observed to be an optimum concentration yielding films with excellent UV absorption, mechanical properties, and biodegradability. The current work is in perfect alignment with sustainability and green chemistry as it ameliorates waste valorization (lignocellulosic and marine altogether). Further, its innovation stems from the first-hand use of humins for UV absorption, novel combination of biopolymers, use of green raw materials.
Collapse
Affiliation(s)
- Nishita Lucas
- Department of Chemistry, S.P. Pune University, Pune 411007, India; Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India
| | - Snehal S Tambe
- Department of Chemistry, S.P. Pune University, Pune 411007, India
| | - Roopa Parate
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India
| | - Amol Hengne
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India; Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, 138634, Singapore
| | - C V Rode
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
4
|
Shi Y, Deng Y, Du G, Fu L, Huang B, Xu C, Lin B. In situ synthesis of HKUST-1 on copper-ammonia fiber for preparation of quaternary-ammonium chitosan based active packaging with sustained-release cinnamaldehyde. Int J Biol Macromol 2025; 300:140342. [PMID: 39870284 DOI: 10.1016/j.ijbiomac.2025.140342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed. Subsequently, combining it with chitosan quaternary ammonium salt (CQAS) to formulate chitosan quaternary ammonium salt/copper-ammonia fiber@HKUST-1/cinnamaldehyde (CCAHC) packaging film. Based on copper-ammonia fiber to prepared HKUST-1, on the one hand, it has excellent compatibility with CQAS and improves the mechanical properties of the film. On the other hand, its porous structure also encapsulates CIN and significantly improves the stability of CIN (203h). Benefiting from the sustained release of CIN and Cu2+ from HKUST-1, CCAHC film not only exhibited long-lasting antimicrobial activity (12 days, 95 %), which was effective in prolonging the shelf life of strawberries, but also excellent antioxidant properties (20 h, 84 %), which maintained the good appearance of fresh-cut apples (over 14 h). Moreover, CCAHC films exhibited the great degradability in the soli, which promised it becoming a green packaging material. Therefore, this work provides an innovative method for designing CIN encapsulation and preparing bioactive packaging films.
Collapse
Affiliation(s)
- Yuyan Shi
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Guangwu Du
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Bai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China.
| |
Collapse
|
5
|
Murugan G, Benjakul S, Subbiah B, Dhanushkodi M, Pandi G, Govindhasami E, Stephen NM, Nagarajan M. Effect of Three-Layer Polylactic Acid/Gelatine/Polybutylene Adipate-co-Terephthalate Film with Added Physalis Leaf Extract on Shelf-Life Extension of Fish Meat Powder §. Food Technol Biotechnol 2025; 63:109-119. [PMID: 40322281 PMCID: PMC12044291 DOI: 10.17113/ftb.63.01.25.8553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2025] [Indexed: 05/08/2025] Open
Abstract
Research background Nowadays, there is a growing interest in active packaging with the addition of natural extracts due to safety concerns and consumer preferences. Physalis angulata is a medicinal and edible species of the Solanaceae family and is rich in phenolic compounds. Phenolic compounds, the secondary metabolites, are synthesised and stored in all plant tissues. They can be used as plasticizers or fillers to improve the interfacial interaction between the two biopolymers and prevent the transfer of moisture and gas from the food product and extend the shelf life to some degree. Experimental approach The effect of a three-layer (P/G/B) film based on polylactic acid (P), gelatine (G) and polybutylene adipate-co-terephthalate (B) incorporated or not with Physalis leaf extract (PLE) on the quality changes of fish meat powder (sample) stored at 27-30 °C (30 days) was investigated in comparison with control (uncovered), polyethylene (PE), polylactic acid, polybutylene adipate-co-terephthalate and gelatine films. The samples were sealed in a cylindrical bottle covered with the prepared films. The storage properties such as moisture content, pH, peroxide value (PV), thiobarbituric acid reactive substances (TBARS), total volatile basic nitrogen (TVB-N), changes in colour, sensory properties and volatile compounds of samples packed with the developed films were analysed. Results and conclusions The moisture content was lower in the sample covered with the P/G/B-PLE-7 % film throughout the storage period. However, the sample covered with PE film had the highest PV (p<0.05). TBARS, TVB-N and volatile compounds decreased in the sample covered with P/G/B-PLE-7 % on day 30 of storage. The incorporation of Physalis leaf extract into the three-layer film improved the properties of the film and extended the shelf life of fish meat powder. Thus, the addition of Physalis leaf extract to the three-layer film could serve as a biodegradable active packaging and be a promising substitute for commercial plastic films. Novelty and scientific contribution This is the first report on the study of chemical changes of fish meat powder covered with a three-layer (P/G/B) film incorporated with Physalis leaf extract. This will lead to a better understanding of the role of the three-layer (P/G/B) film containing Physalis leaf extract on the extension of shelf life of fish meat powder.
Collapse
Affiliation(s)
- Gokulprasanth Murugan
- Department of Fish Processing Technology, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Ponneri – 601 204, Tamil Nadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla90110, Thailand
| | - Balasundari Subbiah
- Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Thalainayeru – 614 712, Tamil Nadu, India
| | - Manikandavelu Dhanushkodi
- Department of Aquatic Environment Management, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Ponneri – 601 204, Tamil Nadu, India
| | - Ganesan Pandi
- Department of Fish Processing Technology, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi – 628 008, Tamil Nadu, India
| | - Elavarsan Govindhasami
- Department of Fish Processing Technology, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Ponneri – 601 204, Tamil Nadu, India
| | - Nimish Mol Stephen
- Department of Fish Processing Technology, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Ponneri – 601 204, Tamil Nadu, India
| | - Muralidharan Nagarajan
- Department of Fish Processing Technology, Tamil Nadu Dr. J Jayalalithaa Fisheries University, Dr. M.G.R Fisheries College and Research Institute, Ponneri – 601 204, Tamil Nadu, India
| |
Collapse
|
6
|
Loudifa FE, Zazouli S, Nague I, Moubarik A, Zanane C, Latrache H, Jouaiti A. Characterization and antibacterial activity of cellulose extracted from Washingtonia robusta and Phoenix dactylifera L. impregnated with eugenol: Promising wound dressing. Heliyon 2025; 11:e42310. [PMID: 39968146 PMCID: PMC11834031 DOI: 10.1016/j.heliyon.2025.e42310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
This paper aimed to valorize two varieties of date palm mesh, Washingtonia robusta (S1) and Phoenix Dactylifera L. (S2) by extracting their fibrous cellulose structures for potential application in wound dressings. The extracted fibrous dressings were analyzed by using Fourier Transforms Infrareded (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Additionally, mechanical properties, water absorption, and antimicrobial activity were analyzed. The results showed that S2 contained significantly higher fiber content (37.21 %) compared to S1 (12.63 %). FTIR analysis confirmed successful cellulose extraction from both palm varieties. SEM images showed that S1 fibers had a smooth-surface with smaller pores, contributing to a higher absorption capacity of 1289 ± 93 %. Therefore, S2 exhibited rougher-surfaced fibers, which enhanced its mechanical properties, as demonstrated by stress-strain tensile tests, and Young's modulus. Notably, S2 revealed superior mechanical strength compared to S1 fiber dressings. Water absorption for S2 was calculated at 509 ± 93 %. Both S1 and S2 exhibited high crystalline index (61.17 % and 62.88 %), with crystalline size of 3.54 nm for S1 and 10.03 nm for S2. Finally, Eugenol-enriched fibers showed significant activity against E. coli (3.8 mm and 2.3 mm), S. aureus (4.00 mm and 2.05 mm), and S. epidermidis (2.7 mm and 1.6 mm) for S1 and S2, respectively, suggesting their potential as effective new wound dressing materials.
