1
|
Wu L, Li D, Bi F, Yu C, Zhang Y, Zheng M. Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions. Food Chem 2025; 470:142683. [PMID: 39742604 DOI: 10.1016/j.foodchem.2024.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C18. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system. The newly developed PIB system resulted in a notable enhancement of the n-3 PUFAs content of the six oils, with a mean increase ranging from 9.17 % to 23.09 %, and with the recovery rate of n-3 PUFAs exceeded 90 %. The platform demonstrated to be stable and recyclable. The present research illustrated that the PIB has the potential to be a viable alternative for the purpose of enhancing the content of n-3 PUFAs in glycerides.
Collapse
Affiliation(s)
- Liumei Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fuyang Bi
- Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co., Ltd. Wuhan East Lake High-tech Development Zone, Wuhan 430073, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| |
Collapse
|
2
|
Yan Q, Li Z, Sun R, Jin H, Ma L, Li C. Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity. Int J Biol Macromol 2025; 296:139628. [PMID: 39798747 DOI: 10.1016/j.ijbiomac.2025.139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200% in the secretion level and the volumetric activity. Its application in EPA/DHA enrichment from fish oil was thereafter obtained with merits of low temperature and much less time, yielding an increase of ~31% in their total percentage. To gain mechanistic insights into its substrate chain-length specificity, we performed molecular dynamics simulation and revealed the substrate-dependent significant yet divergent conformational shifts of predominantly distal surface-exposed regions, suggesting a predominant long-range modulation mechanism. Together, this work provided in-depth insights into substrate specificity of lipase K80 and an alternate engineering site, the C-terminal KKL motif, for its expression optimization in P. pastoris, as well as extended toolboxes of EPA/DHA enrichment and application scopes of lipase K80.
Collapse
Affiliation(s)
- Qinfang Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhaoyang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Rongjing Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hanmei Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Linxin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
3
|
Joshi A, Holland B, Sachar M, Barrow CJ. Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications. Mar Drugs 2025; 23:21. [PMID: 39852523 PMCID: PMC11766736 DOI: 10.3390/md23010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields. The processed oil was analyzed for oxidation kinetics and thermodynamics using Rancimat, fatty acid composition using GC, omega-3 fatty acid positional distribution in the acylglyceride product using 13C NMR, and astaxanthin content. Lipase treatment reduced FFA levels from 44% to 4% and increased acylglycerides to 93% in squid oil. This reduction in FFA was accompanied by significantly increased stability (0.06 to 18.9 h by Rancimat). The treated oil showed no loss in astaxanthin (194.1 µg/g) or omega-3 fatty acids, including docosahexaenoic acid (DHA). DHA remaining predominantly at sn-2 indicated that the naturally occurring positional distribution of this omega-3 FFA was retained in the product. Lipase treatment significantly enhanced oxidative stability, evidenced by improved thermodynamic parameters (Ea 94.15 kJ/mol, ΔH 91.09 kJ/mol, ΔS -12.6 J/mol K) and extended shelf life (IP25 74.42 days) compared to starting squid oil and commercial fish/squid oils lacking astaxanthin. Thus, lipase treatment offers an effective strategy for reducing FFA levels and producing oxidatively stable, astaxanthin-rich acylglyceride squid oil with DHA retained at the nutritionally favored sn-2 position.
Collapse
Affiliation(s)
- Asavari Joshi
- ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
| | - Brendan Holland
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
| | - Moninder Sachar
- Australian Omega Oils Pty Ltd., North Geelong, Geelong, VIC, 3215, Australia;
| | - Colin J. Barrow
- ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
- Distinguished Visiting Research Fellow, College of Engineering, Abu Dhabi University, Zayed City 59911, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Gao K, Xin Q, Jiang H, Secundo F, Mao X. Efficient expression of OUC-Sb-lip2 in Yarrowia lipolytica and its comprehensive utilization in the enrichment of DHA and EPA from fish oil. Food Chem 2024; 460:140572. [PMID: 39089041 DOI: 10.1016/j.foodchem.2024.140572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Lipases are widely used in the modification of functional lipids, particularly in the enrichment of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In this study, a lipase named OUC-Sb-lip2 was expressed in Yarrowia lipolytica, achieving a promising enzyme activity of 472.6 U/mL by optimizing the culture medium, notably through olive oil supplementation. A significant proportion (58.8%) of the lipase activity was located in the cells, whereas 41.2% was secreted into the supernatant. Both whole-cell and immobilized OUC-Sb-lip2 were used to enrich DHA and EPA from fish oil. The whole-cell approach increased the DHA and EPA contents to 2.59 and 2.55 times that of the original oil, respectively. Similarly, the immobilized OUC-Sb-lip2 resulted in a 2.00-fold increase in DHA and an 1.99-fold increase in EPA after a 6-h hydrolysis period. Whole cell and the immobilized OUC-Sb-lip2 retained 48.7% and 52.7% of their activity after six cycles of reuse, respectively.
Collapse
Affiliation(s)
- Kunpeng Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Qi Xin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China..
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche via Mario Bianco 9, 20131 Milan, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
5
|
Guerrero-Elias HY, Camacho-Ruiz MA, Espinosa-Salgado R, Mateos-Díaz JC, Camacho-Ruiz RM, Asaff-Torres A, Rodríguez JA. Spectrophotometric assay for the screening of selective enzymes towards DHA and EPA ethyl esters hydrolysis. Enzyme Microb Technol 2024; 182:110531. [PMID: 39486155 DOI: 10.1016/j.enzmictec.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), hold notable significance due to their pharmaceutical relevance. Obtaining PUFAs from diverse sources like vegetables, fish oils, and algae poses challenges due to the mixed fatty acid (FA) composition. Therefore, focusing on particular FAs necessitates purification and resolution processes. To address this, we propose a continuous assay for screening lipases selective for ethyl EPA (E-EPA) or ethyl DHA (E-DHA). Utilizing microplate spectrophotometry, the method enables quantification of liberated fatty acids from ethyl esters (E-EPA or E-DHA). This involves assessing enzyme selectivity by measuring the release of FAs through p-nitrophenolate protonation, either separately for each substrate or in competition with a reference substrate, resorufin acetate. Ten lipases underwent screening, revealing Burkholderia cepacia lipase's (BCL) preference for ethyl DHA hydrolysis (E-EPA/E-DHA = 0.82 ± 0.07 and the lipase selectivity ratio (S) for E-EPA/E-DHA = 0.13 ± 0.04) and Candida antarctica lipase B's (CALB) high specific activity towards both E-EPA and E-DHA (531.14 ± 37.76 and 281.79 ± 2.79 U/mg, respectively) and E-EPA preference (E-EPA/E-DHA = 1.86 ± 0.15 and S E-EPA/E-DHA = 2.59±0.15). Candida rugosa recombinant isoform 4 (rCRLip4) and commercial Candida rugosa lipase (CRL) exhibited significant preference for E-EPA hydrolysis (E-EPA/E-DHA = 2.18 ±0.51 and 2.26 ±0.36, respectively; and S E-EPA/E-DHA = 7.59 ± 1.59 and 7.88 ± 2.13, respectively). Docking analyses of rCRLip4, BCL, and CALB demonstrated no statistically significant differences in activation energies or distances to the catalytic serine; however, they agreed with the experimental results. These findings suggest potential mutagenesis or directed evolution strategies for CALB to enhance E-EPA selectivity, with rCRLip4 emerging as a promising candidate for further investigation. This assay offers a valuable tool for identifying lipases with desired substrate selectivity, with broad implications for pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Hiram Y Guerrero-Elias
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - M Angeles Camacho-Ruiz
- Laboratorio de Investigación en Biotecnología, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco 46200, Mexico
| | - Ruben Espinosa-Salgado
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Rosa María Camacho-Ruiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazaran Rosas 46, Hermosillo, Sonora 83304, Mexico
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico.
