1
|
Wei L, Hu Q, He L, Li G, Zhang J, Chen Y. Diversity in storage age enables discrepancy in quality attributes and metabolic profile of Citrus grandis "Tomentosa" in China. J Food Sci 2024; 89:1454-1472. [PMID: 38258880 DOI: 10.1111/1750-3841.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The folk proverb "the older, the better" is usually used to describe the quality of Citrus grandis "Tomentosa" (CGT) in China. In this study, CGT aged for 6-, 12-, 16-, and 19-years were collected for the investigation of infusion color, main bioactive components, antioxidant activity, metabolic composition, and pathway. The results found that infusion color, the total phenolic and flavonoid, and antioxidant activity of CGT were obviously changed by aging process. Through untargeted metabolomics, 55 critical metabolites were identified to in discrimination of CGT with different storage ages, mainly including phenylpropanoids, lipids, and organic oxygen compounds. Twenty compounds that showed good linear relationships with storage ages could be used for year prediction of CGT. Kyoto encyclopedia of genes and genomes enrichment pathway analysis uncovered important metabolic pathways related to the accumulation of naringin, kaempferol, and choline as well as the degradation of benzenoids, thus supporting that aged CGT might be more beneficial to health. Correlation analysis provided that some key metabolites with bitter taste and biological activity were involved in the darkening and reddening of CGT infusion during aging, and total phenolic and flavonoid were more strongly associated with the antioxidant activity of CGT. This study systematically revealed the quality changes and key metabolic pathways during CGT aging at first time. PRACTICAL APPLICATION: This study reveals the differences in quality attributes and metabolic profile between CGT with different storage ages, providing guidance for consumers' consumption, and also providing more scientific basis for the quality evaluation and improvement of CGT.
Collapse
Affiliation(s)
- Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- School of Biotechnology and Food Engineering, Anhui Polytechnic University, Wuhu, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
2
|
Guan L, Guo L, Zhang H, Liu H, Zhou W, Zhai Y, Yan X, Men X, Peng L. Naringin Protects against Non-Alcoholic Fatty Liver Disease by Promoting Autophagic Flux and Lipophagy. Mol Nutr Food Res 2024; 68:e2200812. [PMID: 38054638 DOI: 10.1002/mnfr.202200812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/07/2023] [Indexed: 12/07/2023]
Abstract
The autophagic degradation of lipid droplets, termed lipophagy, is the main mechanism contributing to lipid consumption in hepatocytes. Identifying effective and safe natural compounds that target lipophagy to eliminate excess lipids may be a potential therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Here the effects of naringin on NAFLD and the underlying mechanisms involved are investigated. Naringin treatment effectively relieves HFD-induced hepatic steatosis in mice and inhibits PA-induced lipid accumulation in hepatocytes. Increased p62 and LC3-II levels are observed with excess lipid support autophagosome accumulation and impaired autophagic flux. Treatment with naringin restores TFEB-mediated lysosomal biogenesis, thereby promoting the fusion of autophagosomes and lysosomes, restoring impaired autophagic flux and further inducing lipophagy. However, the knockdown of TFEB in hepatocytes or the hepatocyte-specific knockout of TFEB in mice abrogates naringin-induced lipophagy, eliminating its therapeutic effect on hepatic steatosis. These results demonstrate that TFEB-mediated lysosomal biogenesis and subsequent lipophagy play essential roles in the ability of naringin to mitigate hepatic steatosis and suggest that naringin is a promising drug for treating NAFLD.
