1
|
Sohn Y, Hwang Y, Kim K, Lee SJ, Yeon JH. Comparison of Antioxidant Activities of Dendropanax morbifera Léveille Extracts According to Harvest Area. Rejuvenation Res 2025. [PMID: 39888630 DOI: 10.1089/rej.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Dendropanax morbifera Léveille is a medicinal plant native to East Asia with its diverse therapeutic potentials. In particular, the antioxidant effect of this plant is well known, but there has been little research on the antioxidant effect according to different habitats or ages. In this study, we evaluated the proximate composition, mineral, saponin, rutin, total phenolic and flavonoid contents, and antioxidant activities of leaf extracts of D. morbifera plants cultivated from two different regions (New Zealand and Jeju Island, Korea) and of the same age (2-year-old plants). The assessment of proximate composition and total phenolic and flavonoid contents revealed significant variations in these parameters dependent on the cultivation region and age. The highest total phenol and total flavonoid contents were observed in D. morbifera from Jeju Island. In addition, the antioxidant activities of leaf extracts of D. morbifera from different cultivation regions and ages were assessed in terms of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)free radical scavenging, total antioxidant capacity, and superoxide dismutase activity. The extract of D. morbifera from Jeju Island showed the highest antioxidant activity among the samples tested. These findings clearly indicate that both the cultivation region and plant age affect the phytochemical content and antioxidant activity of D. morbifera. Therefore, extracts of D. morbifera obtained from optimal harvest regions and ages could serve as promising natural antioxidant candidates with potential health benefits.
Collapse
Affiliation(s)
- Yehjoo Sohn
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Yewon Hwang
- Double Pine Investment Limited, Kerikeri, New Zealand
| | - Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Sung Je Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Ngoc LTN, Moon JY, Lee YC. Dendropanax morbifera Extracts for Cosmetic Applications: Systematic Review and Meta-Analysis. Curr Issues Mol Biol 2024; 46:13526-13541. [PMID: 39727936 DOI: 10.3390/cimb46120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
We have conducted a systematic review and meta-analysis to evaluate the cosmetic applications of Dendropanax morbifera extracts (DMEs). A total of 261 articles were screened; however, after eliminating inappropriate studies, only 16 individual studies were eligible. The comparative standardized mean difference (SMD) between the DME treatment and control groups was used to evaluate the cosmetic properties of DME, including its biocompatibility, whitening effects, and anti-inflammatory and antimicrobial properties. DME treatment exhibited positive results in controlling hyperpigmentation, including effective inhibition of the production of tyrosinase and melanin, with SMDs of 6.85 [4.27, 9.44] and 23.38 [12.94, 33.82], respectively. Moreover, the results confirmed the anti-inflammatory properties in terms of suppressing the expression of interleukin markers (ILs) (SMD = 5.22 [3.12, 7.33]) and reducing NO production (SMD = 6.92 [2.89, 10.96]). DME treatment also effectively inhibited bacteria growth, which causes skin disorders. According to the results, DMEs are shown to be highly biocompatibility, with excellent anti-hyperpigmentation, anti-inflammatory, and antimicrobial properties that contribute significantly to improving skin appearance. The findings provide strong evidence for further research into the in vivo effects of DMEs and their potential cosmetic applications, which could lead to clinical trials in the future.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Ju-Young Moon
- Major in Beauty Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Xu F, Xu S, Yang L, Qu A, Li D, Yu M, Wu Y, Zheng S, Ruan X, Wang Q. Preparing a Phytosome for Promoting Delivery Efficiency and Biological Activities of Methyl Jasmonate-Treated Dendropanax morbifera Adventitious Root Extract (DMARE). Biomolecules 2024; 14:1273. [PMID: 39456206 PMCID: PMC11505992 DOI: 10.3390/biom14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Methyl jasmonate-treated D. morbifera adventitious root extract (MeJA-DMARE), enriched with phenolics, has enhanced bioactivities. However, phenolics possess low stability and bioavailability. Substantial evidence indicates that plant extract-phospholipid complex assemblies, known as phytosomes, represent an innovative drug delivery system. (2) Methods: The phytosome complex was created by combining MeJA-DMARE with Soy-L-α-phosphatidylcholine (PC) using three different ratios through two distinct methods (co-solvency method: A1, A2, and A3; thin-layer film method: B1, B2, and B3). (3) Results: Initial evaluation based on UV-Vis, entrapment efficiency (EE%), and loading content (LC%) indicated that B2 exhibited the highest EE% (79.98 ± 1.45) and LC% (69.17 ± 0.14). The phytosome displayed a spherical morphology with a particle size of 210 nm, a notably low polydispersity index of 0.16, and a superior zeta potential value at -25.19 mV. The synthesized phytosome exhibited superior anti-inflammatory activities by inhibiting NO and ROS production (reduced to 8.9% and 55.1% at 250 μg/mL) in RAW cells and adjusting the expression of related inflammatory cytokines; they also slowed lung tumor cell migration (only 2.3% of A549 cells migrated after treatment with phytosomes at 250 μg/mL), promoting ROS generation in A549 cell lines (123.7% compared to control) and stimulating apoptosis of lung cancer-related genes. (4) Conclusions: In conclusion, the MeJA-DMARE phytosome offers stable, economically efficient, and environmentally friendly nanoparticles with superior inflammation and lung tumor inhibition properties. Thus, the MeJA-DMARE phytosome holds promise as an applicable and favorable creation for drug delivery and lung cancer treatment.
Collapse
Affiliation(s)
- Fengjiao Xu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Shican Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, College of Agriculture, Henan University, Kaifeng 475004, China;
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Aili Qu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Dongbin Li
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Minfen Yu
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Yongping Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| |
Collapse
|
4
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
5
|
Frazaei MH, Nouri R, Arefnezhad R, Pour PM, Naseri M, Assar S. A Review of Medicinal Plants and Phytochemicals for the Management of Gout. Curr Rheumatol Rev 2024; 20:223-240. [PMID: 37828678 DOI: 10.2174/0115733971268037230920072503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Gout, characterized by elevated uric acid levels, is a common inflammatory joint disease associated with pain, joint swelling, and bone erosion. Existing treatments for gout often result in undesirable side effects, highlighting the need for new, safe, and cost-effective anti-gout drugs. Natural products, including medicinal plants and phytochemicals, have gained attention as potential sources of anti-gout compounds. In this review, we examined articles from 2000 to 2020 using PubMed and Google Scholar, focusing on the effectiveness of medicinal plants and phyto-chemicals in managing gout. Our findings identified 14 plants and nine phytochemicals with anti-gout properties. Notably, Teucrium polium, Prunus avium, Smilax riparia, Rhus coriaria, Foenic-ulum vulgare, Allium cepa, Camellia japonica, and Helianthus annuus exhibited the highest xa-thine oxidase inhibitory activity, attributed to their unique natural bioactive compounds such as phenolics, tannins, coumarins, terpenoids, and alkaloids. Herbal plants and their phytochemicals have demonstrated promising effects in reducing serum urate and inhibiting xanthine. This review aims to report recent studies on plants/phytochemicals derived from herbs beneficial in gout and their different mechanisms.