| |
Collapse
|
6
|
de Carvalho Silva AK, Lima FJL, Borges KRA, Wolff LAS, de Andrade MS, Alves RDNS, Cordeiro CB, da Silva MACN, Nascimento MDDSB, da Silva Espósito T, de Barros Bezerra GF. Utilization of Fusarium Solani lipase for enrichment of polyunsaturated Omega-3 fatty acids. Braz J Microbiol 2024; 55:2211-2226. [PMID: 38874742 PMCID: PMC11405586 DOI: 10.1007/s42770-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer numerous health benefits. Enriching these fatty acids in fish oil using cost-effective methods, like lipase application, has been studied extensively. This research aimed to investigate F. solani as a potential lipase producer and compare its efficacy in enhancing polyunsaturated omega-3 fatty acids with commercial lipases. Submerged fermentation with coconut oil yielded Lipase F2, showing remarkable activity (215.68 U/mL). Lipase F2 remained stable at pH 8.0 (activity: 93.84 U/mL) and active between 35 and 70 °C, with optimal stability at 35 °C. It exhibited resistance to various surfactants and ions, showing no cytotoxic activity in vitro, crucial for its application in the food and pharmaceutical industries. Lipase F2 efficiently enriched EPA and DHA in fish oil, reaching 22.1 mol% DHA and 23.8 mol% EPA. These results underscore the economic viability and efficacy of Lipase F2, a partially purified enzyme obtained using low-cost techniques, demonstrating remarkable stability and resistance to diverse conditions. Its performance was comparable to highly pure commercially available enzymes in omega-3 production. These findings highlight the potential of F. solani as a promising lipase source, offering opportunities for economically producing omega-3 and advancing biotechnological applications in the food and supplements industry.
Collapse
Affiliation(s)
- Allysson Kayron de Carvalho Silva
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil.
| | - Fernanda Jeniffer Lindoso Lima
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Katia Regina Assunção Borges
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Laís Araújo Souza Wolff
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcelo Souza de Andrade
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Carolina Borges Cordeiro
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Maria do Desterro Soares Brandão Nascimento
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Talita da Silva Espósito
- Department of Oceanography and Limnology, Laboratory of Biotechnology of Aquatic Organisms (BIOAQUA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
7
|
Chabni A, Pardo de Donlebún B, Romero M, Torres CF. Predigested Mixture of Arachidonic and Docosahexaenoic Acids for Better Bio-Accessibility. Mar Drugs 2024; 22:224. [PMID: 38786615 PMCID: PMC11123075 DOI: 10.3390/md22050224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
A predigested product from arachidonic acid oil (ARA) and docosahexaenoic acid (DHA) oil in a 2:1 (w/w) ratio has been developed and evaluated in an in vitro digestion model. To produce this predigested lipid mixture, first, the two oils were enzymatically hydrolyzed up to 90% of free fatty acids (FFAs) were achieved. Then, these two fatty acid (FA) mixtures were mixed in a 2:1 ARA-to-DHA ratio (w/w) and enzymatically esterified with glycerol to produce a mixture of FFAs, mono-, di-, and triacylglycerides. Different glycerol ratios and temperatures were evaluated. The best results were attained at 10 °C and a glycerol-to-FA molar ratio of 3:1. The bio-accessibility of this predigested mixture was studied in an in vitro digestion model. A total of 90% of the digestion product was found in the micellar phase, which contained 30% monoacylglycerides, more than 50% FFAs, and a very small amount of triacylglycerols (3% w/w). All these data indicate an excellent bio-accessibility of this predigested mixture.
Collapse
Affiliation(s)
- Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (M.R.)
| | - Blanca Pardo de Donlebún
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Marina Romero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (M.R.)
| | - Carlos F. Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (M.R.)
| |
Collapse
|
8
|
Baloch KA, Patil U, Pudtikajorn K, Khojah E, Fikry M, Benjakul S. Lipase-Catalyzed Synthesis of Structured Fatty Acids Enriched with Medium and Long-Chain n-3 Fatty Acids via Solvent-Free Transesterification of Skipjack Tuna Eyeball Oil and Commercial Butterfat. Foods 2024; 13:347. [PMID: 38275715 PMCID: PMC10815637 DOI: 10.3390/foods13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere in nature. When lactation is insufficient, infant formula milk has been used as a substitute. However, the distribution of most fatty acids ininfant formula milk is still different from human milk. Therefore, structured lipids were produced by the redistribution of medium-chain fatty acids from commercial butterfat (CBF) and n-3 and n-6 long-chain fatty acids from skipjack tuna eyeball oil (STEO). Redistribution was carried out via transesterification facilitated by Asian seabass liver lipase (ASL-L). Under the optimum conditions including a CBF/STEO ratio (3:1), transesterification time (60 h), and ASL-L unit (250 U), the newly formed modified-STEO (M-STEO) contained 93.56% triacylglycerol (TAG), 0.31% diacylglycerol (DAG), and 0.02% monoacylglycerol (MAG). The incorporated medium-chain fatty acids accounted for 18.2% of M-STEO, whereas ASL-L could incorporate 40% of n-3 fatty acids and 25-30% palmitic acid in M-STEO. The 1H NMRA and 13CNMR results revealed that the major saturated fatty acid (palmitic acid) and unsaturated fatty acids (DHA and EPA) were distributed at the sn-2 position of the TAGs in M-STEO. Thus, M-STEO enriched with medium-chain fatty acids and n-3 fatty acids positioned at the sn-2 position of TAGs can be a potential substitute for human milk fatty acids in infant formula milk (IFM).