Collapse
Affiliation(s)
- Lingling Guan
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
- The fifth affiliated hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Lan Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
| | - Heng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Wenling Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Yuanyuan Zhai
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Xu Yan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| |
Collapse
|
3
|
Carvalho BMR, Nascimento LC, Nascimento JC, Gonçalves VSDS, Ziegelmann PK, Tavares DS, Guimarães AG. Citrus Extract as a Perspective for the Control of Dyslipidemia: A Systematic Review With Meta-Analysis From Animal Models to Human Studies. Front Pharmacol 2022; 13:822678. [PMID: 35237168 PMCID: PMC8884359 DOI: 10.3389/fphar.2022.822678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022] Open
Abstract
This study aims to obtain scientific evidence on the use of Citrus to control dyslipidemia. The surveys were carried out in 2020 and updated in March 2021, in the PubMed, Scopus, LILACS, and SciELO databases, using the following descriptors: Citrus, dyslipidemias, hypercholesterolemia, hyperlipidemias, lipoproteins, and cholesterol. The risk of bias was assessed according to the Cochrane methodology for clinical trials and ARRIVE for preclinical trials. A meta-analysis was performed using the application of R software. A total of 958 articles were identified and 26 studies demonstrating the effectiveness of the Citrus genus in controlling dyslipidemia were selected, of which 25 were included in the meta-analysis. The effects of Citrus products on dyslipidemia appear consistently robust, acting to reduce total cholesterol, LDL, and triglycerides, in addition to increasing HDL. These effects are associated with the composition of the extracts, extremely rich in antioxidant, as flavonoids, and that act on biochemical targets involved in lipogenesis and beta-oxidation. The risk of bias over all of the included studies was considered critically low to moderate. The meta-analysis demonstrated results favorable to control dyslipidemia by Citrus products. On the other hand, high heterogeneity values were identified, weakening the evidence presented. From this study, one can suggest that Citrus species extracts are potential candidates for dyslipidemia control, but more studies are needed to increase the strength of this occurrence.
Collapse
Affiliation(s)
- Betina M R Carvalho
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Laranda C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Jessica C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | | | - Patricia K Ziegelmann
- Departamento de Estatística, Programa de Pós-graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora S Tavares
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Adriana G Guimarães
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Brazil
| |
Collapse
|
4
|
Anmol RJ, Marium S, Hiew FT, Han WC, Kwan LK, Wong AKY, Khan F, Sarker MMR, Chan SY, Kifli N, Ming LC. Phytochemical and Therapeutic Potential of Citrus grandis (L.) Osbeck: A Review. J Evid Based Integr Med 2021; 26:2515690X211043741. [PMID: 34657477 PMCID: PMC8527587 DOI: 10.1177/2515690x211043741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Citrus grandis or Citrus maxima, widely
recognized as Pomelo is widely cultivated in many countries because of their
large amounts of functional, nutraceutical and biological activities. In
traditional medicine, various parts of this plant including leaf, pulp and peel
are used for generations as they are scientifically proven to have therapeutic
potentials and safe for human use. The main objective of this study was to
review the different therapeutic applications of Citrus grandis
and the phytochemicals associated with its medicinal values. In this article
different pharmacological properties like antimicrobial, antitumor, antioxidant,
anti-inflammatory, anticancer, antiepileptic, stomach tonic, cardiac stimulant,
cytotoxic, hepatoprotective, nephroprotective, and anti-diabetic activities of
the plant are highlighted. The enrichment of the fruit with flavonoids,
polyphenols, coumarins, limonoids, acridone alkaloids, essential oils and
vitamins mainly helps in exhibiting the pharmacological activities within the
body. The vitamins enriched fruit is rich in nutritional value and also has
minerals like calcium, phosphorous, sodium and potassium, which helps in
maintaining the proper health and growth of the bones as well as the electrolyte
balance of the body. To conclude, various potential therapeutic effects of
Citrus grandis have been demonstrated in recent literature.
Further studies on various parts of fruit, including pulp, peel, leaf, seed and
it essential oil could unveil additional pharmacological activities which can be
beneficial to the mankind.