Collapse
Affiliation(s)
- Mohammad Hosein Frazaei
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roghayeh Nouri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Arefnezhad
- Anatomical Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Mohammadi Pour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Yang J, Kim JS, Kwon YS, Seong ES, Kim MJ. Antioxidant and Antiproliferative Activities of Eclipta prostrata (L.) L. Extract and Isolated Compounds. Molecules 2023; 28:7354. [PMID: 37959773 PMCID: PMC10650814 DOI: 10.3390/molecules28217354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The primary objective of this study was to elucidate the chemical composition, antioxidant properties, and antiproliferative activities of Eclipta prostrata extracts. Two flavonoids, 3'-O-methylorobol and apigenin 7-sulfate, were isolated from the ethyl acetate (EtOAc) extract of E. prostrata. The total phenolic and flavonoid contents of the E. prostrata extracts, as well as their overall antioxidant activities as measured using the 2,2-diphenyl-1-picrylhydrazyl and reducing power assays, were investigated. The E. prostrata EtOAc extract exhibited significantly greater antioxidant activities in both assays and higher phenol and flavonoid contents than the other extracts. The potential antiproliferative properties of the E. prostrata extracts and isolated compounds were investigated in vitro against the AGS, A549, and HT-29 cancer cell lines and the normal human HEK-293 cell line using the MTT assay. Annexin V-FITC/PI staining analysis and quantitative real-time PCR were used to assess AGS cell apoptosis. At a concentration of 100 µg/mL, the EtOAc extract of E. prostrata reduced AGS cell viability and proliferation by inducing apoptosis through the alteration of gene expression in the apoptotic cascade. These results highlight E. prostrata as a promising source of anticancer compounds.
Collapse
Affiliation(s)
- Jinfeng Yang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China;
| | - Joo Seok Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Soo Seong
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myong Jo Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
7
|
Shojazadeh T, Zolghadr L, JafarKhani S, Gharaghani S, Farasat A, Piri H, Gheibi N. Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme. J Biomol Struct Dyn 2023; 41:1378-1387. [PMID: 34974821 DOI: 10.1080/07391102.2021.2020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University Qazvin, Qazvin, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
Gali S, Sharma S, Kundu A, Lee E, Han JH, Shin JK, Choi JS, Kyung SY, Kim JS, Kim HS. Protective effect of dendropanoxide against cadmium-induced hepatotoxicity via anti-inflammatory activities in Sprague-Dawley rats. Toxicol Mech Methods 2023:1-15. [PMID: 36718047 DOI: 10.1080/15376516.2023.2171824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Eunah Lee
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Jae-Sung Kim
- Mary Culver Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| |
Collapse
|
9
|
Anti-Periodontitis Effects of Dendropanax morbiferus H.Lév Leaf Extract on Ligature-Induced Periodontitis in Rats. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020849. [PMID: 36677905 PMCID: PMC9862488 DOI: 10.3390/molecules28020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Periodontitis is caused by pathogens in the oral cavity. It is a chronic infectious disease that causes symptoms including gingival bleeding and tooth loss resulting from the destruction of periodontal tissues coupled with inflammation. Dendropanax morbiferus H.Lév (DM) is a natural product that exhibits various biological activities with few side effects. In this study, the potential of DM leaf hot-water extracts (DMWE) as a treatment for periodontitis was determined and its anti-oxidant and anti-inflammatory effects were evaluated. Compounds in DMWE were identified by high-performance liquid chromatography (HPLC) and nitric oxide (NO) and prostaglandin E2 (PGE2) production was measured in RAW 264.7 cells. We measured the gingival index and gingival sulcus depth, and micro-CT was performed in vivo using a ligature-induced periodontitis rat model, which is similar to human periodontitis. The DMWE-treated group exhibited a decrease in cytokine concentration and relieved the gingival index and gingival sulcus depth compared with the periodontitis-induced control group. In addition, micro-CT and histological analysis revealed that DMWE exhibited anti-inflammatory effects and improved alveolar bone loss in periodontitis-induced rats. These findings suggest that DMWE has excellent anti-oxidant and anti-inflammatory effects that protect and prevent periodontal tissue damage and tooth loss caused by the inflammatory response.
Collapse
|
10
|
Eom YS, Jeong D, Ryu AR, Song KH, Im DS, Lee MY. Daphne odora Exerts Depigmenting Effects via Inhibiting CREB/MITF and Activating AKT/ERK-Signaling Pathways. Curr Issues Mol Biol 2022; 44:3312-3323. [PMID: 35892714 PMCID: PMC9332310 DOI: 10.3390/cimb44080228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023] Open
Abstract
Daphne odora, a blooming shrub, has been traditionally used for various medicinal purposes. However, information on its anti-melanogenic activity and dermal application is limited. In this study, the Daphne odora extract (DOE), with constituents including daphnetin, was used to investigate depigmenting activity and the underlying mechanism of Daphne odora. DOE inhibited in vitro and cellular tyrosinase activity in a dose-dependent manner, and reduced the α-MSH-induced melanin biosynthesis to a control level. The protein expressions of melanin synthesis-related enzymes were also significantly reduced by DOE. Moreover, DOE decreased the phosphorylation of cAMP-response element binding proteins (CREBs) induced by α-MSH in B16F10 cells, while it activated phosphorylated extra-cellular signal-regulated kinases (ERKs) and protein kinase B (AKT) expression. These results suggest that DOE might inhibit the melanogenesis signaling pathways by activating ERK- and AKT-signaling pathways to regulate the expression of CREB and MITF and its downstream pathways. Therefore, DOE could potentially be developed as a depigmenting agent.
Collapse
Affiliation(s)
- Young Sic Eom
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
| | - Dongho Jeong
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
| | - Keon-Hyoung Song
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea
| | - Dai Sig Im
- Department of SC Major on New Medicinal Materials, Division of Student Corporation, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea; (Y.S.E.); (D.J.); (K.-H.S.)
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
11
|
Dihydroconiferyl Ferulate Isolated from Dendropanax morbiferus H.Lév. Suppresses Stemness of Breast Cancer Cells via Nuclear EGFR/c-Myc Signaling. Pharmaceuticals (Basel) 2022; 15:ph15060664. [PMID: 35745583 PMCID: PMC9231027 DOI: 10.3390/ph15060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the leading cause of global cancer incidence and breast cancer stem cells (BCSCs) have been identified as the target to overcome breast cancer in patients. In this study, we purified a BCSC inhibitor from Dendropanax morbiferus H.Lév. leaves through several open column and high-performance liquid chromatography via activity-based purification. The purified cancer stem cell (CSC) inhibitor was identified as dihydroconiferyl ferulate using nuclear magnetic resonance and mass spectrometry. Dihydroconiferyl ferulate inhibited the proliferation and mammosphere formation of breast cancer cells and reduced the population of CD44high/CD24low cells. Dihydroconiferyl ferulate also induced apoptosis, inhibited the growth of mammospheres and reduced the level of total and nuclear EGFR protein. It suppressed the EGFR levels, the interaction of Stat3 with EGFR, and c-Myc protein levels. Our findings show that dihydroconiferyl ferulate reduced the level of nuclear epidermal growth factor receptor (EGFR) and induced apoptosis of BCSCs through nEGFR/Stat3-dependent c-Myc deregulation. Dihydroconiferyl ferulate exhibits potential as an anti-CSC agent through nEGFR/Stat3/c-Myc signaling.
Collapse
|
12
|
Zhang R, Rupa EJ, Zheng S, Nahar J, Yang DC, Kang SC, Wang Y. Panos-Fermented Extract-Mediated Nanoemulsion: Preparation, Characterization, and In Vitro Anti-Inflammatory Effects on RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010218. [PMID: 35011448 PMCID: PMC8746678 DOI: 10.3390/molecules27010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/04/2022]
Abstract
This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential −28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1β, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.