Collapse
Affiliation(s)
- Fatima-ezzahra Loudifa
- Laboratory of Molecular Chemistry, Materials and Catalysis, Sultan Moulay Slimane University, Faculty of Sciences and Technology, B.P.523, 23000, Beni-Mellal, Morocco
| | - Sofia Zazouli
- Laboratory of Molecular Chemistry, Materials and Catalysis, Sultan Moulay Slimane University, Faculty of Sciences and Technology, B.P.523, 23000, Beni-Mellal, Morocco
| | - Ikrame Nague
- Laboratory of Molecular Chemistry, Materials and Catalysis, Sultan Moulay Slimane University, Faculty of Sciences and Technology, B.P.523, 23000, Beni-Mellal, Morocco
| | - Amine Moubarik
- Interdisciplinary Laboratory of Research in Sciences and Technologies (LIRST), Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco
| | - Chorouk Zanane
- Laboratory of Bio-Process and Bio-Interfaces, Faculty of Sciences and Technics, University Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Hassan Latrache
- Laboratory of Bio-Process and Bio-Interfaces, Faculty of Sciences and Technics, University Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Ahmed Jouaiti
- Laboratory of Molecular Chemistry, Materials and Catalysis, Sultan Moulay Slimane University, Faculty of Sciences and Technology, B.P.523, 23000, Beni-Mellal, Morocco
| |
Collapse
|
7
|
Sheng W, Yang L, Yang Y, Wang C, Jiang G, Tian Y. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chem 2025; 464:141711. [PMID: 39447267 DOI: 10.1016/j.foodchem.2024.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The existing films used for fruit preservation suffer from insufficient preservation abilities. This study introduces Cu-tannic acid (Cu-TA) nanoparticles, synthesized from tannic acid (TA) and Cu2+, to enhance food packaging properties. Integrated into a chitosan-gelatin (CG) matrix, the resultant Cu-TA nanocomposite films exhibit superior antibacterial efficacy and killing rates of Escherichia coli and Staphylococcus aureus more than 99 %, and double the shelf life of strawberries, underscoring the exceptional freshness preservation capabilities of film. Additionally, the tensile strength of the Cu-TA nanocomposite films increased by 1.75 times, the DPPH radical scavenging percentage increased from 29.4 % to 68.4 %, and the water vapor permeability (WVP) decreased by about 60 % compared to the pure CG films. Comprehensive cytotoxicity and migration assessments confirm the safety of film, paving the way for their application in food packaging. The excellent performance of the Cu-TA nanocomposite films positions them as a formidable solution for protecting perishable food items.
Collapse
Affiliation(s)
- Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
8
|
Vafaei E, Hasani M, Salehi N, Sabbagh F, Hasani S. Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics. MATERIALS (BASEL, SWITZERLAND) 2025; 18:225. [PMID: 39859696 PMCID: PMC11767190 DOI: 10.3390/ma18020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties. The results show that adding ZnO and GO nanoparticles increased the tensile strength of the layers from 9.203 MPa to 17.787 MPa in films containing graphene oxide and zinc oxide, although the elongation at break decreased. The incorporation of nanoparticles reduced the water vapor permeability from 0.164 to 0.149 (g.m-2.24 h-1). Moreover, the transparency of the layers ranged from 72.67% to 86.17%, decreasing with higher nanoparticle concentrations. The use of nanoparticles enhanced the light-blocking characteristics of the films, making them appropriate for the preservation of light-sensitive food items. The thermal properties improved with an increase in the melting temperature (Tm) up to 115.5 °C and enhanced the thermal stability in the nanoparticle-containing samples. FTIR analysis confirmed the successful integration of all components within the films. In general, the combination of gelatin and chitosan, along with ZnO, GO, and spermidine, significantly enhanced the properties of the layers, making them stronger and more suitable for biodegradable packaging applications.
Collapse
Affiliation(s)
- Esmaeil Vafaei
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Maryam Hasani
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Nasrin Salehi
- Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Farzaneh Sabbagh
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Shirin Hasani
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran;
| |
Collapse
|
9
|
Aleksandr K, Mikhail L, Aleksandr P. Self-Assembled Hydrogel Based on (Bio)polyelectrolyte Complex of Chitosan-Gelatin: Effect of Composition on Physicochemical Properties. Gels 2024; 10:786. [PMID: 39727544 DOI: 10.3390/gels10120786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (z), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at z ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin. It was shown that hydrogels at z ≈ 1 had an increased sorption capacity and water sorption rate, as well as increased resistance to the in vitro model environment of phosphate-buffered saline (PBS) solution containing lysozyme at 37 °C. It was also shown that in PBS and simulated gastric fluid (SGF) solutions, the effect of the polyelectrolyte swelling of the hydrogels was significantly suppressed; however, at z ≥ 1, the (bio)PEC hydrogels had increased stability compared to the samples at z < 1 and based on gelatin.
Collapse
Affiliation(s)
- Kashurin Aleksandr
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Litvinov Mikhail
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Podshivalov Aleksandr
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Padilla C, Pępczyńska M, Vizueta C, Quero F, Díaz-Calderón P, Macnaughtan W, Foster T, Enrione J. The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels 2024; 10:766. [PMID: 39727524 DOI: 10.3390/gels10120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base). The results showed that the presence of CNCs (with type I and type II crystals) interfered with the formation of the gelatin triple helix, with a decrease from 21.7% crystallinity to 12% in samples with 10% CNC but increasing the overall crystallinity (from 21.7% to 22.6% in samples with 10% CNC), which produced a decrease in the water monolayer in the composites. These changes in crystallinity also impacted significantly their mechanical properties, with higher E' values (from 1 × 104 to 1.3 × 104 Pa at 20 °C) and improved thermal stability at higher CNC content. Additionally, the evaluation of their shape memory properties indicated that while molecular interactions between the two components occur, CNCs negatively impacted the magnitude and kinetics of the shape recovery of the composites (more particularly at 10 weight% CNC, reducing shape recovery from 90% to 70%) by reducing the netting point associated with the lower crystallinity of the gelatin. We believe that our results contribute in elucidating the interactions of gelatin-CNC composites at various structural levels and highlights that even though CNC acts as a reinforcement material on gelatin matrices, their interaction are complex and do not imply synergism in their properties. Further investigation is, however, needed to understand CNC-gelatin interfacial interactions with the aim of modulating their interactions depending on their desired application.
Collapse
Affiliation(s)
- Cristina Padilla
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| | - Marzena Pępczyńska
- R&D Physical Properties, Laboratorios Liconsa-CHEMO, S.A. Polígono Industrial Miralcampo, Avda. Miralcampo 7, 19200 Azuqueca de Henares, Guadalajara, Spain
| | - Cristian Vizueta
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago 7550000, Chile
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| | - William Macnaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Tim Foster
- Division of Food, Nutrition and Dietetics, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Javier Enrione
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| |
Collapse
|
11
|
Wang J, Xu X, Cui B, Wang B, Abd El-Aty AM. Changes in the properties of the corn starch glycerol film in a time-dependent manner during gelatinization. Food Chem 2024; 458:140183. [PMID: 38943954 DOI: 10.1016/j.foodchem.2024.140183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
This study aimed to investigate the fundamental properties, solubility, mechanical properties, barrier performance, and microstructural features of films composed of corn starch and glycerol. Changes in the microstructure were analyzed to understand how they relate to the physical and chemical properties of these films. Specifically, we found that increasing the gelatinization time decreased the film thickness, solubility, water vapor permeability, and maximum degradation temperature and increased the water content. A gradual increase in the water contact angle of the corn starch-glycerol films was observed with increasing gelatinization time. This trend is likely due to the disruptive effect of gelatinization on the crystalline and amorphous structures inherent in corn starch, resulting in reduced film crystallinity, degree of order (DO) and degree of double helix (DD).