Collapse
Affiliation(s)
- Khurshid Ahmed Baloch
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Khamtorn Pudtikajorn
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Mohammad Fikry
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Theah AYV, Akanbi TO. The Inhibitory Effects of Hydroxytyrosol, α-Tocopherol and Ascorbyl Palmitate on Lipid Peroxidation in Deep-Fat Fried Seafood. Antioxidants (Basel) 2023; 12:antiox12040929. [PMID: 37107304 PMCID: PMC10135594 DOI: 10.3390/antiox12040929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the inhibitory effects of hydroxytyrosol, α-tocopherol and ascorbyl palmitate on lipid peroxidation in squid, hoki and prawn during deep-fat frying and refrigerated storage. Fatty acid analysis using gas chromatography (GC) showed that the seafood had a high omega-3 polyunsaturated fatty acid (n-3 PUFAs) content, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The total content of n-3 fatty acids in their lipids was 46% (squid), 36% (hoki) and 33% (prawn), although they all had low lipid contents. The oxidation stability test results showed that deep-fat frying significantly increased the peroxide value (POV), p-anisidine value (p-AV) and the value of thiobarbituric acid reactive substances (TBARS) in squid, hoki and prawn lipids. Meanwhile, antioxidants delayed the lipid oxidation in fried seafood and sunflower oil (SFO) used for frying, albeit in different ways. The least effective of all the antioxidants was α-tocopherol, as the POV, p-AV and TBARS values obtained with this antioxidant were significantly higher. Ascorbyl palmitate was better than α-tocopherol but was not as effective as hydroxytyrosol in suppressing lipid oxidation in the frying medium (SFO) and in the seafood. However, unlike the ascorbyl palmitate-treated oil, hydroxytyrosol-treated oil could not be used for multiple deep-fat frying of seafood. Hydroxytyrosol appeared to be absorbed in the seafood during multiple frying, thus leaving a low concentration in the SFO and making it susceptible to oxidation.
Collapse
Affiliation(s)
- Audrey Yue Vern Theah
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle (UON), Brush Road, Ourimbah, NSW 2258, Australia
| | - Taiwo O Akanbi
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle (UON), Brush Road, Ourimbah, NSW 2258, Australia
| |
Collapse
|
10
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
11
|
Lipases from different yeast strains: Production and application for n-3 fatty acid enrichment of tuna eyeball oil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Xuan J, Wang Z, Xia Q, Luo T, Mao Q, Sun Q, Han Z, Liu Y, Wei S, Liu S. Comparative Lipidomics Profiling of Acylglycerol from Tuna Oil Selectively Hydrolyzed by Thermomyces Lanuginosus Lipase and Candida Antarctica Lipase A. Foods 2022; 11:foods11223664. [PMID: 36429256 PMCID: PMC9689481 DOI: 10.3390/foods11223664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Lipase hydrolysis is an effective method to develop different functional types of lipids. In this study, tuna oil was partially hydrolyzed at 30% and 60% by Thermomyces lanuginosus lipase (TL 100 L) and Candida Antarctica lipase A (ADL), respectively, to obtain lipid-modified acylglycerols. The lipidomic profiling of the acylglycerols was investigated by UPLC-Q-TOF-MS and GC-MS to clarify the lipid modification effect of these two lipases on tuna oil. The results showed that 247 kinds of acylglycerols and 23 kinds of fatty acids were identified in the five samples. In the ADL group, the content of triacylglycerols (TAG) and diacylglycerols (DAG) increased by 4.93% and 114.38%, respectively, with an increase in the hydrolysis degree (HD), while there was a decreasing trend in the TL 100 L group. TL 100 L had a better enrichment effect on DHA, while ADL was more inclined to enrich EPA and hydrolyze saturated fatty acids. Cluster analysis showed that the lipids obtained by the hydrolysis of TL 100 L and ADL were significantly different in the cluster analysis of TAG, DAG, and monoacylglycerols (MAG). TL 100 L has strong TAG selectivity and a strong ability to hydrolyze acylglycerols, while ADL has the potential to synthesize functional lipids containing omega-3 PUFAs, especially DAG.
Collapse
Affiliation(s)
- Junyong Xuan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence:
| | - Tingyu Luo
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qingya Mao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center for Key Technology of Marine Food Deep Processing, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
14
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
15
|
Broughton R, Tocher DR, Napier JA, Betancor MB. Profiling Phospholipids within Atlantic Salmon Salmo salar with Regards to a Novel Terrestrial Omega-3 Oil Source. Metabolites 2022; 12:metabo12090851. [PMID: 36144255 PMCID: PMC9503986 DOI: 10.3390/metabo12090851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development and inclusion of novel oils derived from genetically modified (GM) oilseeds into aquafeeds, to supplement and supplant current terrestrial oilseeds, as well as fish oils, warrants a more thorough investigation into lipid biochemical alterations within finfish species, such as Atlantic salmon. Five tissues were examined across two harvesting timepoints to establish whether lipid isomeric alterations could be detected between a standard commercial diet versus a diet that incorporated the long-chain polyunsaturated fatty acids (LC-PUFA), EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid), derived from the GM oilseed Camelina sativa. Tissue-dependent trends were detected, indicating that certain organs, such as the brain, have a basal limit to LC-PUFA incorporation, though enrichment of these fatty acids is possible. Lipid acyl alterations, as well as putative stereospecific numbering (sn) isomer alterations, were also detected, providing evidence that GM oils may modify lipid structure, with lipids of interest providing a set of targeted markers by which lipid alterations can be monitored across various novel diets.
Collapse
Affiliation(s)
- Richard Broughton
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
- Correspondence:
| | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | | | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
16
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
17
|
Zhang Y, Zhu L, Wu G, Wang X, Jin Q, Qi X, Zhang H. Enzymatic preparation of lysophosphatidylserine containing DHA from sn-glycero-3-phosphatidylserine and DHA in a solvent-free system. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Lipase-produced omega-3 acylglycerols for the fortification and stabilization of extra virgin olive oil using hydroxytyrosyl palmitate. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Sun Z, Wang Z, Zhang L, Wang Y, Xue C. Enrichment of Alkylglycerols and Docosahexaenoic Acid via Enzymatic Ethanolysis of Shark Liver Oil and Short-path Distillation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1894288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhaomin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Research and Development Center, Weihai Boow Foods Co., Ltd, Weihai, Shandong Province, China
| | - Zhaoqi Wang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, Shandong Province, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
20
|
Wang X, Zhao X, Qin X, Zhao Z, Yang B, Wang Y. Immobilized MAS1 Lipase-catalyzed Synthesis of n-3 PUFA-rich Triacylglycerols in Deep Eutectic Solvents. J Oleo Sci 2021; 70:227-236. [PMID: 33456003 DOI: 10.5650/jos.ess20200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
n-3 polyunsaturated fatty acids (PUFA)-rich triacylglycerols (TAG) with many beneficial effects are still difficult to be synthesized efficiently and rapidly by current synthetic techniques. This study reports the fatty acid specificity of immobilized MAS1 lipase and its efficient synthesis of n-3 PUFA-rich TAG by esterification of glycerol with n-3 PUFA in natural deep eutectic solvents (NADES) systems. Immobilized MAS1 lipase showed the highest preference for capric acid [C10:0, the highest specificity constant (1/α)=1] whereas it discriminated strongly against docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to their lowest specificity constants (1/α=0.19 and 0.2). Moreover, the highest n-3 PUFA-rich TAG content (55.8%) with similar n-3 PUFA composition to the substrate was obtained in choline chloride/glycerol (CG) system. There was a 1.38-fold increase of TAG content in CG system compared with that in the solvent-free system. Interestingly, immobilized MAS1 lipase exhibited no regiospecificity in the solvent-free and various NADES systems. Besides, the potential reaction mechanism of immobilized MAS1 lipase-catalyzed esterification of glycerol with n-3 PUFA in NADES systems was described. It was found that the use of NADES as solvents could greatly enhance TAG content, and make it easy to separate the product. These results indicated that immobilized MAS1 lipase is a promising biocatalyst for the efficient synthesis of n-3 PUFA-rich TAG by esterification of glycerol with n-3 PUFA in NADES systems.