Collapse
Affiliation(s)
- Rui Zhang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (R.Z.); (S.Z.)
| | - Esrat Jahan Rupa
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Korea; (E.J.R.); (J.N.); (D.C.Y.)
| | - Siwen Zheng
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (R.Z.); (S.Z.)
| | - Jinnatun Nahar
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Korea; (E.J.R.); (J.N.); (D.C.Y.)
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Korea; (E.J.R.); (J.N.); (D.C.Y.)
| | - Se Chan Kang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Korea; (E.J.R.); (J.N.); (D.C.Y.)
- Correspondence: (S.C.K.); (Y.W.); Fax: +82-31-202-26 (S.C.K.)
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (R.Z.); (S.Z.)
- Correspondence: (S.C.K.); (Y.W.); Fax: +82-31-202-26 (S.C.K.)
| |
Collapse
|
13
|
Ahmed AMA, Rahman MA. Wild epiphytic Bangladeshi orchids Cymbidium aloifolium (L.) Sw. and Papilionanthe teres (Roxb.) Lindl. potentially modulates the immune functions in Swiss albino mice. J Adv Vet Anim Res 2021; 8:479-488. [PMID: 34722747 PMCID: PMC8520151 DOI: 10.5455/javar.2021.h537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/03/2022] Open
Abstract
Objective This research investigated the immunomodulatory potentials of two medicinally important wild epiphytic Bangladeshi orchids Cymbidium aloifolium and Papilionanthe teres using Swiss albino mice. Materials and Methods Orchid extracts were prepared using a cold methanol extraction procedure. To assess the immunomodulatory action, Swiss albino mice of either sex weighing 25-35 gm were divided into five groups each with six animals. Sheep red blood cells (SRBC) of 0.5 × 109 cells/ml were used to immunize all mice on the 7th day, and a booster dose of the same quantity of SRBC was given on the 11th day of the experiment. After 14 days of oral treatment with 100 and 200 mg/kg bw of orchid extract, the mice were sacrificed to collect serum and organs. Hematological assays, delayed type of hypersensitivity assays, phagocytic index (PI), and histopathological investigations were used to assess in vivo immunomodulatory efficacy. Results The body weight changes of the experimental animals were considerably greater at 100 mg/kg bw than at a higher dose (200 mg/kg bw). There was a substantial improvement of relative organ weights of the thymus and spleen at the low dose, but no effect on kidney weights was evident. The liver weight increased significantly (p < 0.05) at both doses. Total neutrophil, leukocyte, and lymphocyte counts, hemoglobin percentage, delayed hypersensitivity reaction, and PI were all significantly (p < 0.05) increased in mice receiving the lower dose. In contrast to the control group, the higher dose reduced immunological response, suggesting the negative influence of a higher dose of extracts on the immune reaction. Conclusions The results demonstrate that orchid extracts can potentially modulate the innate immune system in the experimental animal.
Collapse
Affiliation(s)
- A M Abu Ahmed
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh.,Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
14
|
Park S, Lee KH, Choi H, Jang G, Kang WS, Kim E, Kim JS, Na CS, Kim S. Combined antihypertensive effect of unripe Rubus coreanus Miq. and Dendropanax morbiferus H. Lév. Extracts in 1 kidney-1 clip hypertensive rats and spontaneously hypertensive rats. BMC Complement Med Ther 2021; 21:271. [PMID: 34711215 PMCID: PMC8555169 DOI: 10.1186/s12906-021-03438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background We previously showed that enzymatically hydrolyzed Dendropanax morbiferus H. Lév. leaf (Hy-DP) and unripe Rubus coreanus Miq. (5-uRCK) extracts exhibit potent vasodilator effects on isolated aortic rings from rats partly through endothelium-dependent and endothelium-independent mechanisms. These two extracts have different mechanisms of action; however, their combined effect on antihypertensive activity has not been explored. Methods The present study aims to investigate the effect of a chronic optimized mixture (HDR-2, composed of Hy-DP and 5-uRCK in a 2:1 mass ratio) on vascular tension and blood pressure in two different hypertensive rat models. Results The results showed that HDR-2 concentration-dependently relaxed endothelium-intact and endothelium-denuded aortic rings precontracted with phenylephrine. Antihypertensive effects were assessed in vivo on a 1 kidney-1 clip (1 K-1C) rat model of hypertension and spontaneously hypertensive rats (SHRs). Acute HDR-2 treatment significantly decreased systolic blood pressure (SBP) 3 h posttreatment in both models. Chronic HDR-2 administration also significantly decreased SBP in the hypertensive rat models. Moreover, HDR-2 increased eNOS protein expression and phosphorylation levels in the aorta. Conclusion Chronic HDR-2 administration may effectively improve vascular function by decreasing plasma angiotensin-converting enzyme (ACE) activity and AngII levels. HDR-2 significantly improved acetylcholine (ACh)-induced aortic endothelium-dependent relaxation and affected sodium nitroprusside (SNP)-induced endothelium-independent relaxation in SHRs.
Collapse
Affiliation(s)
- Soyi Park
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Hakjoon Choi
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Goeun Jang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Wan Seok Kang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Eun Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea.
| |
Collapse
|
15
|
Laxative Effects of a Standardized Extract of Dendropanax morbiferus H. Léveille Leaves on Experimental Constipation in Rats. Medicina (B Aires) 2021; 57:medicina57111147. [PMID: 34833365 PMCID: PMC8619072 DOI: 10.3390/medicina57111147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: This study aimed at investigating the laxative effects of a standardized aqueous extract of Dendropanax morbiferus H. Lév. on two different constipation rat models. Materials and Methods: Animal studies were conducted with low-fiber diet-induced and loperamide-induced constipation animal models, and isolated colons were used in ex vivo analysis to determine the changes in colonic motility caused by D. morbiferus H. Lév. leaf extract (DPL). Results: The results showed that DPL administration significantly improved certain reduced fecal parameters (number, weight, and water content of the stools) in a both low-fiber diet and loperamide-induced constipation models without adverse effects of diarrhea. The laxative effect of DPL was confirmed to improve the charcoal excretion time upon DPL treatment in a low-fiber diet or loperamide-induced constipation model through gastrointestinal (GI) motility evaluation using the charcoal meal test. In addition, when DPL was administered to RAW264.7 cells and loperamide-induced constipation model rats, the production of prostaglandin E2 (PGE2) increased significantly in cells and tissue. Furthermore, DPL dose-dependently stimulated the spontaneous contractile amplitude and frequency of the isolated rat colon. Conclusion: Although our study did not provide information on the acute or chronic toxicity of DPL, our results demonstrated that DPL can effectively promote defecation frequency and rat colon contraction, providing scientific evidence to support the use of DPL as a therapeutic application. However, further toxicity studies of DPL are needed prior to the initiation of clinical trials and clinical applications.