Collapse
Affiliation(s)
- Jiarui Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Shandong Qingyun Large Leaf Coriander Science and Technology Backyard, Dezhou 253600, Shandong, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
12
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
13
|
Li J, Shi X, Yang K, Guo L, Yang J, Lan Z, Guo Y, Xiao L, Wang X. Fabrication and characterization of carvacrol encapsulated gelatin/chitosan composite nanofiber membrane as active packaging material. Int J Biol Macromol 2024; 282:137114. [PMID: 39486743 DOI: 10.1016/j.ijbiomac.2024.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
In this study, carvacrol was effectively encapsulated in gelatin/chitosan composite nanofiber membrane using the electrospinning method with the help of the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effects of CTAB (0.0%, 1.0%, w/w) and bioactive carvacrol (0.0%, 1.0%, 3.0%, 5.0%, 7.0%, 10.0%, w/w) on the structural, physicomechanical, antibacterial, and antioxidant characteristics of the nanofiber membranes were investigated. The results demonstrated that the antibacterial and antioxidant characteristics of the gelatin/chitosan composite nanofiber membrane (GC) and GC-CAR membrane (with the addition of 1.0% carvacrol) were unsatisfactory. As carvacrol and CTAB were both added, the elongation at break, antibacterial, and antioxidant properties of the nanofiber membranes significantly improved (p < 0.05), while the water vapor permeability (WVP) significantly decreased (p < 0.05). When the added amount of carvacrol was 5.0% (w/w), the nanofiber membrane (GC-CAR5-CTAB) exhibited the best antioxidant and antibacterial performance. Finally, the GC-CAR5-CTAB membrane was applied to the preservation of strawberries and Erjingtiao chilies, and their shelf life was effectively extended. The above results indicate that the nanofiber membrane prepared in this study has great potential for application in food-active packaging.
Collapse
Affiliation(s)
- Jing Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoqin Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Kang Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lang Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Junjie Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Zhengyu Lan
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yong Guo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Longquan Xiao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China; Chengdu Agricultural Science and Technology Center, Chengdu 610404, PR China.
| |
Collapse
|
14
|
Lai W, Wang L, Pang Y, Xin M, Li M, Shi L, Mao Y. Preparation of citric acid cross-linked chitosan quaternary phosphonium/polyvinyl alcohol composite film and its application in strawberry preservation. Food Chem 2024; 455:139908. [PMID: 38850971 DOI: 10.1016/j.foodchem.2024.139908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Chitosan quaternary phosphine salts (NPCS) were synthesized with enhanced antimicrobial properties using a two-step method. Composite films (CNSP) were prepared by incorporating NPCS and polyvinyl alcohol (PVA) as the base material, citric acid as the crosslinker and functional additive, exhibiting antibacterial and UV-blocking properties. The composite film showed a maximum tensile strength of 20.4 MPa, an elongation at break of 677%, and a UV light barrier transmittance of 70%. Application of these composite membranes in preserving strawberries demonstrated effectiveness in maintaining freshness by preventing water loss, inhibiting microbial growth, and extending shelf life. In addition, the composite film demonstrated biosafety. These results indicate that CNSP composite films holds significant promise for safe and sustainable food packaging applications.
Collapse
Affiliation(s)
- Wangkun Lai
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Yu Pang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Lulu Shi
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
15
|
Leite LSF, Le Gars M, Azeredo HMC, Moreira FKV, Mattoso LHC, Bras J. Insights into the effect of carboxylated cellulose nanocrystals on mechanical and barrier properties of gelatin films for flexible packaging applications. Int J Biol Macromol 2024; 280:135726. [PMID: 39293620 DOI: 10.1016/j.ijbiomac.2024.135726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
In this study, gelatin/carboxylated cellulose nanocrystal (cCNC) bionanocomposite films were developed as an eco-friendly alternative to non-biodegradable flexible plastic packaging. Cellulose nanocrystals were modified by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation (cCNC) to strategically interact with amino groups present in the gelatin macromolecular backbone. Gelatin/cCNC bionanocomposite films (0.5-6.0 wt% cCNC) obtained by solution casting were transparent to visible light while displayed high UV-blocking properties. The chemical compatibility between gelatin and cCNC was deepened by electrostatic COO-/NH3+ interactions, as detected by FTIR spectroscopy and morphologically indicated by scanning electron microscopy (SEM). Accordingly, Young's modulus and tensile strength of films were largely increased by 80 and 64 %, respectively, specifically near the cCNC percolation threshold (4 wt%), whereas the water vapor permeability (WVP) was reduced by 52 % at the optimum 6.0 wt% cCNC content in relation to the non-reinforced gelatin matrix (0.10 vs. 0.18 g H2O mm m-2 h-1 kPa-1). The oxygen transmission rates (OTR) of the gelatin/cCNC bionanocomposites were < 0.01 cm3 m-2 day-1, making them technically competitive to most promising biopolymers like polycaprolactone (PCL) and poly(lactic acid) (PLA). This study reveals how TEMPO-oxidized cellulose nanocrystals can broaden the performance of biodegradable gelatin films for use in packaging. The gelatin/cCNC bionanocomposites also represent an effective approach for designing newly sustainability-inspired flexible materials from the surface modification of nanocelluloses targeting specific interactions with protein structures.
Collapse
Affiliation(s)
- Liliane S F Leite
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil; Nanotechnology National Laboratory for Agribusiness, LNNA, Embrapa Instrumentation, R. XV de Novembro, 1452, 13560-979 São Carlos, SP, Brazil; University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France.
| | - Manon Le Gars
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France.
| | - Henriette M C Azeredo
- Nanotechnology National Laboratory for Agribusiness, LNNA, Embrapa Instrumentation, R. XV de Novembro, 1452, 13560-979 São Carlos, SP, Brazil.
| | - Francys K V Moreira
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil; Multifunctional Packaging Group (GEF(m)), Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil.
| | - Luiz H C Mattoso
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil; Nanotechnology National Laboratory for Agribusiness, LNNA, Embrapa Instrumentation, R. XV de Novembro, 1452, 13560-979 São Carlos, SP, Brazil.
| | - Julien Bras
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France; Institut Universitaire de France (IUF), F-75000 Paris, France.
| |
Collapse
|
16
|
Hu J, Yun X, Zheng Y, Sun T, Song L, Pan P, Dong T. Development of ultra-thin poly(L-lactic acid)-based films integrating toughness, barrier properties, and gas selectivity: Towards gas-permeation controllable green food packaging. Food Chem 2024; 449:139218. [PMID: 38579656 DOI: 10.1016/j.foodchem.2024.139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
High costs and low performance have constrained the application of bio-based materials in food packaging. Herein, a series of ultra-thin poly(L-lactic acid-iconic acid N-diol) (P(LA-NI)) copolymer films were developed using a "one-step" polycondensation process with integrated toughness, barrier properties, gas selectivity, and quality control features. The massive branched structure and gg conformers in P(LA-NI) act as "internal chain expansion" and "internal plasticization". Meanwhile, P(LA-NI) contains numerous polar groups and unique nanoscale microphase structures to realize excellent CO2, O2 barrier, CO2/O2 selectivity, anti-fogging, and UV shielding functions. The atmosphere within the package spontaneously achieves the desirable low O2 and high CO2 levels when packaging button mushrooms with high respiratory metabolism. Eventually, the shelf life of button mushrooms reached 24 days, >3-fold extended. This PLLA-based film meets "dual carbon" and "food safety" goals and has vast potential for fresh food preservation.
Collapse
Affiliation(s)
- Jian Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Yan Zheng
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Lijun Song
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
17
|
de la Mora-López DS, Madera-Santana TJ, Olivera-Castillo L, Castillo-Ortega MM, López-Cervantes J, Sánchez-Machado DI, Ayala-Zavala JF, Soto-Valdez H. Production and performance evaluation of chitosan/collagen/honey nanofibrous membranes for wound dressing applications. Int J Biol Macromol 2024; 275:133809. [PMID: 38996893 DOI: 10.1016/j.ijbiomac.2024.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Persistent bacterial infections are the leading risk factor that complicates the healing of chronic wounds. In this work, we formulate mixtures of polyvinyl alcohol (P), chitosan (CH), collagen (C), and honey (H) to produce nanofibrous membranes with healing properties. The honey effect at concentrations of 0 % (PCH and PCHC), 5 % (PCHC-5H), 10 % (PCHC-10H), and 15 % (PCHC-15H) on the physicochemical, antibacterial, and biological properties of the developed nanofibers was investigated. Morphological analysis by SEM demonstrated that PCH and PCHC nanofibers had a uniform and homogeneous distribution on their surfaces. However, the increase in honey content increased the fiber diameter (118.11-420.10) and drastically reduced the porosity of the membranes (15.79-92.62 nm). The addition of honey reduces the water vapor transmission rate (WVTR) and the adsorption properties of the membranes. Mechanical tests revealed that nanofibers were more flexible and elastic when honey was added, specifically the PCHC-15H nanofibers with the lowest modulus of elasticity (15 MPa) and the highest elongation at break (220 %). Also, honey significantly improved the antibacterial efficiency of the nanofibers, mainly PCHC-15H nanofibers, which presented the best bacterial reduction rates against Staphylococcus aureus (59.84 %), Pseudomonas aeruginosa (47.27 %), Escherichia coli (65.07 %), and Listeria monocytogenes (49.58 %). In vitro tests with cell cultures suggest that nanofibers were not cytotoxic and exhibited excellent biocompatibility with human fibroblasts (HFb) and keratinocytes (HaCaT), since all treatments showed higher or similar cell viability as opposed to the cell control. Based on the findings, PVA-chitosan-collagen-honey nanofibrous membranes have promise as an antibacterial dressing substitute.