Collapse
Affiliation(s)
- Xiumei Wang
- College of Environmental and Biological Engineering, Putian University.,Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants.,School of Bioscience and Bioengineering, South China University of Technology
| | - Xiaoxu Zhao
- College of Environmental and Biological Engineering, Putian University.,Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants
| | - Xiaoli Qin
- College of Food Science, Southwest University
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology
| |
Collapse
|
21
|
Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries. Int J Biol Macromol 2020; 165:2957-2963. [DOI: 10.1016/j.ijbiomac.2020.10.179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
|
22
|
Xia Q, Akanbi TO, Wang B, Li R, Liu S, Barrow CJ. Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation. Food Funct 2020; 11:10748-10757. [PMID: 33231232 DOI: 10.1039/d0fo02350g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuna oil was selectively hydrolysed using Thermomyces lanuginosus lipase for 6 h to prepare omega-3 acylglycerol concentrate with the DHA content significantly increased from 24.9% in tuna oil to 36.3% in the acylglycerol concentrate. The acylglycerol concentrate was subsequently encapsulated into the "multi-core" microcapsules using gelatin-sodium hexametaphosphate complex coacervates as the shell material. Rancimat, Oxipres and thermogravimetric analyses all showed that the microencapsulated acylglycerol concentrate had unexpectedly improved oxidation stability, compared to those produced using tuna oil, even though the concentrated oils themselves were significantly less stable than tuna oil. The incorporation of enzymatic tuna oil acylglycerol concentrate also significantly improved the oxidation stability of microencapsulated standard refined unconcentrated tuna oil. A wide range of characteristics including lipid and fatty acid composition, oil-in-water (O/W) emulsion properties, morphology, nanomechanical strength and physicochemical stability of acylglycerol, acylglycerol oil-in-water (O/W) emulsion and final microcapsules were investigated throughout the preparation. The result suggests that high levels of monoacylglycerol (about 35%) and diacylglycerol (about 8.5%) were produced in the acylglycerol. The acylglycerol O/W emulsion exhibited significantly smaller droplet size, lower zeta-potential and higher surface hydrophobicity, which contributed to the formation of the microcapsule with a significantly smoother surface and more compact structure, finally leading to improved oxidative stability compared to those prepared from native tuna oil.
Collapse
Affiliation(s)
- Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| | | | | | | | | | | |
Collapse
|
23
|
Lv E, Ding S, Lu J, Yi W, Ding J. Separation and purification of fatty acids by membrane technology: a critical review. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractFatty acids (FAs) are a very important group of raw materials for chemical industry, and the technology of separating or purifying the FAs from the reaction product mixture has always been the hotspot of research. Membrane processes for separation of FAs are being increasingly reported. Compared with conventional FAs separation methods, membrane separation has the advantages of low energy consumption, system compactness, high separation efficiency, easy scale-up, high available surface area per unit volume and low working temperatures, thereby attracting considerable attention of many researchers. In this regards, this paper critically reviewed the developments of methods for FAs separation and purification, and the future prospects of coupling membrane technology with hydrolysis for enhanced production of FAs.
Collapse
Affiliation(s)
- Enmin Lv
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong255000, China
| | - Shaoxuan Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang712100, China
| | - Jie Lu
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, Shandong255000, China
| | - Weiming Yi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong255000, China
| | - Jincheng Ding
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong255000, China
| |
Collapse
|
24
|
Borges JP, Quilles Junior JC, Moreno-Perez S, Fernandez-Lorente G, Boscolo M, Gomes E, da Silva R, Bocchini DA, Guisan JM. Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess Biosyst Eng 2020; 43:2107-2115. [PMID: 32594315 DOI: 10.1007/s00449-020-02399-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Lipase stability in organic solvent is crucial for its application in many biotechnological processes as biocatalyst. One way to improve lipase's activity and stability in unusual reaction medium is its immobilization on inert supports. Here, lipases from different sources and immobilized through weak chemical interactions on hydrophobic and ionic supports had their transesterification ability dramatically dependent on the support and also on the solvent that had been used. The ethanolysis of sardine oil was carried out at the presence of cyclohexane and tert-amyl alcohol, in which Duolite A568-Thermomyces lanuginosa lipase derivative achieved 49% of ethyl esters production after 24 h in cyclohexane. The selectivity of immobilized lipases was also studied and, after 3 h of synthesis, the reaction with Duolite A568-Thermomyces lanuginosa derivative in cyclohexane produced 24% ethyl ester of eicosapentaenoic acid and 1.2% ethyl ester of docosahexaenoic acid, displaying a selectivity index of 20 times the ethyl ester of eicosapentaenoic acid. Different derivatives of Candida antarctica lipases fraction B (CALB) and phospholipase Lecitase® Ultra (Lecitase) were also investigated. Along these lines, a combination between these factors may be applied to improve the activity and selectivity of immobilized lipases, decreasing the total cost of the process.
Collapse
Affiliation(s)
- Janaina Pires Borges
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | - José Carlos Quilles Junior
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil.
| | - Sônia Moreno-Perez
- Department of Biotechnology and Food Microbiology, Research Institute for Food Science, CIAL, CSIC/Campus UAM, 28049, Madrid, Spain
| | - Glória Fernandez-Lorente
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Mauricio Boscolo
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Eleni Gomes
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Daniela Alonso Bocchini
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | | |
Collapse
|
25
|
Gao K, Chu W, Sun J, Mao X. Identification of an alkaline lipase capable of better enrichment of EPA than DHA due to fatty acids selectivity and regioselectivity. Food Chem 2020; 330:127225. [PMID: 32569931 DOI: 10.1016/j.foodchem.2020.127225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
The whole genome of Streptomyces violascens (=ATCC 27968) was sequenced and the cloning and expression of OUC-Lipase 6 were conducted in Bacillus subtilis WB800. The recombinant enzyme belongs to the lipolytic enzymes family V. OUC-Lipase 6 showed optimal activity at 30 °C and pH 9.0, and retained 90.2% of its activity in an alkaline buffer (pH 8.0, 30 °C and 96 h). OUC-Lipase 6 showed good stability under medium temperature conditions (residual activity of 68.8%, pH 8.0, 45 °C and 96 h). OUC-Lipase 6 could selectively hydrolyze fatty acids on the glyceride backbone, thus improving the contents of DHA and EPA in codfish oil. OUC-Lipase 6 also showed regioselectivity, resulting in a better enrichment efficiency for EPA than DHA. After hydrolyzing for 36 h via OUC-Lipase 6, the contents of EPA and DHA were improved to 3.24-fold and 1.98-fold, respectively.