Collapse
|
16
|
Antihyperuricemic Effect of Dendropanax morbifera Leaf Extract in Rodent Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3732317. [PMID: 34335806 PMCID: PMC8324340 DOI: 10.1155/2021/3732317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022]
Abstract
Dendropanax morbifera is a well-known traditional medicine used in China and Korea to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis. Hyperuricemia is a metabolic disorder characterized by a high uric acid level in serum due to an imbalance between uric acid production and excretion and causes gout. Recently, the prevalence of hyperuricemia worldwide has been continuously increasing. Xanthine oxidase (XOD) inhibitors (allopurinol (ALP) and febuxostat) and uricosuric agents (benzbromarone and probenecid) are used to treat hyperuricemia clinically. However, because these drugs are poorly tolerated and cause side effects, such as kidney diseases, hepatotoxicity, gastrointestinal symptoms, and hypersensitivity syndrome, only a limited number of drugs are available. We investigated the antihyperuricemic effects of Dendropanax morbifera leaf ethanol extract (DMLE) and its underlying mechanisms of action through in vitro and in vivo studies. We evaluated uric acid levels in serum and urine, and xanthine oxidase (XOD) inhibition activity in the serum and liver tissue of a hyperuricemic rat model of potassium oxonate (PO)-induced hyperuricemic rats. In vitro study, XOD-inhibitory activity was the lowest among the test substances at the IC50 of ALP. However, the IC50 of DMLE-70 was significantly low compared with that of other DMLEs (p < 0.05). In PO-induced hyperuricemic rats, uric acid (UA) levels in serum and urine were significantly reduced in all DMLE-70 and allopurinol-treated (ALT) groups than in the PC group (p < 0.05). UA levels in urine were lower than those in serum in all DME groups. In PO-induced hyperuricemic rats, DMEE-200 reduced UA concentration in serum and increased UA excretion in the urine. These findings suggest that DMLE exerts antihyperuricemic and uricosuric effects on promoting UA excretion by enhanced secretion and inhibition of UA reabsorption in the kidneys. Thus, DMLE may be a potential treatment for hyperuricemia and gout.
Collapse
|
17
|
Optimization of phenolics and flavonoids extraction from the fruit of Empetrum nigrum var. japonicum from Jeju Island in South Korea. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Wang Q, Yang F, Jia D, Wu T. Polysaccharides and polyphenol in dried Morinda citrifolia fruit tea after different processing conditions: Optimization analysis using response surface methodology. PeerJ 2021; 9:e11507. [PMID: 34123597 PMCID: PMC8164410 DOI: 10.7717/peerj.11507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
The increasing popularity of Morinda citrifolia has many medical and health benefits because of its rich polysaccharides (PSC) and polyphenols (PPN). It has become popular to brew the dry M. citrifolia fruit slice as tea in some regions of China. In this study, optimize the extraction parameters of M. citrifolia fruit tea polysaccharides and polyphenols using response surface methodology. The results indicated the highest PSC yield of 17% at 46 °C for 11 min and the ratio of water/M. citrifolia fruit powder was 78 mL/g. The optimum extraction of PPN was at 95 °C for 10 min and the ratio of water/M. citrifolia fruit powder 90 mL/g, with 8.93% yield. Using dry M. citrifolia fruit slices as a tea is reported for the first time. Based on the results, the maximum level of PSC can be obtained under condition by infusing about four dried M. citrifolia fruit slice with average thickness and size in warm boiled water for 11 min, taking a 300 mL cup (300 mL of water) for example. The maximum level of PPN can be obtained by adding three slices of dried M. citrifolia fruit slice to boiled water for 10 min. Considering the powder used in our study, the further pulverization of cutting into powder is more conducive to material precipitation. This study provides a scientific basis for obtaining PSC and PPN from dry M. citrifolia fruit slice tea by brewing.
Collapse
Affiliation(s)
- Qingfen Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Fei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Dandan Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| |
Collapse
|
19
|
Kim MO, Kang MJ, Lee SU, Kim DY, Jang HJ, An JH, Lee HS, Ryu HW, Oh SR. Polyacetylene (9Z,16S)-16-hydroxy-9,17-octadecadiene-12,14-diynoic acid in Dendropanax morbifera leaves. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Abstract
Hyperuricaemia is characterised by a high level of urate in the blood. The crystallisation of urate is considered a critical risk factor for the development of gout. Allopurinol and febuxostat have been commonly used medications to decrease the circulating urate levels. However, the use of these drugs is associated with undesired side effects. Therefore, the development of a new active, safety anti-hyperuricaemic and anti-inflammatory drug could be useful in gout therapy and is highly justified. Natural products have become a source of new pharmaceuticals due to their strong efficacy with less side effects, which relies on the comprising of complex bioactive compounds. There are a growing number of studies purporting decreasing serum urate with traditional medicines. This article was aimed to review these studies and identify which extracts promote urate reduction, along with their different mechanisms.
Collapse
|
21
|
Razzaque F, Sharif A, Akhtar B, Khan HM, Akhtar MF, Zaib M, Muhammad A, Sohail K, Hamid I, Qaisar N. Tylophora hirsuta (Wall.) Extracts Ameliorate Diabetes Associated with Inflammation in Alloxan-induced Diabetic Rats. Endocr Metab Immune Disord Drug Targets 2021; 21:1031-1042. [PMID: 32955006 DOI: 10.2174/1871530320666200821154340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tylophora hirsuta (Wall) has long been used as traditional medicine for the treatment of diabetes. The current study is designed to evaluate the anti-diabetic and anti-inflammatory activity of different extracts of aerial parts of Tylophora hirsuta. METHODS Sequential maceration was conducted to obtain extracts. Total phenolic contents were determined by the Folin-Ciocalteau method. The anti-oxidant activity was assessed by DPPH free radical scavenging assay. The extracts were tested for its inhibitory activity against α-amylase in-vitro. In-vivo anti-diabetic assay was conducted using alloxan-induced diabetic model and OGTT was conducted on normal rats. ELISA was used to determine the pro-inflammatory cytokines (TNF-α and IL-6). The polyphenolic composition of the extract was analyzed using an HPLC system. RESULTS Aqueous extract exhibited highest total phenolic contents (985.24± 3.82 mg GAE/100 g DW), antioxidant activity (IC50 = 786.70 ± 5.23 μg/mL), and alpha-amylase inhibition (IC50 =352.8 μg/mL). The aqueous extract of Tylophora hirsuta showed remarkable in-vivo anti-diabetic activity. Results were compared with standard drug glibenclamide. Alloxan induced diabetic mediated alterations in liver function enzymes, renal function determinants, and lipid parameters were significantly restored in aqueous extract treated diabetic rats. A significant reduction in pro-inflammatory cytokines (p<0.001) was observed when compared to the control group. HPLC analysis confirms the presence of quercetin, gallic acid, cinnamic acid, and p-coumaric acid. CONCLUSION These results showed that Tylophora hirsuta possesses strong anti-diabetic and anti-inflammatory potentials and justify its folklore use for the management of diabetes.
Collapse
Affiliation(s)
- Faisal Razzaque
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Humaira M Khan
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad F Akhtar
- Institute of Pharmaceutical Sciences, Ripah International University, Lahore Campus, Lahore, Pakistan
| | - Maryam Zaib
- Johar Institute of Professional Studies, Lahore, Pakistan
| | | | - Kashif Sohail
- Akson College of Health Sciences, Mirpur, Azad Kashmir, Pakistan
| | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Naeem Qaisar
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Park YJ, Kim KS, Park JH, Lee SH, Kim HR, Lee SH, Choi HB, Cao S, Kumar V, Kwak JH, Kim HS. Protective effects of dendropanoxide isolated from Dendropanax morbifera against cisplatin-induced acute kidney injury via the AMPK/mTOR signaling pathway. Food Chem Toxicol 2020; 145:111605. [PMID: 32750447 DOI: 10.1016/j.fct.2020.111605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the protective effects of dendropanoxide (DPx) isolated from Dendropanax morbifera against cis-diamminedichloroplatinum (II) (CDDP)-induced nephrotoxicity in NRK-52E cells and in Sprague-Dawley rats. DPx was administered to Sprague-Dawley rats by oral gavage (5 and 10 mg/kg) for 7 consecutive days, 24 h after intraperitoneal injection with CDDP (6 mg/kg). All rats were euthanized 24 h after the last DPx administration, and histopathological damage, acute kidney injury (AKI) biomarkers, inflammatory cytokines, and oxidative damages were evaluated. DPx (5 and 10 μg/mL) was found to protect against CDDP-induced cytotoxicity and apoptotic cell death in NRK-52E cells. CDDP-induced serum blood urea nitrogen (BUN), creatinine (sCr), and pro-inflammatory cytokines levels were significantly ameliorated by DPx in a dose-dependent manner. Furthermore, excretion of kidney injury molecules (KIM-1), selenium binding protein-1 (SBP-1), and neutrophil gelatinase-associated lipocalin (NGAL) in the urine was significantly reduced in response to DPx administration in CDDP-treated rats. Activities of antioxidant enzymes and lipid peroxidation levels were markedly altered in the kidney of CDDP-treated rats in response to DPx administration. Serum pro-inflammatory cytokine levels were dramatically suppressed by DPx in CDDP-treated rats. DPx also restored renal-cell apoptosis via regulation of AMPK/mTOR signaling in CDDP-treated rats. Our results clearly suggest that DPx ameliorates CDDP-induced nephrotoxicity in vitro and in vivo by inhibiting oxidative stress, inflammation, and apoptosis. Overall, our data demonstrates that DPx may serve as a therapeutic agent in patients with solid tumors to prevent CDDP-induced AKI.