Collapse
Affiliation(s)
- David Servín de la Mora-López
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Tomás J Madera-Santana
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico.
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Departamento Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Carr. Ant. a Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| | - María M Castillo-Ortega
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Jaime López-Cervantes
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico.
| | - Dalia I Sánchez-Machado
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico
| | - Jesús F Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Herlinda Soto-Valdez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
18
|
Khadsai S, Janmanee R, Sam-Ang P, Nuanchawee Y, Rakitikul W, Mankhong W, Likittrakulwong W, Ninjiaranai P. Influence of Crosslinking Concentration on the Properties of Biodegradable Modified Cassava Starch-Based Films for Packaging Applications. Polymers (Basel) 2024; 16:1647. [PMID: 38931996 PMCID: PMC11207420 DOI: 10.3390/polym16121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan/modified cassava starch/curcumin (CS/S/Cur) films with a crosslinker were developed via the solvent casting technique for the application of food packaging. The effects of citric acid (CA) as a natural crosslinker were assessed at different concentrations (0-10.0%, w/w, on a dry base on CS and S content). To measure the most favorable film, chemical structure and physical, mechanical, and thermal properties were investigated. Successful crosslinking between CS and S was seen clearly in the Fourier Transform Infrared (FTIR) spectra. The properties of the water resistance of the CS/S/Cur films crosslinked with CA were enhanced when compared to those without CA. Furthermore, it was found that the addition of CA crosslinking would improve the mechanical properties of composite films to some extent. It had been reported that the CA crosslinking level of 7.5 wt% of CS/S/Cur film demonstrated high performance in terms of physical properties. The tensile strength of the crosslinked film increased from 8 ± 1 MPa to 12 ± 1 MPa with the increasing content of CA, while water vapor permeability (WVP), swelling degree (SD), and water solubility (WS) decreased. An effective antioxidant scavenging activity of the CS/S/Cur film decreased with an increase in CA concentrations. This study provides an effective pathway for the development of active films based on polysaccharide-based film for food packaging applications.
Collapse
Affiliation(s)
- Sudarat Khadsai
- Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15000, Thailand;
| | - Rapiphun Janmanee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Pornpat Sam-Ang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Yossawat Nuanchawee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Waleepan Rakitikul
- Program of Chemical Technology, Faculty of Science and Technology, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand;
| | - Wilawan Mankhong
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Wirot Likittrakulwong
- Program of Animal Science, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand;
| | - Padarat Ninjiaranai
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| |
Collapse
|
19
|
Shah YA, Bhatia S, Al-Harrasi A, Tarahi M, Almasi H, Chawla R, Ali AMM. Insights into recent innovations in barrier resistance of edible films for food packaging applications. Int J Biol Macromol 2024; 271:132354. [PMID: 38750852 DOI: 10.1016/j.ijbiomac.2024.132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Rekha Chawla
- Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India
| | - Ali Muhammed Moula Ali
- School of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
20
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
21
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
22
|
Murugan G, Nilsuwan K, Prodpran T, Ponnusamy A, Rhim JW, Kim JT, Benjakul S. Active Fish Gelatin/Chitosan Blend Film Incorporated with Guava Leaf Powder Carbon Dots: Properties, Release and Antioxidant Activity. Gels 2024; 10:281. [PMID: 38667700 PMCID: PMC11048872 DOI: 10.3390/gels10040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Active packaging is an innovative approach to prolonge the shelf-life of food products while ensuring their quality and safety. Carbon dots (CDs) from biomass as active fillers for biopolymer films have been introduced to improve their bioactivities as well as properties. Gelatin/chitosan (G/C) blend films containing active guava leaf powder carbon dots (GL-CDs) at various levels (0-3%, w/w) were prepared by the solvent casting method and characterized. Thickness of the control increased from 0.033 to 0.041 mm when 3% GL-CDs were added (G/C-CD-3%). Young's modulus of the resulting films increased (485.67-759.00 MPa), whereas the tensile strength (26.92-17.77 MPa) and elongation at break decreased (14.89-5.48%) as the GL-CDs' level upsurged (p < 0.05). Water vapor barrier property and water contact angle of the film were enhanced when incorporated with GL-CDs (p < 0.05). GL-CDs had a negligible impact on film microstructure, while GL-CDs interacted with gelatin or chitosan, as determined by FTIR. The release of GL-CDs from blend films was more pronounced in water than in alcoholic solutions (10-95% ethanol). The addition of GL-CDs improved the UV light barrier properties and antioxidant activities of the resultant films in a dose-dependent manner. Thus, GL-CD-added gelatin/chitosan blend films with antioxidant activities could be employed as potential active packaging for the food industry.
Collapse
Affiliation(s)
- Gokulprasanth Murugan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| |
Collapse
|
23
|
Alshehri AA, Kamel RM, Gamal H, Sakr H, Saleh MN, El-Bana M, El-Dreny ESG, El Fadly E, Abdin M, Salama MA, Elsayed M. Sodium alginate films incorporated with Lepidium sativum (Garden cress) extract as a novel method to enhancement the oxidative stability of edible oil. Int J Biol Macromol 2024; 265:130949. [PMID: 38508545 DOI: 10.1016/j.ijbiomac.2024.130949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study addresses the growing interest in bio-based active food packaging by infusing Lepidium sativum (Garden cress) seeds extract (GRCE) into sodium alginate (SALG) films at varying concentrations (1, 3, and 5 %). The GRCE extract revealed six phenolic compounds, with gallic and chlorogenic acids being prominent, showcasing substantial total phenolic content (TPC) of 139.36 μg GAE/mg and total flavonoid content (TFC) of 26.46 μg RE/mg. The integration into SALG films significantly increased TPC, reaching 30.73 mg GAE/g in the film with 5 % GRCE. This enhancement extended to DPPH and ABTS activities, with notable rises to 66.47 and 70.12 %, respectively. Physical properties, including tensile strength, thickness, solubility, and moisture content, were positively affected. A reduction in water vapor permeability (WVP) was reported in the film enriched with 5 % GRCE (1.389 × 10-10 g H2O/m s p.a.). FT-IR analysis revealed bands indicating GRCE's physical interaction with the SALG matrix, with thermal stability of the films decreasing upon GRCE integration. SALG/GRCE5 effectively lowered the peroxide value (PV) of sunflower oil after four weeks at 50 °C compared to the control, with direct film-oil contact enhancing this reduction. Similar trends were observed in the K232 and K270 values.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, Abha, King Khalid University, Kingdom of Saudi Arabia
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, Giza 12611, Egypt
| | - Heba Gamal
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed El-Bana
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Kafr El Sheikh, Egypt
| | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | | |
Collapse
|
24
|
Cao L, Liu J, Meng Y, Hou M, Li J, Song Y, Wang Y, Song H, Zhang R, Liang R, Guo X. A tear-free and edible dehydrated vegetables packaging film with enhanced mechanical and barrier properties from soluble soybean polysaccharide blending carboxylated nanocellulose. Int J Biol Macromol 2024; 264:130707. [PMID: 38460635 DOI: 10.1016/j.ijbiomac.2024.130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The aim of the study was to develop soybean polysaccharide (SSPS) -carboxylated nanocellulose (CNC) blending films with enhanced mechanical and barrier properties to be used as a tear-free and edible packaging materials. The films were formed by casting method, with CNC as the strengthening unit and glycerol as the plasticizer. The effect of CNC on structural and physical performances of the SSPS-CNC films were studied. SEM indicated that the film will stratify with excess CNC (10 %), but the film remains intact and compact. Incorporation of CNC into SSPS films did not change peak position in the XRD pattern significantly. Hydrogen bonds among SSPS, glycerol and CNC were indicated by the FTIR spectra. The compounding of CNC greatly lessened the light transmittance and hydrophilicity (CA increased from 55.42° to 70.67°), but perfected the barrier (WVP decreased from 3.595 × 10-10 to 2.593 × 10-10 g m-1 s-1 Pa-1) and mechanical properties (TS improved from 0.806 to 1.317 MPa). The results of packaging dehydrated vegetable indicated that the SSPS-8CNC film can effectively inhibit the packaged cabbage absorption water vapor. As a consequence, SSPS film perfected by CNC is hopeful to pack dehydrated vegetables in instant foods.