Collapse
Affiliation(s)
- Rusat Jahin Anmol
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Shabnam Marium
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Fei Tsong Hiew
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Wan Chien Han
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Lee Kuan Kwan
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Alicia Khai Yeen Wong
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Farzana Khan
- Health Med Science Research Limited, Dhaka, Bangladesh
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
5
|
Wang X, Li D, Liu F, Cui Y, Li X. Dietary citrus and/or its extracts intake contributed to weight control: Evidence from a systematic review and meta-analysis of 13 randomized clinical trials. Phytother Res 2020; 34:2006-2022. [PMID: 32182635 DOI: 10.1002/ptr.6673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
Abstract
Randomized controlled trials, being published in English and investigating the associations of at least 4 weeks intervention of citrus and/or its extracts on weight loss among adults, were searched from PubMed, Web of Science, Scopus, and Cochrane by June 2019 to conduct a meta-analysis. Thirteen articles, including 921 participants, were selected and evaluated by modified Jadad scale. Pooled results by the random-effects model showed that citrus and/or its extracts administration significantly reduced 1.280 kg body weight (95% CI: -1.818 to -0.741, p = 0.000, I2 = 81.4%), 0.322 kg/m2 BMI (95% CI: -0.599 to -0.046, p = 0.022, I2 = 87.0%), 2.185 cm WC (95% CI: -3.804 to -0.566, p = 0.008, I2 = 98.3%), and 2.137 cm HC (95% CI: -3.775 to -0.500, p = 0.011, I2 = 96.2%), respectively, but no significantly decreased effects on WHR and body fat were observed. Subgroup analysis deduced the different effects of study location, intervention duration on body weight associated indices. No publication bias was observed. Our meta-analysis supported the beneficial effects of citrus and/or its extracts supplement on body weight control, and future well-designed studies are required to firmly establish the clinical efficacy of citrus and/or its extracts intervention on body weight.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Fang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Fan R, Zhu C, Qiu D, Mao G, Zeng J. Activation of RAW264.7 macrophages by an acidic polysaccharide derived from Citrus grandis ‘Tomentosa’. Int J Biol Macromol 2020; 156:1323-1329. [DOI: 10.1016/j.ijbiomac.2019.11.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
|
7
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
8
|
Effect of Oak Flour on Glycemic Index and Satiety Index of White Bread. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.95552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Fan R, Xie Y, Zhu C, Qiu D, Zeng J, Liu Z. Structural elucidation of an acidic polysaccharide from Citrus grandis ‘Tomentosa’ and its anti-proliferative effects on LOVO and SW620 cells. Int J Biol Macromol 2019; 138:511-518. [DOI: 10.1016/j.ijbiomac.2019.07.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022]
|
10
|
Wang Y, Ji S, Zang W, Wang N, Cao J, Li X, Sun C. Identification of phenolic compounds from a unique citrus species, finger lime (Citrus australasica) and their inhibition of LPS-induced NO-releasing in BV-2 cell line. Food Chem Toxicol 2019; 129:54-63. [PMID: 30978372 DOI: 10.1016/j.fct.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
In this study, a unique citrus species (Citrus australasica) was selected, and its fruit characteristics, phenolic compounds and ability to inhibit inflammation were preliminarily studied. Finger lime fruits showed distinctive features in shape, size, weight, colour, total soluble solids, water-soluble pectin, sugar and acids contents. Combining UPLC-HRMS and UPLC-DAD analysis, 31 phenolics, 1 secoiridoid derivative and 1 neolignan glycoside were preliminarily identified and quantified. The phenolics composition of finger limes showed cultivar and tissue specificity. Antioxidant evaluation showed that extracts from finger lime cultivar of 'XiangBin' exhibited better antioxidant capacities than cultivar of 'LiSiKe', especially in peel. LPS-induced NO-releasing model was performed in the mouse microglia BV-2 cell line. Results illustrated that finger limes inhibited the NO-releasing and the inflammation-related cytokines including IL-1β, IL-6 and TNFα elevation. QRT-PCR revealed that finger lime extracts alleviated LPS-induced upregulation of iNOS, IL-6, JAK2, TNFα, TLR2, TLR4, IL-1β, NF-κB and LPS-induced downregulation of IκBα. This study may expand our knowledge on the physiochemical characteristics and bioactive properties of citrus fruits.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Wenjing Zang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Nianchen Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| |
Collapse
|
11
|