Collapse
Affiliation(s)
- Yoo Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Song Hee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hae Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye Been Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, HI, 96720, USA
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, India
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
23
|
Balakrishnan R, Cho DY, Su-Kim I, Choi DK. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants (Basel) 2020; 9:antiox9100962. [PMID: 33049991 PMCID: PMC7601828 DOI: 10.3390/antiox9100962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.
Collapse
|
24
|
Eom T, Ko G, Kim KC, Kim JS, Unno T. Dendropanax morbifera Leaf Extracts Improved Alcohol Liver Injury in Association with Changes in the Gut Microbiota of Rats. Antioxidants (Basel) 2020; 9:antiox9100911. [PMID: 32987739 PMCID: PMC7598590 DOI: 10.3390/antiox9100911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the protective effects of Dendropanax morbifera leaf (DML) extracts in the liver due to excessive ethanol consumption. Our results showed that the ethanol extract had better antioxidant activity than the water extract, likely due to the higher levels of total flavonoid and phenolic compounds in the former. We found that the main phenolic acid was chlorogenic acid and the major flavonoid was rutin. Results from the animal model experiment showed concentration-dependent liver protection with the distilled water extract showing better liver protection than the ethanol extract. Gut microbiota dysbiosis induced by alcohol consumption was significantly shifted by DML extracts through increasing mainly Bacteroides and Allobaculum. Moreover, predicted metabolic activities of biosynthesis of beneficial monounsaturated fatty acids such as oleate and palmitoleate were enhanced. Our results suggest that these hepatoprotective effects are likely due to the increased activities of antioxidant enzymes and partially promoted by intestinal microbiota shifts.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
| | - Gwangpyo Ko
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Kyeoung Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Tatsuya Unno
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-754-3354; Fax: +82-64-756-3351
| |
Collapse
|
25
|
Saturno JFL, Dilawar MA, Mun HS, Kim DH, Rathnayake D, Yang CJ. Meat Composition, Fatty Acid Profile and Sensory Attributes of Meat from Goats Fed Diet Supplemented with Fermented Saccharina japonica and Dendropanax morbifera. Foods 2020; 9:foods9070937. [PMID: 32679921 PMCID: PMC7404804 DOI: 10.3390/foods9070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
A 90-day feeding trial was conducted to evaluate the effects of diets supplemented with three concentrations (control or 0%, 0.5% and 1.0%) of fermented Saccharina japonica and Dendropanax morbifera (FSJ-DM) on the meat composition, growth performance, oxidative stability and fatty acid profile of Korean native black goat (KNBG) meat. The feed conversion ratio and body weight gain (1st to 2nd month) were improved significantly (p < 0.05) in response to feed supplemented with 1.0% FSJ-DM. Moisture content was increased, whereas ether extract and cholesterol contents were decreased in meat obtained from goats supplemented with 1.0% FSJ-DM dietary feeds (p < 0.05). In the same diet group, the total saturated fatty acids (ΣSFA) were lower, whereas the sum of polyunsaturated fatty acids (ΣPUFA) was higher, along with higher PUFA/SFA ratio and lower n-6/n-3 ratio (p < 0.05). On an average, the dietary supplementation of 1.0% FSJ-DM reduced the thiobarbituric acid reactive substance (TBARS) and pH values of goat meat. Overall, the results of this study suggest that diet supplemented with 1.0% FSJ-DM improves the meat composition, growth performance and fatty acid profile and reduces lipid oxidation of goat meat.
Collapse
|
26
|
Kim K, Jung JH, Yoo HJ, Hyun JK, Park JH, Na D, Yeon JH. Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model. J Funct Biomater 2020; 11:jfb11030049. [PMID: 32650517 PMCID: PMC7563847 DOI: 10.3390/jfb11030049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Natural medicinal plants have attracted considerable research attention for their potential as effective drugs. The roots, leaves and stems of the plant, Dendropanax morbifera, which is endemic to southern regions of Asia, have long been used as a folk medicine to treat variety of diseases. However, the sap of this plant has not been widely studied and its bioactive properties have yet to be clearly elucidated. Here, we isolated extracellular vesicles from D. morbifera sap with the goal of improving the intracellular delivery efficiency and clinical effectiveness of bioactive compounds in D. morbifera sap. We further investigated the anti-metastatic effects of D. morbifera sap-derived extracellular vesicles (DMS-EVs) using a cancer metastasis model based on 3D microfluidic system that closely mimics the in vivo tumor environment. We found that DMS-EVs exerted a concentration-dependent suppressive effect on cancer-associated fibroblasts (CAFs), which are important mediators of cancer metastasis. DMS-EVs also altered expression level of genes, especially growth factor and extracellular matrix (ECM)-related genes, including integrin and collagen. Our findings suggest that DMS-EVs can act as anti-CAF agents to reduce CAFs in the tumor microenvironment. They further indicate the utility of our 3D microfluidic model for various drug-screening assays as a potential alternative to animal testing for use in validating therapeutic effects on cancer metastasis.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.)
| | - Jik-Han Jung
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-H.J.); (J.-H.P.)
| | - Hye Ju Yoo
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.)
| | - Jae-Kyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Ji-Ho Park
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-H.J.); (J.-H.P.)
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Korea;
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.)