Collapse
Affiliation(s)
- Lele Cao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China.
| | - Jiayi Liu
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yuzhe Meng
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Mengyao Hou
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Jie Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yuqi Song
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yanping Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Haiqing Song
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Rui Zhang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Rong Liang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
25
|
Upadhyay P, Ullah A. Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles. Int J Biol Macromol 2024; 261:129764. [PMID: 38296144 DOI: 10.1016/j.ijbiomac.2024.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
In this study, Hydroxyapatite nanoparticles (HANPs), derived from eggshell waste, were employed to reinforce chitosan biopolymer-based films through the solvent-casting method. The impact of varying HANPs content (1%, 3%, 5%, and 10 wt %) in bionanocomposites was investigated. The influence of HANPs addition on the final film properties was comprehensively analyzed using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), mechanical (tensile) testing, and Water Vapor Permeability (WVP). The morphological aspects of bionanocomposites and the dispersion of nanoparticles within the matrix were studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). The structural changes in the films were probed using Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) techniques. Results indicated that the addition of 1% and 3% of HANPs exhibited a higher glass transition temperature and improved thermal stability in bionanocomposites. Films with 3% HANPs content exhibited a notable increase in tensile strength, showing a 61.54% increase, while films with 1% HANPs content displayed a 52% reduction in WVP compared to pristine chitosan films. These findings underscore the significant potential of chitosan-hydroxyapatite bionanocomposite films for applications in food packaging applications.
Collapse
Affiliation(s)
- Punita Upadhyay
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| | - Aman Ullah
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| |
Collapse
|
26
|
Gumus T, Kaynarca GB, Kamer DDA. Optimization of an edible film formulation by incorporating carrageenan and red wine lees into fish gelatin film matrix. Int J Biol Macromol 2024; 258:128854. [PMID: 38123042 DOI: 10.1016/j.ijbiomac.2023.128854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.
Collapse
Affiliation(s)
- Tuncay Gumus
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | | |
Collapse
|
27
|
Günter EA, Melekhin AK, Belozerov VS, Martinson EA, Litvinets SG. Preparation, physicochemical characterization and swelling properties of composite hydrogel microparticles based on gelatin and pectins with different structure. Int J Biol Macromol 2024; 258:128935. [PMID: 38143057 DOI: 10.1016/j.ijbiomac.2023.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Composite hydrogel microparticles based on pectins with different structures (callus culture pectin (SVC) and apple pectin (AU)) and gelatin were developed. Hydrogel microparticles were formed by the ionotropic gelation and electrostatic interaction of COO- groups of pectin and NH3+ groups of gelatin, which was confirmed by FTIR spectroscopy. The addition of gelatin to pectin-based gel formulations resulted in a decrease in gel strength, whereas increasing gelatin concentration enhanced this effect. The microparticle gel strength increased in proportion to the increase in the pectin concentration. The DSC and TGA analyzes showed that pectin-gelatin gels had the higher thermal stability than individual pectins. The gel strength, Ca2+ content and thermal stability of the microparticles based on gelatin and SVC pectin with a lower degree of methylesterification (DM) (14.8 %) were higher compared to that of microparticles based on gelatin and AU pectin with a higher DM (40 %). An increase in the SVC concentration, Ca2+ content and gel strength of SVC-gelatin microparticles led to a decrease in the swelling degree in simulated gastrointestinal fluids. The addition of 0.5 % gelatin to gels based on AU pectin resulted in increased stability of the microparticles in gastrointestinal fluids, while the microparticles from AU without gelatin were destroyed.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Anatoliy K Melekhin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| | - Vladislav S Belozerov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia; Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | | | | |
Collapse
|
28
|
Yang Q, Zheng F, Chai Q, Li Z, Zhao H, Zhang J, Nishinari K, Zhao M, Cui B. Effect of emulsifiers on the properties of corn starch films incorporated with Zanthoxylum bungeanum essential oil. Int J Biol Macromol 2024; 256:128382. [PMID: 38000598 DOI: 10.1016/j.ijbiomac.2023.128382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The use of natural and safe ingredients in green food packaging material is a hot research topic. This study investigated the effect of different emulsifiers on starch film properties. Three types of emulsifiers, including Tween 80 as a small-molecule surfactant, sodium caseinate (CAS), whey protein isolate (WPI), and gelatin (GE) as macromolecule emulsifiers, whey protein isolate fibril (WPIF) as a particle emulsifier, were utilized to prepare Zanthoxylum bungeanum essential oil (ZBO) emulsions. The mechanical, physical, thermal, antibacterial properties, microstructure and essential oil release of starch films were investigated. CAS-ZBO nanoemulsion exhibited the smallest particle size of 198.6 ± 2.2 nm. The film properties changed with different emulsifiers. CAS-ZBO film showed the highest tensile strength value. CAS-ZBO and WPIF-ZBO films exhibited lower water vapor permeability than Tween-ZBO. CAS-ZBO film showed good dispersion of essential oil, the slowest release rate of essential oils in all food simulants, and the best antibacterial effect against Staphylococcus aureus and Listeria monocytogenes. The films composed of CAS-ZBO nanoemulsion, corn starch, and glycerol are considered more suitable for food packaging. This work indicated that natural macromolecule emulsifiers of CAS and WPIF are expected to be used in green food packaging material to offer better film properties.
Collapse
Affiliation(s)
- Qianwen Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Furun Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiantao Zhang
- Jinan Quankang Biotechnology Co., Ltd, Jinan 250000, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
29
|
Demircan B, Velioglu YS. Revolutionizing single-use food packaging: a comprehensive review of heat-sealable, water-soluble, and edible pouches, sachets, bags, or packets. Crit Rev Food Sci Nutr 2023; 65:1497-1517. [PMID: 38117069 DOI: 10.1080/10408398.2023.2295433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Edible food packaging has emerged as a critical focal point in the discourse on sustainability, prompting the development of innovative solutions, notably in the realm of edible pouches. Often denoted as sachets, bags, or packets, these distinct designs have garnered attention owing to their water-soluble and heat-sealable attributes, tailored explicitly for single-use applications encompassing oils, instant or dry foods, and analogous products. While extant literature extensively addresses diverse facets of edible films, this review addresses a conspicuous void by presenting a consolidated and specialized overview dedicated to the intricate domain of edible pouches. Through a meticulous synthesis of current research, we aim to illuminate the trajectory of advancements made thus far, delving into critical aspects, including materials, production techniques, functional attributes, consumer perceptions, and regulatory considerations. By furnishing a comprehensive perspective on the potential, challenges, and opportunities inherent in edible pouches, our overarching aim is to stimulate collaborative endeavors in research, innovation, and exploration. In doing so, we aspire to catalyze the broader adoption of sustainable packaging solutions tailored to the exigencies of single-use applications.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Ankara University, Ankara, Turkey
| | | |
Collapse
|
30
|
Dong J, Wang S, Li M, Liu J, Sun Z, Mandlaa, Chen Z. Application of a Chitosan-based Active Packaging Film Prepared with Cell-free Supernatant of Lacticaseibacillus paracasei ALAC-4 in Mongolian Cheese Preservation. J Food Prot 2023; 86:100158. [PMID: 37699510 DOI: 10.1016/j.jfp.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Fungal spoilage of food is a worldwide concern prompting the development of many antimicrobial agents and applications. In this study, the cell-free supernatant (CFS) of Lacticaseibacillus paracasei ALAC-4 had a significant inhibition effect on fungi. The CFS with antifungal activities were combined with chitosan (CS) matrix to prepare an active packaging CS-CFS films by using a solvent casting method and used for the packaging of Mongolian cheese for 15 days during storage at 4 ± 1℃. The optimized formulation of the film were 1.25% (w/v) chitosan, 1.75% (w/v) gelatin, 0.3% (v/v) glycerol, and 9.6% (w/v) CFS. It was found that CS-CFS films exhibited strong antifungal activities against molds and yeasts, especially Candida albicans, and also had excellent mechanical properties. Additionally, FTIR spectroscopy indicated that hydrogen bonds between the CFS and CS formed, and there was a smooth surface, compact cross-section observed in SEM morphologies of CS-CFS films. Furthermore, CS-CFS film also displayed a strong antifungal effect against molds and yeasts on cheese surface. These results suggest that the chitosan-based CS-CFS film has a promising application for Mongolian cheese and food preservation.