Beneficial effects of consumption of acerola, cashew or guava processing by-products on intestinal health and lipid metabolism in dyslipidaemic female Wistar rats. Br J Nutr 2018; 119:30-41. [DOI: 10.1017/s0007114517003282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis study assessed the effects of diet supplementation with industrial processing by-products of acerola (Malpighia emarginataD.C.), cashew (Anacardium occidentaleL.) and guava (Psidium guajavaL.) fruit on the intestinal health and lipid metabolism of female Wistar rats with diet-induced dyslipidaemia. Female rats were randomly divided into five groups: healthy control, dyslipidaemic control and dyslipidaemic experimental receiving acerola, cashew or guava processing by-products. Fruit processing by-products were administered (400 mg/kg body weight) via orogastric administration for 28 consecutive days. Acerola, cashew and guava by-products caused body weight reduction (3·42, 3·08 and 5·20 %, respectively) in dyslipidaemic female rats. Dyslipidaemic female rats receiving fruit by-products, especially from acerola, presented decreased faecal pH, visceral fat, liver fat and serum lipid levels, as well as increased faecal moisture, faecal fat excretion, faecalBifidobacteriumspp. andLactobacillusspp. counts and amounts of organic acids in faeces. Administration of the tested fruit processing by-products protected colon and liver from tissue damage (e.g. destruction of liver and colon cells and increased fat deposition in hepatocytes) induced by dyslipidaemic diet. Dietary fibres and phenolic compounds in tested fruit by-products may be associated with these positive effects. The industrial fruit processing by-products studied, mainly from acerola, exert functional properties that could enable their use to protect the harmful effects on intestinal health and lipid metabolism caused by dyslipidaemic diet.
Collapse
|
12
|
Rojas-Olivos A, Solano-Gómez R, Alexander-Aguilera A, Jiménez-Estrada M, Zilli-Hernández S, Lagunez-Rivera L. Effect of Prosthechea karwinskii (Orchidaceae) on obesity and dyslipidemia in Wistar rats. ALEXANDRIA JOURNAL OF MEDICINE 2017. [DOI: 10.1016/j.ajme.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Alejandra Rojas-Olivos
- Instituto Politécnico Nacional, CIIDIR Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, 71230, Mexico
| | - Rodolfo Solano-Gómez
- Instituto Politécnico Nacional, CIIDIR Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, 71230, Mexico
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán s/n , Col. Flores Magón, Veracruz, Veracruz, 91700, Mexico
- Escuela de Medicina, Universidad Cristóbal Colón, Carr. Veracruz-Medellin s/n , Col. Puente Moreno, Boca del Río, Veracruz, 94271, Mexico
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, 04510 México, D.F., Mexico
| | - Stefan Zilli-Hernández
- Escuela de Medicina, Universidad Cristóbal Colón, Carr. Veracruz-Medellin s/n , Col. Puente Moreno, Boca del Río, Veracruz, 94271, Mexico
| | - Luicita Lagunez-Rivera
- Instituto Politécnico Nacional, CIIDIR Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, 71230, Mexico
| |
Collapse
|
13
|
Serrano J, Casanova-Martí À, Blay MT, Terra X, Pinent M, Ardévol A. Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Merola N, Castillo J, Benavente-García O, Ros G, Nieto G. The Effect of Consumption of Citrus Fruit and Olive Leaf Extract on Lipid Metabolism. Nutrients 2017; 9:E1062. [PMID: 28954421 PMCID: PMC5691679 DOI: 10.3390/nu9101062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Citrus fruit and olive leaves are a source of bioactive compounds such as biophenols which have been shown to ameliorate obesity-related conditions through their anti-hyperlipidemic and anti-inflammatory effect, and by regulating lipoproteins and cholesterol body levels. Citrolive™ is a commercial extract which is obtained from the combination of both citrus fruit and olive leaf extracts; hence, it is hypothesised that Citrolive™ may moderate metabolic disorders that are related to obesity and their complications. Initially, an in vitro study of the inhibition of pancreatic lipase activity was made, however, no effect was found. Both preliminary and long-term evaluations of Citrolive™ on lipid metabolism were conducted in an animal model using Wistar rats. In the preliminary in vivo screening, Citrolive™ was tested on postprandial plasma triglyceride level after the administration of an oil emulsion, and a significant reduction in postprandial triacylglycerol (TAG) levels was observed. In the long-term study, Citrolive™ was administered for 60 days on Wistar rats that were fed a high-fat diet. During the study, several associated lipid metabolism indicators were analysed in blood and faeces. At the end of the experiment, the livers were removed and weighed for group comparison. Citrolive™ treatment significantly reduced the liver-to-body-weight ratio, as supported by reduced plasma transaminases compared with control, but insignificantly reduced plasma low density lipoprotein (LDL) and postprandial TAG plasma levels. In addition, faecal analysis showed that the treatment significantly increased total cholesterol excretion. On the other hand, no effect was found on faecal TAG and pancreatic lipase in vitro. In conclusion, treatment ameliorates liver inflammation symptoms that are worsened by the effects of high fat diet.