- Correspondence: ; Tel.: +82-41-529-2621; Fax: +82-41-529-2674
| |
Collapse
|
27
|
Endothelium-dependent and endothelium-independent vasorelaxant effects of unripe Rubus coreanus Miq. and Dendropanax morbiferus H. Lév. extracts on rat aortic rings. BMC Complement Med Ther 2020; 20:190. [PMID: 32571292 PMCID: PMC7310015 DOI: 10.1186/s12906-020-02977-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Many clinical trials on antihypertensive drugs have confirmed the usefulness of these drugs in regulating blood pressure effectively. However, all the drugs usually require long-term use; thus, economic burdens as well as some adverse effects, including headache, diarrhea, skin rash, edema, fever, and liver and kidney dysfunction, accompany their use. Therefore, we attempted to identify natural medications for treating hypertension. We investigated the antihypertensive effects of Dendropanax morbiferus H. Lév. extract (DP), enzymatically hydrolyzed DP extract (Hy-DP) and 5% unripe Rubus coreanus Miq. ethanol extract (5-uRCK). Methods Extracts of the unripe R. coreanus were made using 20 volumes of 5% ethanol at 100 °C for 4 h. The dried leaves of D. morbiferus were subjected to enzymatic hydrolysis by protease, trypsin, bromelain and papain to increase L-arginine and GABA levels. Vasorelaxant effects of these extracts were evaluated on rat aorta precontracted with phenylephrine. In addition, hippocampal neurons, RAW 264.7 macrophages and human umbilical vein endothelial cells (HUVECs) were used to exam nitric oxide (NO) production and NO synthase (NOS) gene expression. Results DP, Hy-DP and 5-uRCK dose-dependently relaxed isolated rat aortic rings contracted with phenylephrine; however, Hy-DP was more effective than DP. L-NAME and ODQ differentially inhibited Hy-DP- and 5-uRCK-induced relaxation; both L-NAME and ODQ completely blocked 5-uRCK-mediated relaxation. Endothelium-denuded aortic ring relaxation was induced much less by 5-uRCK than by Hy-DP. Therefore, 5-uRCK and Hy-DP induced vascular relaxation by endothelium-dependent and partially endothelium-dependent mechanisms, respectively. Hy-DP and 5-uRCK induced eNOS gene expression and NO production in endothelial cells but did not change iNOS/nNOS expression or NO production in macrophages or neuronal cells. Both Hy-DP and 5-uRCK effectively induced vascular relaxation via similar but slightly different mechanisms. The best effective combination was investigated after mixing Hy-DP and 5-uRCK at different ratios. The 2:1 Hy-DP:5-uRCK mixture inhibited ACE, cGMP- and cAMP-dependent phosphodiesterase activity and vascular relaxation better than the other mixtures. Conclusion In conclusion, Hy-DP and 5-uRCK exert antihypertensive effects through different endothelium-dependent or endothelium-independent mechanisms. These findings may greatly help elucidate the mechanisms of clinical efficacy of Hy-DP:5-uRCK mixtures used for blood pressure regulation.
Collapse
|
28
|
Park HJ, Kwak M, Baek SH. Neuroprotective effects of Dendropanax morbifera leaves on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112518. [PMID: 31884031 DOI: 10.1016/j.jep.2019.112518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendropanax morbifera (DM) has long been used as a traditional herbal medicine for migraines. Glutamate toxicity and oxidative stress have emerged as the possible triggers implicated in migraine pathogenesis. AIM OF THE STUDY We aimed to examine the neuroprotective effects of DM leaves (DML) on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. MATERIALS AND METHODS Molecular authentication of DML was assessed using DNA barcoding analysis. Four different solvent extracts of DML were prepared and subjected to antioxidant activity and phytochemical assays. Neuroprotective effects of DML extracts were evaluated using relevant biochemical and imaging assays that measure cell viability/death, ROS generation, Ca2+ levels, mitochondrial dysfunction, and AIF nuclear translocation. RESULTS The sequences of matK, rbcL, atpF-H, and psbK-I in DML were identical with those in voucher specimens, confirming that DML was indeed D. morbifera. The ethyl acetate extract of DML (DMLE) showed the highest flavonoid and phenolic content, and prominent DPPH/superoxide radical scavenging and reducing power activities. In the HT22 cell model, glutamate was shown to be the causative agent for apoptotic cell death via elevation of intracellular ROS and Ca2+ levels, induction of mitochondrial depolarization and membrane permeabilization, and translocation of AIF to the nucleus. Of note, N-acetyl-L-cysteine and necrostatin-1, but not z-VAD-fmk, completely prevented glutamate-induced cell death, implying that oxidative stress and AIF translocation were pivotal in glutamate cytotoxicity. DMLE significantly recovered glutamate-induced apoptotic cell death in a concentration-dependent manner. It completely inhibited intracellular/mitochondrial ROS generation, the elevation of Ca2+ levels, and mitochondrial dysfunction induced by glutamate during early exposure within 8 h. It significantly reversed subsequent AIF nuclear translocation after 12 h of treatment. Antioxidant activities of DMLE may be the protective mechanism that regulates homeostatic balance of ROS and Ca2+ as well as maintains mitochondrial function. CONCLUSIONS DMLE shows significant neuroprotective effects against glutamate-induced oxidative neuronal cell death. Therefore, DM could be a potential therapeutic candidate for neurological disorders propagated by glutamate toxicity.
Collapse
Affiliation(s)
- Hye-Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Republic of Korea.
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
29
|
Kim K, Yoo HJ, Jung JH, Lee R, Hyun JK, Park JH, Na D, Yeon JH. Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types. J Funct Biomater 2020; 11:jfb11020022. [PMID: 32252412 PMCID: PMC7353476 DOI: 10.3390/jfb11020022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Edible plants have been widely used in traditional therapeutics because of the biological activities of their natural ingredients, including anticancer, antioxidant, and anti-inflammatory properties. Plant sap contains such medicinal substances and their secondary metabolites provide unique chemical structures that contribute to their therapeutic efficacy. Plant extracts are known to contain a variety of extracellular vesicles (EVs) but the effects of such EVs on various cancers have not been investigated. Here, we extracted EVs from four plants-Dendropanax morbifera, Pinus densiflora, Thuja occidentalis, and Chamaecyparis obtusa-that are known to have cytotoxic effects. We evaluated the cytotoxic effects of these EVs by assessing their ability to selectively reduce the viability of various tumor cell types compared with normal cells and low metastatic cells. EVs from D. morbifera and P. densiflora sap showed strong cytotoxic effects on tumor cells, whereas those from T. occidentalis and C. obtusa had no significant effect on any tumor cell types. We also identified synergistic effect of EVs from D. morbifera and P. densiflora saps on breast and skin tumor cells and established optimized treatment concentrations. Our findings suggest these EVs from plant sap as new candidates for cancer treatment.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.); (R.L.)
| | - Hye Ju Yoo
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.); (R.L.)
| | - Jik-Han Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea; (J.-H.J.); (J.-H.P.)
| | - Ruri Lee
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.); (R.L.)
| | - Jae-Kyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea; (J.-H.J.); (J.-H.P.)
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Korea;
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (H.J.Y.); (R.L.)