Collapse
Affiliation(s)
- Jing Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Minyu Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziyu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mandlaa
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhongjun Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
31
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
32
|
Li J, Zhao S, Zhu Q, Zhang H. Characterization of chitosan-gelatin cryogel templates developed by chemical crosslinking and oxidation resistance of camellia oil cryogel-templated oleogels. Carbohydr Polym 2023; 315:120971. [PMID: 37230613 DOI: 10.1016/j.carbpol.2023.120971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
In this study, chitosan-gelatin conjugates were prepared by chemical crosslinking of tannic acid. The cryogel templates were developed through freeze-drying and immersed in camellia oil to construct cryogel-templated oleogels. Chemical crosslinking resulted in apparent colour changes and improved emulsion-related/rheological properties on conjugates. The cryogel templates with different formulas exhibited different microstructures with high porosities (over 96 %), and crosslinked samples might have higher hydrogen bonding strength. Tannic acid crosslinking also led to enhanced thermal stabilities and mechanical properties. Cryogel templates could reach a considerable oil absorption capacity of up to 29.26 g/g and prevent oil from leaking effectively. The obtained oleogels with high tannic acid content possessed outstanding antioxidant abilities. After 8 days of rapid oxidation at 40 °C, Oleogels with a high degree of crosslinking owned the lowest POV and TBARS values (39.74 nmol/kg, and 24.40 μg/g, respectively). This study indicates that the involvement of chemical crosslinking would favor the preparation and the application potential of cryogel-templated oleogels, and the tannic acid in the composite biopolymer systems could act as both the crosslinking agent and the antioxidant.
Collapse
Affiliation(s)
- Jiawen Li
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shunan Zhao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinyi Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
33
|
Cui H, Cheng Q, Li C, Khin MN, Lin L. Schiff base cross-linked dialdehyde β-cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on ready-to-eat foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
34
|
Pouralkhas M, Kordjazi M, Ojagh SM, Farsani OA. Physicochemical and functional characterization of gelatin edible film incorporated with fucoidan isolated from Sargassum tenerrimum. Food Sci Nutr 2023; 11:4124-4135. [PMID: 37457150 PMCID: PMC10345729 DOI: 10.1002/fsn3.3402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 07/18/2023] Open
Abstract
Biodegradable films were created with fish gelatin and fucoidan extracted from Sargassum tenerrimum using 30% glycerol as a plasticizer. The gelatin films were incorporated with fucoidan (2.5%, 5%, 7.5%, and 10%), respectively. Results presented that the average thickness of films ranged from 0.12 to 0.147 mm. Tensile strength (TS) was decreased from 29.27 to 3.46 MPa by adding the fucoidan except for the gelatin/fucoidan 10% (5.35 MPa) sample. The results showed that the physical characteristics (the contact angle (Ɵ), water solubility, opacity, and moisture content) of the films significantly changed depending on different fucoidan concentrations. FTIR and SEM analysis confirmed the interaction of fucoidan with gelatin in the composite film. Furthermore, adding 10% fucoidan showed high DPPH radical scavenging activity (65%) than other treatments. Therefore, incorporation of fucoidan extracted from brown algae (Sargassum tenerrimum) with fish gelatin films improved thermal stability, anti-oxidative, and antibacterial characteristics in addition to enhanced mechanical and protective properties, to be used as a bioactive edible film in the food packaging industry.
Collapse
Affiliation(s)
- Mohsen Pouralkhas
- Department of Fisheries, Faculty of Fisheries and the EnvironmentGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Moazemeh Kordjazi
- Department of Fisheries, Faculty of Fisheries and the EnvironmentGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Seyed Mahdi Ojagh
- Department of Fisheries, Faculty of Fisheries and the EnvironmentGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Omid Asadi Farsani
- Department of Fisheries, Faculty of Fisheries and the EnvironmentGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| |
Collapse
|
35
|
Ma Y, Chen S, Liu P, He Y, Chen F, Cai Y, Yang X. Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films-Application to the Preservation of Mullet. Foods 2023; 12:2542. [PMID: 37444279 DOI: 10.3390/foods12132542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the addition of oregano oil chitosan nanoparticles (OEO-CSNPs) was conducted to enhance the comprehensive properties of gelatin films (GA), and the optimal addition ratio of nanoparticles was determined for its application in the preservation of mullet. Oregano oil chitosan nanoparticles were organically combined with gelatin at different concentrations (0%, 2%, 4%, 6% and 8%) to obtain oregano oil-chitosan nanoparticle-GA-based composite films (G/OEO-CSNPs), and thereafter G/OEO-CSNPs were characterized and investigated for their preservative effects on mullet. Subsequent analysis revealed that OEO-CSNPs were uniformly dispersed in the GA matrix, and that G/OEO-CSNPs had significantly improved mechanical ability, UV-visible light blocking performance and thermal stability. Furthermore, the nanoparticles exhibited excellent antioxidant and antibacterial properties, and they improved the films' suitability as edible packaging. The attributes of the G/OEO-CSNPs were optimized, the films had the strongest radical scavenging and lowest water solubility, and electron microscopy also showed nanoparticle penetration into the polymer when the concentration of OEO-CSNPs was 6% (thickness = 0.092 ± 0.001, TS = 47.62 ± 0.37, E = 4.06 ± 0.17, water solubility = 48.00 ± 1.11). Furthermore, the GA-based composite film containing 6% OEO-CSNPs was able to inhibit microbial growth, slow fat decomposition and protein oxidation, reduce endogenous enzyme activity, and delay the spoilage of mullet during the refrigeration process, all of which indicate its excellent potential for meat preservation application.
Collapse
Affiliation(s)
- Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Siqi Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yezheng He
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifan Cai
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xianqin Yang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
36
|
Jiang A, Patel R, Padhan B, Palimkar S, Galgali P, Adhikari A, Varga I, Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel) 2023; 15:polym15102235. [PMID: 37242810 DOI: 10.3390/polym15102235] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials.
Collapse
Affiliation(s)
- Andre Jiang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | | | - Padmaja Galgali
- Aadarsh Innovations, Balewadi, Pune 411045, Maharashtra, India
| | | | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
37
|
Azizah F, Nursakti H, Ningrum A. Development of Edible Composite Film from Fish Gelatin-Pectin Incorporated with Lemongrass Essential Oil and Its Application in Chicken Meat. Polymers (Basel) 2023; 15:polym15092075. [PMID: 37177220 PMCID: PMC10180965 DOI: 10.3390/polym15092075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 02/11/2023] [Indexed: 05/15/2023] Open
Abstract
One of the greatest challenges encountered by the food industry is the loss of quality of food products during storage, especially perishable foods such as chicken breast, which eventually adds to the waste. Edible films are known as a potential alternative to maintain food quality and also improve shelf life by delaying the microbial spoilage and providing moisture and gas barrier properties. Developments in edible films from biopolymer composites such as fish gelatin, pectin and essential oils have great potential and promising results in enhancing the shelf life of food products. This study was conducted to determine the effect of adding pectin and lemongrass essential oil on the properties of gelatin film and its application to preserve the quality of chicken breast. In this study, the fish skin gelatin and pectin were used with various compositions (100:0; 75:25; 50:50%), with and without the addition of lemongrass essential oil to develop edible films by a casting method. The results showed that the fish gelatin-pectin with the addition of essential oils caused a significant influence on several physicochemical properties such as the thickness, transmittance, transparency, water content, tensile strength, elongation at break and also antioxidant activity (p < 0.05). The antibacterial activity evaluation showed that edible film from a biocomposite of gelatin-pectin (75:25 and 50:50) with the addition of essential oil had an inhibitory effect on Salmonella. The biocomposite of the edible film made from gelatin-pectin and the addition of lemongrass essential oil have the potential to be developed as a food packaging material, especially for perishable food. Based on the result of the application of edible film to chicken breast, it also could maintain the quality of chicken breast during storage.