Collapse
Affiliation(s)
- Nicola Merola
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| | - Julián Castillo
- Research and Development Department of Nutrafur-Frutarom Group, Camino Viejo de Pliego s/n, 80320 Alcantarilla, Murcia, Spain.
| | - Obdulio Benavente-García
- Research and Development Department of Nutrafur-Frutarom Group, Camino Viejo de Pliego s/n, 80320 Alcantarilla, Murcia, Spain.
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
15
|
Jambocus NGS, Ismail A, Khatib A, Mahomoodally F, Saari N, Mumtaz MW, Hamid AA. Morinda citrifolia L. leaf extract prevent weight gain in Sprague-Dawley rats fed a high fat diet. Food Nutr Res 2017; 61:1338919. [PMID: 28814950 PMCID: PMC5553101 DOI: 10.1080/16546628.2017.1338919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
Background: Morinda citrifolia L. is widely used as a folk medicinal food plant to manage a panoply of diseases, though no concrete reports on its potential anti-obesity activity. This study aimed to evaluate the potential of M. citrifolia leaf extracts (MLE60) in the prevention of weight gain in vivo and establish its phytochemical profile. Design: Male Sprague-Dawley rats were divided into groups based on a normal diet (ND) or high fat diet (HFD), with or without MLE60 supplementation (150 and 350 mg/kg body weight) and assessed for any reduction in weight gain. Plasma leptin, insulin, adiponectin, and ghrelin of all groups were determined. 1H NMR and LCMS methods were employed for phytochemical profiling of MLE60. Results: The supplementation of MLE60 did not affect food intake indicating that appetite suppression might not be the main anti-obesity mechanism involved. In the treated groups, MLE60 prevented weight gain, most likely through an inhibition of pancreatic and lipoprotein activity with a positive influence on the lipid profiles and a reduction in LDL levels . MLE60 also attenuated visceral fat deposition in treated subjects with improvement in the plasma levels of obesity-linked factors . 1Spectral analysis showed the presence of several bioactive compounds with rutin being more predominant. Conclusion: MLE60 shows promise as an anti-obesity agents and warrants further research.
Collapse
Affiliation(s)
| | - Amin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Waseem Mumtaz
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Halal Product Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Nakajima VM, Moala T, Caria CREP, Moura CS, Amaya-Farfan J, Gambero A, Macedo GA, Macedo JA. Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Res Int 2017; 97:37-44. [PMID: 28578062 DOI: 10.1016/j.foodres.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
Chronic non-communicable diseases such as obesity are preceded by increased macrophage infiltration in adipose tissue and greater secretion of pro-inflammatory cytokines. We evaluated the anti-inflammatory potential of Biotransformed extract, and two control extracts: In Natura and Autoclaved. The assays were performed using a cellular model with RAW264.7, 3T3-L1 cells, and RAW264.7 and 3T3-L1 co-culture. The innovation of the study was the use of Biotransformed extract, a unique phenolic extract of a bioprocessed citrus residue. LPS stimulated RAW264.7 cells treated with the Biotransformed extract exhibited lower secretion of TNF-α and NO and lower protein expression of NFκB. In RAW264.7 and 3T3-L1 co-culture, treatment with 1.0mg/mL of the Biotransformed extract reduced secretion of TNF-α (30.7%) and IL-6 (43.4%). Still, the Biotransformed extract caused higher increase in adiponectin in relation to control extracts. When the co-culture received a LPS stimulus, the Autoclaved extract at 1.0mg/mL reduced IL-6 and TNF-α concentrations, and raised adiponectin. However, it was noteworthy that the Biotransformed extract was also able to significantly reduce IL-6 concentration while the Natural extract was not. The Biotransformed citrus extract evaluated in this study showed anti-inflammatory activity in macrophages and in co-culture, indicating that bioprocess of citrus residue can contribute to new product development with anti-inflammatory potential.