- Correspondence: ; Tel.: +82-41-529-2621; Fax: +82-41-529-2674
| |
Collapse
|
30
|
Eom T, Kim KC, Kim JS. Dendropanax morbifera Leaf Polyphenolic Compounds: Optimal Extraction Using the Response Surface Method and Their Protective Effects against Alcohol-Induced Liver Damage. Antioxidants (Basel) 2020; 9:antiox9020120. [PMID: 32024135 PMCID: PMC7070848 DOI: 10.3390/antiox9020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
The response surface methodology was used to optimally extract the antioxidant substances from Dendropanax morbifera leaves. The central composite design was used to optimally analyze the effects of ethanol concentration, sample to solvent ratio, extraction temperature, and extraction time on the total flavonoids (TF) content, ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant capacity (TEAC). All three parameters were largely influenced by the ethanol concentration and extraction temperature, while TEAC was also influenced by the sample to solvent ratio. The maximum values of TF content, FRAP, and TEAC were achieved under the following extraction conditions: 70% ethanol, 1:10 sample to solvent ratio, 80 °C, and 14 h. The D. morbifera leaf extracts (DMLE) produced under these optimum extraction conditions were investigated to determine their preventive effects on alcohol-induced liver injury. The DMLE was shown to prevent liver injury by scavenging the reactive oxygen species generated by alcohol. In addition, composition analysis of DMLE found high contents of chlorogenic acid and rutin that were determined to inhibit alcoholic liver injury. The findings of this study suggest that DMLE could prove useful as a functional food product supplement to prevent liver injury caused by excessive alcohol consumption.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea
| | - Kyeoung Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
31
|
Kim JS, Kim KS, Son JY, Kim HR, Park JH, Lee SH, Lee DE, Kim IS, Lee KY, Lee BM, Kwak JH, Kim HS. Protective Effects of Dendropanax morbifera against Cisplatin-Induced Nephrotoxicity without Altering Chemotherapeutic Efficacy. Antioxidants (Basel) 2019; 8:256. [PMID: 31366146 PMCID: PMC6721194 DOI: 10.3390/antiox8080256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Use of the chemotherapeutic agent cisplatin (CDDP) in cancer patients is limited by the occurrence of acute kidney injury (AKI); however, no protective therapy is available. We aimed to investigate the renoprotective effects of Dendropanax morbifera water extract (DM) on CDDP-induced AKI. Male Sprague-Dawley rats (six animals/group) received: Vehicle (control); CDDP (6 mg/kg, intraperitoneally (i.p.); DM (25 mg/kg, oral); or DM + CDDP injection. CDDP treatment significantly increased blood urea nitrogen (BUN), serum creatinine (sCr), and pro-inflammatory cytokines (IL-6 and TNF-α), and severely damaged the kidney architecture. Urinary excretion of protein-based AKI biomarkers also increased in the CDDP-treated group. In contrast, DM ameliorated CDDP-induced AKI biomarkers. It markedly protected against CDDP-induced oxidative stress by increasing the activity of endogenous antioxidants and reducing the levels of pro-inflammatory cytokines (IL-6 and TNF-α). The protective effect of DM in the proximal tubules was evident upon histopathological examination. In a tumor xenograft model, administration of DM enhanced the chemotherapeutic activity of CDDP and exhibited renoprotective effects against CDDP-induced nephrotoxicity without altering chemotherapeutic efficacy. Our data demonstrate that DM may be an adjuvant therapy with CDDP in solid tumor patients to preserve renal function.
Collapse
Affiliation(s)
- Ji Su Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyeong Seok Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Yeon Son
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hae Ri Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyeon Park
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Su Hyun Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Da Eun Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - In Su Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwang Youl Lee
- Division of Molecular biology, College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Byung Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jong Hwan Kwak
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
32
|
Lim HS, Kim YJ, Kim BY, Jeong SJ. Bakuchiol Suppresses Inflammatory Responses Via the Downregulation of the p38 MAPK/ERK Signaling Pathway. Int J Mol Sci 2019; 20:ijms20143574. [PMID: 31336605 PMCID: PMC6678636 DOI: 10.3390/ijms20143574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023] Open
Abstract
The purpose of the present study was to evaluate the effects of bakuchiol on the inflammatory response and to identify the molecular mechanism of the inflammatory effects in a lipopolysaccharide (LPS)-stimulated BV-2 mouse microglial cell line and mice model. The production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 was measured using reverse transcription–polymerase chain reaction analysis. Mitogen-activated protein kinase (MAPK) phosphorylation was determined by western blot analysis. In vitro experiments, bakuchiol significantly suppressed the production of PGE2 and IL-6 in LPS-stimulated BV-2 cells, without causing cytotoxicity. In parallel, bakuchiol significantly inhibited the LPS-stimulated expression of iNOS, COX-2, and IL-6 in BV-2 cells. However, bakuchiol had no effect on the LPS-stimulated production and mRNA expression of TNF-α or on LPS-stimulated c-Jun NH2-terminal kinase phosphorylation. In contrast, p38 MAPK and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by bakuchiol. In vivo experiments, Bakuchiol reduced microglial activation in the hippocampus and cortex tissue of LPS-injected mice. Bakuchiol significantly suppressed LPS-injected production of TNF-α and IL-6 in serum. These results indicate that the anti-neuroinflammatory effects of bakuchiol in activated microglia are mainly regulated by the inhibition of the p38 MAPK and ERK pathways. We suggest that bakuchiol may be beneficial for various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do 58245, Korea.
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
33
|
Yun JW, Kim SH, Kim YS, Choi EJ, You JR, Cho EY, Yoon JH, Kwon E, Kim HC, Jang JJ, Park JS, Che JH, Kang BC. Preclinical study of safety of Dendropanax morbifera Leveille leaf extract: General and genetic toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111874. [PMID: 30986520 DOI: 10.1016/j.jep.2019.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Dendropanax morbifera Leveille (DM) has been used in traditional medicines for infectious and skin diseases, and dysmenorrhea. It exhibits a diverse therapeutic potential including anti-cancer, anti-thrombotic, anti-diabetic, anti-oxidant, and anti-inflammatory activities. AIM OF THE STUDY Despite promising health benefits of DM, knowledge of its potential adverse effects is very limited. The current study focused on the investigation of subchronic toxicity and genotoxicity of extract obtained from DM according to the test guidelines published by the Organization for Economic Cooperation and Development. MATERIALS AND METHODS We conducted a toxicological evaluation of DM extracts using 14-day repeated-dose toxicity study and 13-week repeated-dose toxicity study in Sprague-Dawley rats administered orally at doses of 500, 1000, or 2000 mg/kg/day. The clastogenicity of DM extract was also evaluated by in vitro chromosome aberration assay and in vivo micronucleus assay. RESULTS Assessment of subchronic toxicity of DM extract by oral administration in rats revealed unremarkable treatment-related findings with respect to food/water consumption, body weight, mortality, urinalysis, hematology, serum biochemistry, necropsy, organ weight and histopathology at doses of 500, 1000, and 2000 mg/kg. Accordingly, the level of no-observed-adverse-effect for DM extract in 13-week subchronic toxicity study was considered to be 2000 mg/kg/day in rats. The data observed from in vitro chromosome aberration assay and in vivo micronucleus assay exclude any clastogenicity of DM extract. CONCLUSION The results suggest that the oral consumption of DM extract has no adverse effects in humans and represents a safe traditional medicine.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Soon Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jangheung-gun, Jeollanam-do, Republic of Korea
| | - Ji-Ran You
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Young Cho
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Hee Yoon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea; Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
34
|