Collapse
Affiliation(s)
- Farrah Azizah
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street no. 1, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Herwinda Nursakti
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street no. 1, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Andriati Ningrum
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street no. 1, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
38
|
Shah YA, Bhatia S, Al-Harrasi A, Afzaal M, Saeed F, Anwer MK, Khan MR, Jawad M, Akram N, Faisal Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers (Basel) 2023; 15:polym15071724. [PMID: 37050337 PMCID: PMC10097132 DOI: 10.3390/polym15071724] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The quality and safety of food products greatly depend on the physiochemical properties of the food packaging material. There is an increasing trend in the utilization of protein-based biopolymers for the preparation of edible films and coating due to their film-forming properties. Various studies have reported the preparation of protein-based edible films with desirable mechanical and barrier properties. The mechanical attributes of the protein-based food packaging materials can be enhanced by incorporating various components in the film composition such as plasticizers, surfactants, crosslinkers, and various bioactive compounds, including antimicrobial and antioxidant compounds. This review article summarizes the recent updates and perspective on the mechanical attributes such as Tensile Strength (TS), Elongation at Break (EAB), and Young’s Modulus (YM) of edible films based on different proteins from plants and animal sources. Moreover, the effects of composite materials such as other biopolymers, bioactive compounds, essential oils, and plasticizers on the mechanical properties of protein-based edible films are also discussed.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (Y.A.S.); (M.J.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (Y.A.S.); (M.J.)
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
- Correspondence: (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (Y.A.S.); (M.J.)
- Correspondence: (S.B.); (A.A.-H.)
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad 38000, Pakistan; (M.A.); (F.S.); (N.A.)
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad 38000, Pakistan; (M.A.); (F.S.); (N.A.)
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh;
| | - Muhammad Jawad
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (Y.A.S.); (M.J.)
| | - Noor Akram
- Department of Food Science, Government College University, Faisalabad 38000, Pakistan; (M.A.); (F.S.); (N.A.)
| | - Zargham Faisal
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan;
| |
Collapse
|
39
|
Tran TTV, Nguyen NN, Nguyen QD, Nguyen TP, Lien TN. Gelatin/carboxymethyl cellulose edible films: modification of physical properties by different hydrocolloids and application in beef preservation in combination with shallot waste powder. RSC Adv 2023; 13:10005-10014. [PMID: 37006365 PMCID: PMC10052562 DOI: 10.1039/d3ra00430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, a gelatin/carboxymethyl cellulose (CMC) base formulation was first modified by using different hydrocolloids like oxidized starch (1404), hydroxypropyl starch (1440), locust bean gum, xanthan gum, and guar gum. The properties of modified films were characterized using SEM, FT-IR, XRD and TGA-DSC before selecting of best-modified film for further development with shallot waste powder. SEM images showed that the rough or heterogeneous surface of the base was changed to more even and smooth depending on the hydrocolloids used while FTIR results demonstrated that a new NCO functional group non-existent in the base formulation was found for most of the modified films, implying that the modification led to the formation of this functional group. Compared to other hydrocolloids, the addition of guar gum into the gelatin/CMC base has improved its properties such as better color appearance, higher stability, and less weight loss during thermal degradation, and had minimal effect on the structure of resulting films. Subsequently, the incorporation of spray-dried shallot peel powder into gelatin/CMC/guar gum was conducted to investigate the applicability of edible films in the preservation of raw beef. Antibacterial activity assays revealed that the films can inhibit and kill both Gram-positive and Gram-negative bacteria as well as fungi. It is noteworthy that the addition of 0.5% shallot powder not only effectively decelerated the microbial growth but also destroyed E. coli during 11 days of storage (2.8 log CFU g-1) and the bacterial count was even lower than that of uncoated raw beef on day 0 (3.3 log CFU g-1).
Collapse
Affiliation(s)
- Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
40
|
Bamian M, Pajohi-Alamoti M, Azizian S, Nourian A, Tahzibi H. An electrospun polylactic acid film containing silver nanoparticles and encapsulated Thymus daenensis essential oil: release behavior, physico-mechanical and antibacterial studies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
41
|
Wen H, Tang D, Lin Y, Zou J, Liu Z, Zhou P, Wang X. Enhancement of water barrier and antimicrobial properties of chitosan/gelatin films by hydrophobic deep eutectic solvent. Carbohydr Polym 2023; 303:120435. [PMID: 36657831 DOI: 10.1016/j.carbpol.2022.120435] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biodegradable chitosan/gelatin (CS/GEL) films have attracted attention as food packaging, but the poor water sensitivity and functional limitations of these films should be addressed. In this study, the hydrophobic deep eutectic solvent (DES, 0-15 %) consisting of thymol and octanoic acid was used to improve the water resistance and antibacterial performance of the CS/GEL composite films. FTIR and SEM analyses revealed a strong interaction between the CS/GEL matrix and DES. The films blended with DES showed increased water contact angle values and thermal stability. Furthermore, the addition of DES resulted in a significant increase in the elasticity and decrease water vapor transmission rate (WVTR). The CS/GEL films blended with 9% DES showed a 38.5% decrease in WVTR compared to those without DES. Additionally, the DES-containing film displayed good antibacterial activity against Staphylococcus aureus and Escherichia coli. Overall, the CS/GEL-DES composite films are expected to contribute an improvement to food packaging.
Collapse
Affiliation(s)
- Haitao Wen
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Jinhao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Zhongyi Liu
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China.
| |
Collapse
|
42
|
Erceg T, Šovljanski O, Stupar A, Ugarković J, Aćimović M, Pezo L, Tomić A, Todosijević M. A comprehensive approach to chitosan-gelatine edible coating with β-cyclodextrin/lemongrass essential oil inclusion complex - Characterization and food application. Int J Biol Macromol 2023; 228:400-410. [PMID: 36572079 DOI: 10.1016/j.ijbiomac.2022.12.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Biopolymer-based films present an ideal matrix for the incorporation of active substances such as antimicrobial agents, giving active packaging a framework of green chemistry and a step forward in food packaging technology. The chitosan-gelatine active coating has been prepared using lemongrass oil as an antimicrobial compound applying a different approach. Instead of surfactants, to achieve compatibilization of compounds, β-cyclodextrin was used to encapsulate lemongrass oil. The antimicrobial effect was assessed using the dip-coating method on freshly harvested cherry tomatoes artificially contaminated by Penicillium aurantiogriseum during 20 days of cold storage. According to the evaluation of the antimicrobial effect of coating formulation on cherry tomato samples, which was mathematically assessed by predictive kinetic models and digital imaging, the applied coating formulation was found to be very effective since the development of fungal contamination for active-coated samples was observed for 20 days.
Collapse
Affiliation(s)
- Tamara Erceg
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia.
| | - Olja Šovljanski
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Jovana Ugarković
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ana Tomić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Marina Todosijević
- University of Belgrade, Faculty of Chemistry, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
43
|
Chang L, Li Y, Bai X, Xia X, Xu W. Inhibition of Chitosan Ice Coating on the Quality Deterioration of Quick-Frozen Fish Balls during Repeated Freeze-Thaw Cycles. Foods 2023; 12:foods12040717. [PMID: 36832791 PMCID: PMC9955944 DOI: 10.3390/foods12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Chitosan ice coating's properties and its inhibitory effect on the quality deterioration of quick-frozen fish balls during repeated freeze-thaw cycles were investigated. When the chitosan (CH) coating concentration increased, the viscosity and ice coating rate increased, while water vapor permeability (WVP), water solubility, and transmittance decreased, and 1.5% CH was regarded as the excellent coating to apply to freeze-thaw quick-frozen fish balls. As the freeze-thaw cycles increased, the frost production, total volatile base nitrogen (TVB-N) values, and free water content of all of the samples increased significantly (p < 0.05), and the whiteness values, textural properties, and water-holding capacity (WHC) decreased. Freeze-thaw cycles expanded the aperture between the muscle fibers and the occurrence of crystallization and recrystallization between cells increased, damaging the original intact tissue structure, which were confirmed by SEM and optical microscopy. Compared with the untreated ones, the frost production, free water, and TVB-N of the samples with 1.5% CH decreased during 1, 3, 5, and 7 cycles, and were reduced by 23.80%, 32.21%, 30.33%, and 52.10% by the 7th cycle. The WHC and texture properties showed an increasing trend during the freeze-thaw cycles. Therefore, the chitosan ice coating effectively inhibited the quality deterioration by reducing water loss, the occurrence of ice crystallization and recrystallization, and the pores of the samples.