Collapse
Affiliation(s)
- Kunpeng Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenqin Chu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
26
|
Coelho ALS, Orlandelli RC. Immobilized microbial lipases in the food industry: a systematic literature review. Crit Rev Food Sci Nutr 2020; 61:1689-1703. [PMID: 32423294 DOI: 10.1080/10408398.2020.1764489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several studies describe the immobilization of microbial lipases aiming to evaluate the mechanical/thermal stability of the support/enzyme system, the appropriate method for immobilization, acid and alkaline stability, tolerance to organic solvents and specificity of fatty acids. However, literature reviews focus on application of enzyme/support system in food technology remains scarce. This current systematic literature review aimed to identify, evaluate and interpret available and relevant researches addressing the type of support and immobilization techniques employed over lipases, in order to obtain products for food industry. Fourteen selected articles were used to structure the systematic review, in which the discussion was based on six main groups: (i) synthesis/enrichment of polyunsaturated fatty acids; (ii) synthesis of structured lipids; (iii) flavors and food coloring; (iv) additives, antioxidants and antimicrobials; (v) synthesis of phytosterol esters and (vi) synthesis of sugar esters. In general, the studies discussed the synthesis of the enzyme/support system and the characteristics: surface area, mass transfer resistance, activity, stability (pH and temperature), and recyclability. Each immobilization technique is applicable for a specific production, depending mainly on the sensitivity and cost of the process.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ravely Casarotti Orlandelli
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Center of Humanities and Education Sciences, College of Biological Sciences, Universidade Estadual do Paraná, Paranavaí, PR, Brazil
| |
Collapse
|
27
|
Wang J, Song J, Fang Q, Yao H, Wang F, Song Q, Ye G. Insight into the Functional Diversification of Lipases in the Endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) by Genome-scale Annotation and Expression Analysis. INSECTS 2020; 11:E227. [PMID: 32260574 PMCID: PMC7240578 DOI: 10.3390/insects11040227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Lipases play essential roles in digestion, transport, and processing of dietary lipids in insects. For parasitoid wasps with a unique life cycle, lipase functions could be multitudinous in particular. Pteromalus puparum is a pupal endoparasitoid of butterflies. The female adult deposits eggs into its host, along with multifunctional venom, and the developing larvae consume host as its main nutrition source. Parasitoid lipases are known to participate in the food digestion process, but the mechanism remains unclear. P. puparum genome and transcriptome data were interrogated. Multiple alignments and phylogenetic trees were constructed. We annotated a total of 64 predicted lipase genes belonging to five lipase families and suggested that eight venom and four salivary lipases could determine host nutrition environment post-parasitization. Many putative venom lipases were found with incomplete catalytic triads, relatively long β9 loops, and short lids. Data analysis reveals the loss of catalytic activities and weak triacylglycerol (TAG) hydrolytic activities of lipases in venom. Phylogenetic trees indicate various predicted functions of lipases in P. puparum. Our information enriches the database of parasitoid lipases and the knowledge of their functional diversification, providing novel insight into how parasitoid wasps manipulate host lipid storage by using venom lipases.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Jiqiang Song
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| |
Collapse
|
28
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
29
|
Wang X, Qin X, Li X, Zhao Z, Yang B, Wang Y. An Efficient Synthesis of Lysophosphatidylcholine Enriched with n-3 Polyunsaturated Fatty Acids by Immobilized MAS1 Lipase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:242-249. [PMID: 31668065 DOI: 10.1021/acs.jafc.9b05177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
n-3 polyunsaturated fatty acid (PUFA)-rich lysophosphatidylcholine (LPC) with many beneficial effects was effectively synthesized by immobilized MAS1 lipase-catalyzed esterification of n-3 PUFA with sn-glycero-3-phosphatidylcholine (GPC) under vacuum in a solvent-free system. Immobilized MAS1 lipase was found to be a more suitable catalyst for the production of n-3 PUFA-rich LPC when compared with Novozym 435. The maximal GPC conversion and LPC content (93.12% and 90.77 mol %) were obtained under the optimized conditions (enzyme loading of 300 U/g substrate, temperature of 55 °C, and n-3 PUFA/GPC molar ratio of 20:1). Moreover, it was observed that 1-acyl-sn-glycero-3-lysophosphatidylcholine (sn-1 acyl LPC) was the main reaction product, as demonstrated by molecular docking. These results showed that immobilized MAS1 lipase had high phospholipase activity with a predominant specificity for the sn-1 hydroxyl position of GPC to efficiently synthesize highly pure n-3 PUFA-rich LPC from GPC for industrial application.
Collapse
Affiliation(s)
- Xiumei Wang
- College of Environmental and Biological Engineering , Putian University , Putian 351100 , P. R. China
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoli Qin
- College of Food Science , Southwest University , Chongqing 400715 , P. R. China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing 100048 , P. R. China
| | - Zexin Zhao
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Bo Yang
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
30
|
Cao X, Liao L, Feng F. Purification and characterization of an extracellular lipase from Trichosporon sp. and its application in enrichment of omega-3 polyunsaturated fatty acids. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Ma G, Dai L, Liu D, Du W. Integrated Production of Biodiesel and Concentration of Polyunsaturated Fatty Acid in Glycerides Through Effective Enzymatic Catalysis. Front Bioeng Biotechnol 2019; 7:393. [PMID: 31921803 PMCID: PMC6933295 DOI: 10.3389/fbioe.2019.00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) contained in glycerides have been reported to be more advantageous for their intake than their counterpart in the form of free fatty acid or fatty acid esters. This work attempts to achieve the flexible concentration of DHA and EPA in glycerides as well as biodiesel production via a two-step process catalyzed by lipases. In the first step, several commercial lipases were investigated and Novozym ET2.0 demonstrated the highest potential in selective concentration of DHA and EPA. Over 85% of EPA and other fatty acids were converted to its corresponding FAEEs (fatty acid ethyl esters), while over 80% of DHA remained in glycerides under the optimized conditions. After the first step ethanolysis, the oil phase was subject to molecular distillation and a 97.5% biodiesel (FAEE) content could be obtained. Further flexible enrichment of DHA and EPA in glycerides was realized by immobilized lipase Novozym 435-mediated transesterification of glycerides (remaining in the heavy phase after molecular distillation) with DHA- or EPA-rich EE, and glycerides with 67.1% DHA and 13.1% EPA, or glycerides with 41.1% EPA and 38.0% DHA could be obtained flexibly. This work demonstrated an effective approach for DHA and EPA enrichment combined with biodiesel production through enzymatic catalysis.