Collapse
Affiliation(s)
- Vânia Mayumi Nakajima
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil.
| | - Tais Moala
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Cintia Rabelo E Paiva Caria
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Carolina Soares Moura
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Jaime Amaya-Farfan
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Alessandra Gambero
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
17
|
de la Garza AL, Etxeberria U, Haslberger A, Aumueller E, Martínez JA, Milagro FI. Helichrysum and Grapefruit Extracts Boost Weight Loss in Overweight Rats Reducing Inflammation. J Med Food 2015; 18:890-8. [DOI: 10.1089/jmf.2014.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ana Laura de la Garza
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | - Usune Etxeberria
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | | | - Eva Aumueller
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
- Physiopathology of Obesity and Nutrition, CIBERobn, Carlos III Health Research Institute, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
- Physiopathology of Obesity and Nutrition, CIBERobn, Carlos III Health Research Institute, Madrid, Spain
| |
Collapse
|
18
|
Pinent M, Blay M, Serrano J, Ardévol A. Effects of flavanols on the enteroendocrine system: Repercussions on food intake. Crit Rev Food Sci Nutr 2015; 57:326-334. [DOI: 10.1080/10408398.2013.871221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
García-Conesa MT. Dietary Polyphenols against Metabolic Disorders: How Far Have We Progressed in the Understanding of the Molecular Mechanisms of Action of These Compounds? Crit Rev Food Sci Nutr 2015; 57:1769-1786. [DOI: 10.1080/10408398.2014.980499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 2015; 763:64-74. [PMID: 26001373 DOI: 10.1016/j.ejphar.2015.03.093] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome (MetS) is a cluster ofassociated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular disease (CVD) and type 2 diabetes compared to any single CVD risk factor. Truncal obesity plays an exceptionally critical role among all metabolic traits of the MetS. Consequently, the prevalence of the MetS has steadily increased with the growing epidemic of obesity. Pharmacotherapy has been available for obesity for more than one decade, but with little success in improving the metabolic profiles. The serotonergic drugs and inhibitors of pancreatic lipases were among the few drugs that were initially approved to treat obesity. At the present time, only the pancreatic lipase inhibitor orlistat is approved for long-term treatment of obesity. New classes of anti-diabetic drugs, including glucagon-like peptide 1 receptor (GLP-1R) agonists and Dipeptidyl-peptidase IV (DPP-IV) inhibitors, are currently being evaluated for their effects on obesity and metabolic traits. The genetic studies of obesity and metabolic syndrome have identified novel molecules acting on the hunger and satiety peptidergic signaling of the gut-hypothalamus axis or the melanocortin system of the brain and are promising targets for future drug development. The goal is to develop drugs that not only treat obesity, but also favorably impact its associated traits.
Collapse
Affiliation(s)
- Kathleen A Martin
- Department of Internal Medicine, Yale University School of Medicine, USA
| | | | - Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, USA; Department of Genetics, Yale University School of Medicine, USA.