Collapse
Affiliation(s)
- Lixin Chang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| | - Weidong Xu
- Office of Student Work, Heilongjiang Agricultural Engineering Vocational College, Harbin 150088, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| |
Collapse
|
44
|
Jafari M, Afkhami R, Sedaghat N. Preparation and characterization of active Cirish fructans-fish gelatin film: Physicochemical, antioxidant, and antimicrobial properties. Food Sci Nutr 2023; 11:709-721. [PMID: 36789066 PMCID: PMC9922114 DOI: 10.1002/fsn3.3106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
This study was aimed to evaluate the film-forming ability and characterization of ultrasonically extracted Cirish fructans (CF) and CF-cold-water fish gelatin (G) composite films. The film-forming solutions were prepared at different levels (CF100-0G, CF75-G25, CF50-G50, CF25-G75, and CF0-G100) and the corresponding data were analyzed based on one-way analysis of variance. The results indicated that CF addition led to an impressive increase in composite films thickness (69.38-86.45 μm), moisture content (16.05%-27.8%), surface hydrophobicity, tensile strength (5.73-17.89 MPa), elongation at break (0.83%-1.66%), Young's modulus (77.12-88.15 MPa), and Tg (38.83-47.4°C) which CF75-G25 had the highest values. Meanwhile, the solubility (77.12%-88.15%), WVP (1.89-2.86 × 10-10gm-1 s-1 Pa-1), and oxygen permeability (1.53-3.26 × 1014 cm3 m-1 s-1 Pa-1) of the composite films decreased. The FTIR spectra indicated the protein-polysaccharide interactions and revealed that the secondary structure of gelatin was shifted from triple-helix structure (1661 cm-1) toward α-helix structure (1650-1657 cm-1) when CF was incorporated. The microstructure observations indicated that unlike gelatin film, CF film exhibited the smooth and uniform surface without cracks and phase separation. It was found that CF films had high total phenolic content (6.73 mg GEA g-1) and showed DPPH radical scavenging activity (67.86%). On the other hand, it showed inherent antimicrobial activity against both gram-positive and gram-negative bacteria. The results indicated that CF and CF-cold fish gelatin have great potential as active films with improved physical, mechanical, and barrier properties.
Collapse
Affiliation(s)
- Morteza Jafari
- Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
| | - Rana Afkhami
- Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
| | - Nasser Sedaghat
- Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
| |
Collapse
|
45
|
Zhang A, Han Y, Zhou Z. Characterization of citric acid crosslinked chitosan/gelatin composite film with enterocin CHQS and red cabbage pigment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Parlak ME, Uzuner K, Kirac FT, Ozdemir S, Dundar AN, Sahin OI, Dagdelen AF, Saricaoglu FT. Production and characterization of biodegradable bi-layer films from poly(lactic) acid and zein. Int J Biol Macromol 2023; 227:1027-1037. [PMID: 36462592 DOI: 10.1016/j.ijbiomac.2022.11.278] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Kubra Uzuner
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Fatma Tuba Kirac
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Sebahat Ozdemir
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 77200 Yalova, Turkey
| | - Adnan Fatih Dagdelen
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| |
Collapse
|
47
|
Zhao K, Tian X, Zhang K, Huang N, Wang Y, Zhang Y, Wang W. Using celluloses in different geometries to reinforce collagen-based composites: Effect of cellulose concentration. Int J Biol Macromol 2023; 226:202-210. [PMID: 36502942 DOI: 10.1016/j.ijbiomac.2022.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Cellulose is frequently used to strengthen biocomposite films, but few literature systematically deliberates the effects of concentration of celluloses in different geometries on the reinforcement of these composites. Here we prepared three types of celluloses, including rod-like cellulose nanocrystalline (CNC), long-chain cellulose nanofiber (CNF) and microscopic cellulosic fines (CF). The effect of concentration of the three celluloses was examined on the barrier properties to water and light, thermostability, microstructure, and mechanical properties of collagen (COL) films. The addition of celluloses increased the watertightness and thermostability of composite films. Besides, FTIR showed a increased hydrogen bonding for COL/CNF and COL/CNC composite films, but decrease for COL/CF composites. As the concentration of CF and CNF increased, the strength of composites improved. The TS for COL/CNF (124 MPa) and COL/CF composites (113 MPa) were largely increased, compared with that of collagen ones (90 MPa). Considering the factors of crystallinity, hydrogen bonding, and interfacial tortuosity, COL/CNF composites possessed better mechanical behaviors than that of COL/CF and COL/CNC composites. Furthermore, Halpin-Kardos and Ouali models well predicted the modulus of COL/CNF composites when CNF was below and above percolation threshold (2.7 wt%), respectively.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
48
|
Aleksanyan KV. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers (Basel) 2023; 15:451. [PMID: 36679331 PMCID: PMC9865279 DOI: 10.3390/polym15020451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The ecological problems emerging due to accumulation of non-biodegradable plastics are becoming more and more urgent. This problem can be solved by the development of biodegradable materials which will replace the non-biodegradable ones. Among numerous approaches in this field, there is one proposing the use of polysaccharide-based materials. These polymers are biodegradable, non-toxic, and obtained from renewable resources. This review opens discussion about the application of polysaccharides for the creation of biodegradable packaging materials. There are numerous investigations developing new formulations using cross-linking of polymers, mixing with inorganic (metals, metal oxides, clays) and organic (dyes, essential oils, extracts) compounds. The main emphasis in the present work is made on development of the polymer blends consisting of cellulose, starch, chitin, chitosan, pectin, alginate, carrageenan with some synthetic polymers, polymers of natural origin, and essential oils.
Collapse
Affiliation(s)
- Kristine V. Aleksanyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991, Russia; or
- Engineering Center, Plekhanov Russian University of Economics, Stremyannyi per. 36, Moscow 117997, Russia
| |
Collapse
|
49
|
Jakubowska E, Gierszewska M, Szydłowska-Czerniak A, Nowaczyk J, Olewnik-Kruszkowska E. Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chem 2023; 399:133934. [PMID: 35998489 DOI: 10.1016/j.foodchem.2022.133934] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Novel chitosan (Ch) films containing choline chloride and citric acid mixture as plasticizer (deep eutectic solvent, DES) and different amounts of quercetin (QUE) as antioxidant additive were prepared. Physicochemical and mechanical characteristics of the developed Ch/DES/QUE films were studied using FTIR, SEM, and AFM techniques. FTIR spectra revealed the possible interactions between all the components. The surface of the films was dense and rough. The addition of quercetin caused an increase in the tensile strength (TS) and Young's modulus, but significantly decreased the elongation at break. The films containing quercetin showed improved antioxidant activity in relation to Ch/DES film. Finally, the oxidation phenomena of rapeseed oils with and without chitosan films were evaluated as amounts of primary and secondary oxidation products and total oxidation index. The addition of Ch/DES films with quercetin to oil samples successfully retarded secondary lipid oxidation processes and improved its antioxidant activity under the accelerated storage condition.
Collapse
Affiliation(s)
- Ewelina Jakubowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland; Łukasiewicz Research Network - Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland.
| | - Magdalena Gierszewska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Aleksandra Szydłowska-Czerniak
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Analytical Chemistry and Applied Spectroscopy, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Jacek Nowaczyk
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Ewa Olewnik-Kruszkowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
50
|
Shan P, Wang K, Yu F, Yi L, Sun L, Li H. Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|