Collapse
Affiliation(s)
- Gaojian Ma
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Lingmei Dai
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Tsinghua Innovation Center in Dongguan, Dongguan, China
| | - Wei Du
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Tsinghua Innovation Center in Dongguan, Dongguan, China
| |
Collapse
|
32
|
Xia Q, Akanbi TO, Li R, Wang B, Yang W, Barrow CJ. Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Food Funct 2019; 10:3142-3149. [PMID: 31157352 DOI: 10.1039/c9fo00668k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, Candida antarctica lipase A was applied to selectively remove saturated fatty acids from palm oil to prepare palm oil acylglycerol concentrate (POAC), where palmitic acid decreased from 40.0 to 28.7% and oleic acid increased from 40.0 to 50.5% after 3 h of hydrolysis. Lipozyme RMIM from Rhizomucor miehei was then used to incorporate either alpha linolenic acid (ALA) or eicosapentaenoic acid (EPA) into the resulting POAC. Optimum omega-3 incorporation was achieved when POAC to omega-3 ratio was 6 : 3, reaction temperature was 40 °C and reaction time was 18 h. Under these conditions, the ALA content in the separated ALA incorporated structured lipid (POAC-ALA) was 27.1%, and the EPA content in the EPA incorporated structured lipids (POAC-EPA) was 30.9%. The formed structured lipids had lower levels of saturated fatty acids, and significantly lower melting points, in both cases below 8 °C. The enzymatic process developed produces new structured lipids, with lower saturated fat and higher omega-3, with potential as a healthy palm oil derived lipid ingredient.
Collapse
Affiliation(s)
- Qiuyu Xia
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, P.R China
| | | | | | | | | | | |
Collapse
|
33
|
Lipase Catalyzed Acidolysis for Efficient Synthesis of Phospholipids Enriched with Isomerically Pure cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid. Catalysts 2019. [DOI: 10.3390/catal9121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The production of phospholipid (PL) conjugates with biologically active compounds is nowadays an extensively employed approach. This type of phospholipids conjugates could improve bioavailability of many poorly absorbed active compounds such as isomers of conjugated linoleic acid (CLA), which exhibit versatile biological effects. The studies were carried out to elaborate an efficient enzymatic method for the synthesis of phospholipids with pure (>90%) cis-9,trans-11 and trans-10,cis-12 CLA isomers. For this purpose, three commercially available immobilized lipases were examined in respect to specificity towards CLA isomers in acidolysis of egg-yolk phosphatidylcholine (PC). Different incorporation rates were observed for the individual CLA isomers. Under optimal conditions: PC/CLA molar ratio 1:6; Rhizomucor miehei lipase loading 24% wt. based on substrates; heptane; DMF, 5% (v/v); water activity (aw), 0.11; 45 °C; magnetic stirring, 300 rpm; 48 h., effective incorporation (EINC) of CLA isomers into PC reached ca. 50%. The EINC of CLA isomers was elevated for 25–30% only by adding a water mimic (DMF) and reducing aw to 0.11 comparing to the reaction system performed at aw = 0.23. The developed method of phosphatidylcholine acidolysis is the first described in the literature dealing with isometrically pure CLA and allow to obtain very high effective incorporation.
Collapse
|
34
|
Chen M, Gao X, Yang W, Sun C, Yang J, Zhang H, Song Y. Discovery and characterization of a stable lipase with preference toward long-chain fatty acids. Biotechnol Lett 2019; 42:171-180. [DOI: 10.1007/s10529-019-02765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
|
35
|
Insight into the Modification of Phosphatidylcholine with n-3 Polyunsaturated Fatty Acids-Rich Ethyl Esters by Immobilized MAS1 Lipase. Molecules 2019; 24:molecules24193528. [PMID: 31569526 PMCID: PMC6804207 DOI: 10.3390/molecules24193528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023] Open
Abstract
This study reported the modification of phosphatidylcholine (PC) with n-3 polyunsaturated fatty acids (PUFA)-rich ethyl esters (EE) by immobilized MAS1 lipase-catalyzed transesterification in the solvent-free system. Effects of n-3 PUFA-rich EE/PC mass ratio, enzyme loading, reaction temperature, and water dosage on the incorporation of n-3 PUFA into PC were investigated, respectively. The results indicate that the maximum incorporation of n-3 PUFA into PC reached 33.5% (24 h) under the following conditions: n-3 PUFA-rich EE/PC mass ratio of 6:1, enzyme loading of 20%, reaction temperature of 55 °C, and water dosage of 1.0%. After 72 h of reaction, the incorporation of n-3 PUFA into PC was 43.55% and the composition of the reaction mixture was analyzed by 31P nuclear magnetic resonance (NMR). The results show that the reaction product consisted of 32.68% PC, 28.76% 1-diacyl-sn-glycero-3-lysophosphatidylcholine (sn-1 LPC), 4.90% 2-diacyl-sn-glycero-3-lysophosphatidylcholine (sn-2 LPC), and 33.60% sn-glycero-3-phosphatidylcholine (GPC). This study offers insight into the phospholipase activity of immobilized MAS1 lipase and suggests the extended applications of immobilized MAS1 lipase in the modification of phospholipids for industrial purpose.
Collapse
|
36
|
Wang Q, Xie Y, Johnson DR, Li Y, He Z, Li H. Ultrasonic-pretreated lipase-catalyzed synthesis of medium-long-medium lipids using different fatty acids as sn-2 acyl-site donors. Food Sci Nutr 2019; 7:2361-2373. [PMID: 31367365 PMCID: PMC6657711 DOI: 10.1002/fsn3.1083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
The current work aimed to evaluate the effect of ultrasonic treatment on the enzymatic transesterification of medium-long-medium (MLM) lipids using 2-monoacylglycerol, bearing distinct fatty acids at the sn-2 position with palmitic acid, octadecanoic acid, oleic acid, eicosapentaenoic acid, and docosahexaenoic acids as sn-2 acyl donors. The effects of ultrasonic treatment conditions, including substrate concentration, reaction temperature and time, and enzyme loading, on the insertion of fatty acids into the sn-2 acyl position of MLM lipids were investigated. The data showed that low-frequency ultrasonic treatment could remarkably improve the insertion rate of polyunsaturated fatty acid (PUFA) into the sn-2 position of MLM lipids, compared with the conventional treatment method. By increasing the ultrasonic frequency from 20 to 30 KHz, while maintaining power at 150 W, the rate of synthesis of monounsaturated fatty acid and PUFA increased from 23.7% and 26.8% to 26.6% and 32.4% (p < 0.05), respectively. Moreover, ultrasonic treatment reduced the optimum reaction temperature from 45 to 35°C. However, the activity of Lipozyme RM-IM treated with ultrasound considerably declined from 31.10% to 26.90% (p < 0.05) after its fourth cycle, which was lower than that without ultrasonic treatment. This work provokes new routes for the utilization of ultrasonic technology in the synthesis of MLM lipids using different fatty acids as sn-2 acyl donors.