| |
Collapse
|
21
|
Kelley DS, Adkins YC, Zunino SJ, Woodhouse LR, Bonnel EL, Breksa AP, Manners GD, Mackey BE. Citrus limonin glucoside supplementation decreased biomarkers of liver disease and inflammation in overweight human adults. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Nakajima VM, Macedo GA, Macedo JA. Citrus bioactive phenolics: Role in the obesity treatment. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.02.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Li PL, Liu MH, Hu JH, Su WW. Systematic chemical profiling of Citrus grandis ‘Tomentosa’ by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2014; 90:167-79. [DOI: 10.1016/j.jpba.2013.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
|
24
|
One-step column chromatographic extraction with gradient elution followed by automatic separation of volatiles, flavonoids and polysaccharides from Citrus grandis. Food Chem 2014; 145:542-8. [DOI: 10.1016/j.foodchem.2013.08.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 06/08/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022]
|
25
|
Ding X, Guo L, Zhang Y, Fan S, Gu M, Lu Y, Jiang D, Li Y, Huang C, Zhou Z. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARα and GLUT4 pathway. PLoS One 2013; 8:e77915. [PMID: 24147098 PMCID: PMC3797771 DOI: 10.1371/journal.pone.0077915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023] Open
Abstract
Objective Metabolic syndrome is a serious health problem in both developed and developing countries. The present study investigated the anti-metabolic disorder effects of different pomelo varieties on obese C57BL/6 mice induced by high-fat (HF) diet. Design The peels of four pomelo varieties were extracted with ethanol and the total phenols and flavonoids content of these extracts were measured. For the animal experiment, the female C57BL/6 mice were fed with a Chow diet or a HF diet alone or supplemented with 1% (w/w) different pomelo peel extracts for 8 weeks. Body weight and food intake were measured every other day. At the end of the treatment, the fasting blood glucose, glucose tolerance and insulin (INS) tolerance test, serum lipid profile and insulin levels, and liver lipid contents were analyzed. The gene expression analysis was performed with a quantitative real-time PCR assay. Result The present study showed that the Citrus grandis liangpinyou (LP) and beibeiyou (BB) extracts were more potent in anti-metabolic disorder effects than the duanshiyou (DS) and wubuyou (WB) extracts. Both LP and BB extracts blocked the body weight gain, lowered fasting blood glucose, serum TC, liver lipid levels, and improved glucose tolerance and insulin resistance, and lowered serum insulin levels in HF diet-fed mice. Compared with the HF group, LP and BB peel extracts increased the mRNA expression of PPARα and its target genes, such as FAS, PGC-1α and PGC-1β, and GLUT4 in the liver and white adipocyte tissue (WAT). Conclusion We found that that pomelo peel extracts could prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through the activation of the PPARα and GLUT4 signaling. Our results indicate that pomelo peels could be used as a dietary therapy and the potential source of drug for metabolic disorders.
Collapse
Affiliation(s)
- Xiaobo Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Lu Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Dong Jiang
- Citrus Research Institute, Chinese Academy Agricultural Science, Chongqing, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail:
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail:
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- E-mail:
| |
Collapse
|
26
|
Jang Y, Kim SW, Oh J, Hong GS, Seo EK, Oh U, Shim WS. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:459-465. [PMID: 23639361 DOI: 10.1016/j.jep.2013.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/18/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poncirus fructus (PF), also known as a dried immature fruit of Poncirus trifoliata (L.) Raf. (Rutaceae), has long been traditionally used for the various gastrointestinal disorders in Eastern Asia. AIM OF STUDY The aqueous extract of PF (PF-W) has the strong prokinetic effect, yet the underlying mechanism is still elusive. The present study investigated whether PF-W has any effect on motilin receptor or ghrelin receptor, since these receptors enhance intestinal motility when activated. MATERIALS AND METHODS The effect of PF-W and its components on motilin or ghrelin receptor was determined by calcium imaging and whole-cell patch clamp methods. RESULTS PF-W activates the ghrelin receptor, but not the motilin receptor, resulting in a transient increase of intracellular calcium levels. Furthermore, among various constituents of PF, only naringin and naringenin evoked the intracellular calcium augmentation via the ghrelin receptor. Moreover, cortistatin-8 - a ghrelin receptor inhibitor - specifically blocked naringin- and naringenin-induced calcium increases. In addition, naringin and naringenin induced inward currents in ghrelin receptor-expressing cells under whole-cell patch clamp configuration. CONCLUSION PF-W activates the ghrelin receptor, and naringin and naringenin are key constituents responsible for the activation of ghrelin receptor. Therefore, the present study suggests that the ghrelin receptor is a molecular entity responsible for the strong prokinetic activity of PF-W.
Collapse
Affiliation(s)
- Yongwoo Jang
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|