Collapse
Affiliation(s)
- Qiang Wang
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Yuejie Xie
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - David R. Johnson
- Department of Food ScienceUniversity of MassachusettsAmherstMassachusetts
| | - Yuanyuan Li
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Zhifei He
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
| | - Hongjun Li
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
| |
Collapse
|
37
|
Li H, Yang Z, Cao X, Han T, Pei H. Separation of high‐purity eicosapentaenoic acid and docosahexaenoic acid from fish oil by pH‐zone‐refining countercurrent chromatography. J Sep Sci 2019; 42:2569-2577. [DOI: 10.1002/jssc.201900378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Haoze Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Zhen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Tian Han
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Hairun Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| |
Collapse
|
38
|
Suitability of Recombinant Lipase Immobilised on Functionalised Magnetic Nanoparticles for Fish Oil Hydrolysis. Catalysts 2019. [DOI: 10.3390/catal9050420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombinant Bacillus subtilis lipase was immobilised on magnetic nanoparticles by a facile covalent method and applied to fish oil hydrolysis. High loading of enzyme to the functionalised nanoparticle was achieved with a protein binding efficiency of 95%. Structural changes of the confined enzyme on the surface of the nanoparticles was investigated using transmission electron microscopy and spectroscopic techniques (attenuated total reflectance-Fourier transform infrared and circular dichroism). The biocatalytic potential of immobilised lipase was compared with that of free enzyme and biochemically characterised with respect to different parameters such as pH, temperature, substrate concentrations and substrate specificity. The thermal stability of functionalised nanoparticle bound enzyme was doubled that of free enzyme. Immobilised lipase retained more than 50% of its initial biocatalytic activity after recyclability for twenty cycles. The ability to the immobilised thermostable lipase to concentrate omega-3 fatty acids from fish oil was investigated. Using synthetic substrate, the immobilised enzyme showed 1.5 times higher selectivity for docosahexaenoic acid (DHA), and retained the same degree of selectivity for eicosapentaenoic acid (EPA), when compared to the free enzyme.
Collapse
|
39
|
Castejón N, Señoráns FJ. Strategies for Enzymatic Synthesis of Omega‐3 Structured Triacylglycerols from
Camelina sativa
Oil Enriched in EPA and DHA. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| | - Francisco J. Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| |
Collapse
|
40
|
Xia Q, Akanbi TO, Wang B, Li R, Yang W, Barrow CJ. Investigating the Mechanism for the Enhanced Oxidation Stability of Microencapsulated Omega-3 Concentrates. Mar Drugs 2019; 17:md17030143. [PMID: 30823458 PMCID: PMC6471227 DOI: 10.3390/md17030143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Enzymatically concentrated anchovy oil (concentrate) is known to be much less stable than unconcentrated anchovy oil. However, we previously showed that concentrate surprisingly forms more stable microcapsules, when produced by complex coacervation, than does unconcentrated anchovy oil. Here we investigate the mechanism of this unexpected stability. We also investigate whether or not incorporation of concentrate can be used as an additive to improve the stability of unconcentrated anchovy oil microcapsules. Results showed that microcap stability increased as the amount of added concentrate increased. Decreased emulsion droplet size, lower positively charged zeta potential, and higher surface hydrophobicity were observed in the oil/water (O/W) emulsion, with the incorporation of concentrate in the oil phase, compared with the unconcentrated anchovy oil O/W emulsion. Both the decreased zeta potential and the increased hydrophobicity of concentrate in the mixed oil phase may improve droplet agglomeration, leading to enhanced oxidative stability of the concentrate-containing microcapsules. Decreased repulsive forces between droplets result in a more compact structure, thicker outer shell, and smoother surface, resulting in enhanced oxidation stability of the concentrate-containing microcapsules.
Collapse
Affiliation(s)
- Qiuyu Xia
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Taiwo O Akanbi
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| | - Bo Wang
- Nu-Mega Ingredients Pty Ltd., Brisbane, QLD 4113, Australia.
| | - Rui Li
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| |
Collapse
|
41
|
Xie D, Gong M, Wei W, Jin J, Wang X, Wang X, Jin Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr Rev Food Sci Food Saf 2019; 18:514-534. [PMID: 33336946 DOI: 10.1111/1541-4337.12427] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Antarctic krill (Euphausia superba) oil has been receiving increasing attention due to its nutritional and functional potentials. However, its application as a novel food ingredient has not yet been fully explored. This review summarizes the chemical composition, extraction technologies, potential health benefits, and current applications of krill oil, with the aim of providing suggestions for its exploitation. Krill oil is a unique lipid consisting of diverse lipid classes and is characterized by a high concentration (39.29% to 80.69%) of phospholipids (PLs) associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It also contains considerable amounts of bioactive minor components such as astaxanthin, sterols, tocopherols, vitamin A, flavonoids, and minerals. The current technologies used in krill oil production are solvent extraction, nonsolvent extraction, super/subcritical fluid extraction, and enzyme-assisted pretreatment extraction, which all greatly influence the yield and quality of the end-product. In addition, krill oil has been documented to have various health benefits, including anti-inflammatory effects, cardiovascular disease (CVD) prevention, women's health, neuroprotection, and anticancer activities. Although krill oil products used for dietary supplements have been commercially available, few studies have attempted to explore the underlying molecular mechanisms to elucidate how exactly the krill oil exerts different biological activities. Further studies should focus on this to improve the development of krill oil products for human consumption.
Collapse
Affiliation(s)
- Dan Xie
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.,the Zhonghai Ocean (Wuxi) Marine Equipment Engineering Co. Ltd., Jiangnan Univ. Natl. Univ. Science Park, 100 Jinxi Road, Wuxi, Jiangsu, 214125, P. R. China
| | - Mengyue Gong
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Wei
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Jun Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaosan Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xingguo Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Qingzhe Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
42
|
Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 2019; 121:1276-1286. [DOI: 10.1016/j.ijbiomac.2018.10.144] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|
43
|
Moharana TR, Pal B, Rao NM. X-ray structure and characterization of a thermostable lipase from Geobacillus thermoleovorans. Biochem Biophys Res Commun 2018; 508:145-151. [PMID: 30471860 DOI: 10.1016/j.bbrc.2018.11.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
Abstract
Thermo-alkalophilic bacterium, Geobacillus thermoleovorans secrets many enzymes including a 43 kDa extracellular lipase. Significant thermostability, organic solvent stability and wide substrate preferences for hydrolysis drew our attention to solve its structure by crystallography. The structure was solved by molecular replacement method and refined up to 2.14 Å resolution. Structure of the lipase showed an alpha-beta fold with 19 α-helices and 10 β-sheets. The active site remains covered by a lid. One calcium and one zinc atom was found in the crystal. The structure showed a major difference (rmsd 5.6 Å) from its closest homolog in the amino acid region 191 to 203. Thermal unfolding of the lipase showed that the lipase is highly stable with Tm of 76 °C. 13C NMR spectra of products upon triglyceride hydrolysate revealed that the lipase hydrolyses at both sn-1 and sn-2 positions with equal efficiency.
Collapse
Affiliation(s)
| | - Biswajit Pal
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | | |
Collapse
|
44
|
Chen Y, Cheong LZ, Zhao J, Panpipat W, Wang Z, Li Y, Lu C, Zhou J, Su X. Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. Int J Biol Macromol 2018; 123:261-268. [PMID: 30423396 DOI: 10.1016/j.ijbiomac.2018.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022]
Abstract
Present study employed molecular modeling method to elucidate the binding affinity of lipases with fatty acids of different chain lengths; and investigated the effects of lipases positional and fatty acids specificity on omega-3 polyunsaturated fatty acids (ω-3 PUFAs) enrichment in cod liver and linseed oils. Among the lipases studied, molecular modeling showed the active sites of Candida rugosa lipase (CRL) had a low C-Docker interactive energy for saturated (SFA) and monounsaturated (MUFA) fatty acids which predicted CRL to have highest preferences to selectively hydrolyze resulting in efficient enrichment of ω-3 PUFAs. Verification experiments showed the SFA and MUFA in the acylglycerol fraction includes monoacylglcyerols (MAG), diacyglycerols (DAG), and triacylglycerols (TAG) of CRL-hydrolyzed cod liver oil decreased from the initial 25.21 to 16.88% and 45.25 to 32.17%, respectively. In addition, CRL-hydrolyzed cod liver oil demonstrated 88.36% of ω-3 PUFAs enrichment. The regio-distribution of fatty acids in CRL-hydrolyzed cod liver oil were not significantly different than that of cod liver oil indicating the ω-3 PUFAs enrichment was due to fatty acids selectivity and not positional selectivity of CRL.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Ling-Zhi Cheong
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiahe Zhao
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Zhipan Wang
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Li
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chenyang Lu
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jun Zhou
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiurong Su
- Department of Food Science, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Performance of 3‑[4‑(bromomethyl)phenyl]‑7‑(diethylamino) coumarin as a derivatization reagent for the analysis of medium and long chain fatty acids using HPLC with LIF detection. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:50-57. [DOI: 10.1016/j.jchromb.2018.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/15/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
|
46
|
Characterization of Positional Distribution of Fatty Acids and Triacylglycerol Molecular Compositions of Marine Fish Oils Rich in Omega-3 Polyunsaturated Fatty Acids. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3529682. [PMID: 30112380 PMCID: PMC6077587 DOI: 10.1155/2018/3529682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
The regiospecific characteristics of n-3 polyunsaturated fatty acids (PUFAs) in triacylglycerol (TAG) significantly affect the physicochemical and physiological properties of marine fish oils. In this study, the TAG molecular species composition and positional distributions of fatty acids were investigated in three marine fish species rich in omega-3 PUFAs (anchovy, tuna, and salmon). The regiospecific distribution of the fatty acids was measured with the allylmagnesium bromide (AMB) degradation method. The TAG compositions were analyzed with HPLC and the TAG molecular species were identified with APCI/MS. DHA was preferentially distributed at the sn-2 position of TAG, whereas EPA was evenly distributed along the glycerol backbone. The combinations of FAs, DDO, EOP, EPS, DSS, OOS, and PPS were the predominant TAG molecular species, and OOP, DOS, and DPoPo were the characteristic TAG molecules in the anchovy, salmon, and tuna, respectively. These data can be used to distinguish other marine fish species. The TAG composition categorized by TCN and ECN showed well-structured distributions, with double or triple peaks. These findings should greatly extend the use of marine fish oils in food production and may significantly affect the future development of the fish oil industry.
Collapse
|
47
|
Matuoog N, Li K, Yan Y. Thermomyces lanuginosus
lipase immobilized on magnetic nanoparticles and its application in the hydrolysis of fish oil. J Food Biochem 2018. [DOI: 10.1111/jfbc.12549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naeema Matuoog
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Kai Li
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| |
Collapse
|
48
|
Akanbi TO, Barrow CJ. Lipase-Produced Hydroxytyrosyl Eicosapentaenoate is an Excellent Antioxidant for the Stabilization of Omega-3 Bulk Oils, Emulsions and Microcapsules. Molecules 2018; 23:E275. [PMID: 29382165 PMCID: PMC6017098 DOI: 10.3390/molecules23020275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, several lipophilic hydroxytyrosyl esters were prepared enzymatically using immobilized lipase from Candida antarctica B. Oxidation tests showed that these conjugates are excellent antioxidants in lipid-based matrices, with hydroxytyrosyl eicosapentaenoate showing the highest antioxidant activity. Hydroxytyrosyl eicosapentaenoate effectively stabilized bulk fish oil, fish-oil-in-water emulsions and microencapsulated fish oil. The stabilizing effect of this antioxidant may either be because it orients itself with the omega-3 fatty acids in the oil, thereby protecting them against oxidation, or because this unstable fatty acid can preferentially oxidise, thus providing an additional mechanism of antioxidant protection. Hydroxytyrosyl eicosapentaenoate itself was stable for one year when stored at -20 °C.
Collapse
Affiliation(s)
- Taiwo Olusesan Akanbi
- Centre for Chemistry and Biotechnology, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
| | - Colin James Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
| |
Collapse
|
49
|
Regiospecific Analysis of Fatty Acids and Calculation of Triglyceride Molecular Species in Marine Fish Oils. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9016840. [PMID: 29670910 PMCID: PMC5833240 DOI: 10.1155/2018/9016840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
The regiospecific distribution of fatty acids (FAs) and composition of triglyceride (TAG) molecular species of fishes were analyzed and calculated by pancreatic lipase (PL) hydrolysis and Visual Basic (VB) program. DHA was preferentially located at sn-2 position in TAG molecule, whereas EPA was almost equally distributed in each position of glycerol backbone. DOP, DPP, EPP, PoPP, PPO, and PPP were the predominant TAG species. MPP in anchovy, DDP, DOP, DPP in tuna, and EOO and OOO in salmon were the characteristic TAG molecules, which were meaningful to differentiate marine fish oils. Furthermore, the data management, according to TCN and ECN, was firstly applied to classify the TAG molecular species. The ECN42, ECN46, and ECN48 groups were rich in TAGs. The lower ECN values, compared to the higher TCN values, indicated that the most abundant TAGs exhibited a higher unsaturated degree. Therefore, our study not only offered a simple and feasible approach for the analysis of TAG composition but also firstly summarized the information by data management within ECN and TCN.
Collapse
|
50
|
Marín-Suárez M, Morales-Medina R, Guadix EM, Guadix A. A Simple Enzymatic Process to Produce Functional Lipids From Vegetable and Fish Oil Mixtures. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marta Marín-Suárez
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Rocío Morales-Medina
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Emilia M. Guadix
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Antonio Guadix
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| |
Collapse
|