Kim JY, Yoon JY, Sugiura Y, Lee SK, Park JD, Song GJ, Yang HJ. Dendropanax morbiferus leaf extract facilitates oligodendrocyte development. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190266. [PMID: 31312492 PMCID: PMC6599778 DOI: 10.1098/rsos.190266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Treatment of multiple sclerosis is effective when anti-inflammatory, neuroprotective and regenerative strategies are combined. Dendropanax morbiferus (DM) has anti-inflammatory, anti-oxidative properties, which may be beneficial for multiple sclerosis. However, there have been no reports on the effects of DM on myelination, which is critical for regenerative processes. To know whether DM benefits myelination, we checked differentiation and myelination of oligodendrocytes (OLs) in various primary culture systems treated with DM leaf EtOH extracts or control. DM extracts increased the OL membrane size in the mixed glial and pure OL precursor cell (OPC) cultures and changed OL-lineage gene expression patterns in the OPC cultures. Western blot analysis of DM-treated OPC cultures showed upregulation of MBP and phosphorylation of ERK1/2. In myelinating cocultures, DM extracts enhanced OL differentiation, followed by increased axonal contacts and myelin gene upregulations such as Myrf, CNP and PLP. Phytochemical analysis by LC-MS/MS identified multiple components from DM extracts, containing bioactive molecules such as quercetin, cannabidiol, etc. Our results suggest DM extracts enhance OL differentiation, followed by an increase in membrane size and axonal contacts, thereby indicating enhanced myelination. In addition, we found that DM extracts contain multiple bioactive components, warranting further studies in relation to finding effective components for enhancing myelination.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 120-749, Republic of Korea
| | - Ju-Young Yoon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Republic of Korea
| | - Yuki Sugiura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Soo-Kyoung Lee
- Department of Health Science and Daily Sports, Global Cyber University, Cheonan 31228, Republic of Korea
| | - Jae-Don Park
- Cheju Halla University, Jeju 63092, Republic of Korea
| | - Gyun-Jee Song
- Department of Medical Science, International St Mary's Hospital, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
35
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
36
|
Yang HY, Kim KS, Lee YH, Park JH, Kim JH, Lee SY, Kim YM, Kim IS, Kacew S, Lee BM, Kwak JH, Yoon K, Kim HS. Dendropanax morbifera Ameliorates Thioacetamide-Induced Hepatic Fibrosis via TGF-β1/Smads Pathways. Int J Biol Sci 2019; 15:800-811. [PMID: 30906211 PMCID: PMC6429015 DOI: 10.7150/ijbs.30356] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatic fibrosis, characterized by persistent deposition of extracellular matrix (ECM) proteins, occurs in most types of chronic liver disease. The prevention of liver damage using extract of Dendropanax morbifera has been widely studied, but its molecular mechanism on the therapeutic efficacy of hepatic fibrosis is unclear. The aim of this study was to assess whether aquatic extract (DM) of D. morbifera ameliorates thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced by an intraperitoneal (i.p.) injection (150 mg/kg, twice per week) of TAA for 6 weeks. DM (50 mg/kg/day) or silymarin (50 mg/kg/day) was administered daily for 6 weeks. DM markedly reduced serum AST, ALT, ALP, and r-GTP in TAA-treated rats. DM significantly ameliorated the total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity in TAA-treated rats. In particular, DM significantly reduced expression of α-SMA, type I collagen, vimentin, TGF-β1 and p-Smad2/3 in hepatic fibrosis rats. The protective effects of DM on progression of hepatic fibrosis were clearly shown by detecting 4-hydroxyproline concentration and histopathological examination in the liver. Therefore, our data suggest that DM dramatically prevented hepatic fibrosis by inhibiting oxidative stress and the TGF-β1/Smads signaling pathways.
Collapse
Affiliation(s)
- Hun Yong Yang
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Yong Hee Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| |
Collapse
|
37
|
Yoon WK, Choi JW, Lim JS, Garcia CV, Lee SP. Novel Co-fermentation of Dendropanax morbifera Extract to Produce γ-aminobutyric Acid and Poly-γ-glutamic Acid. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Woong-Kyu Yoon
- Department of Food Science and Technology, Keimyung University
| | - Jae-Won Choi
- Department of Food Science and Technology, Keimyung University
| | - Jong-Soon Lim
- Department of Food Science and Technology, Keimyung University
| | | | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University
| |
Collapse
|
38
|
Optimization of the Extraction Conditions and Biological Evaluation of Dendropanax morbifera H. Lev as an Anti-Hyperuricemic Source. Molecules 2018; 23:molecules23123313. [PMID: 30558104 PMCID: PMC6321341 DOI: 10.3390/molecules23123313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
Dendropanax morbifera H. Levis a medicinal plant native to South Korea, East Asia, and South America. Among some 75 species, one species grows in Korea. In previous studies, D. morbifera extracts with anti-oxidant, anti-inflammatory, anti-complementary and anti-cancer activities were reported. The present study aims to investigate optimization of extraction and evaluation of anti-hyperuricemic effects of D. morbifera leaf and the phytochemicals contained therein. Ethanol and hexane extract were found to display the best xanthine oxidase inhibition among six types of solvent and water extract. The antioxidant effect of the ethanol extract was superior to that of the hexane extract. The DPPH radical scavenging effect of the ethanol and hexane extracts were 81.52 ± 1.57% and 2.69 ± 0.16. The reducing power of the ethanol and hexane extracts were 9.71 ± 0.15 and 0.89 ± 0.01 mg/g equivalent of gallic acid. Total phenols of the ethanol and hexane extracts were 6.53 ± 0.16 and 0.63 ± 0.001 mg/g equivalent of gallic acid. In addition, we compared the two marker compounds from D. morbifera, chlorogenic acid and rutin, which were determined in the ethanol extract at 0.80 ± 0.03% and 0.52 ± 0.01%, respectively. We found that the ethanol extracts showed better xanthine oxidase inhibition than hexane extracts. Especially, ethanol extracts showed higher antioxidant activity than hexane extracts. Based on these results, we selected the ethanol extract as an effective xanthine oxidase inhibitor and confirmed whether ethanol extracts showed xanthine oxidase inhibition in animal experiments. The in vivo mouse study demonstrated that ethanol extract of D. morbifera leaf at the dose of 300 mg/kg could inhibit blood/hepatic xanthine oxidase activity and this result shows that the xanthine oxidase inhibitory activity in vitro is reproduced in vivo. The present study showed that ethanol extract was optimal xanthine oxidase inhibitor which can be applied to prevent diseases related to hyperuricemia.
Collapse
|
39
|
Cho CS, Jeong HS, Kim IY, Jung GW, Ku BH, Park DC, Moon SB, Cho HR, Bashir KMI, Ku SK, Choi JS. Anti-osteoporotic effects of mixed compositions of extracellular polymers isolated from Aureobasidium pullulans and Textoria morbifera in ovariectomized mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:295. [PMID: 30400922 PMCID: PMC6220464 DOI: 10.1186/s12906-018-2362-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
Background Extracellular polymeric substances isolated from Aureobasidium pullulans (EAP), containing specifically 13% β-1,3/1,6-glucan, have shown various favorable bone-preserving effects. Textoria morbifera Nakai (TM) tree has been used as an ingredient in traditional medicine and tea for various pharmacological purposes. Thus, the present study was aimed to examine the synergistic anti-osteoporotic potential of mixtures containing different proportions of EAP and TM compared with that of the single formulations of each herbal extract using bilateral ovariectomized (OVX) mice, a renowned rodent model for studying human osteoporosis. Methods Thirty five days after bilateral-OVX surgery, 9 combinations of EAP:TM (ratios = 1:1, 1:3, 1:5, 1:7, 1:9, 3:1, 5:1, 7:1, 9:1) and single separate formulations of EAP or TM were supplied orally, once a day for 35 days at a final concentration of 200 mg/kg. Variations in body weight gains during the experimental periods, as well as femur weights, bone mineral density (BMD), bone strength (failure load), and mineral content (calcium [Ca] and inorganic phosphorus [IP]) following sacrifice were measured. Furthermore, histomorphometric and histological profile analyses of serum biochemical parameters (osteocalcin content and bone specific alkaline phosphatase [bALP] activity) were conducted following sacrifice. Femurs histomorphometric analyses were also conducted for bone resorption, structure and mass. The results for the mixed formulations of EAP:TM and separate formulations were compared with those of risedronate sodium (RES). Results The EAP:TM (3:1) formulation synergistically enhanced the anti-osteoporotic potential of individual EAP or TM formulations, possibly due to enhanced variety of the active ingredients. Furthermore, the effects of EAP:TM were comparable to those of RES (2.5 mg/kg) treatment. Conclusion The results of this study suggest that, the EAP:TM (3:1) combination might act as a new pharmaceutical agent and/or health functional food substance for curing osteoporosis in menopausal women. Electronic supplementary material The online version of this article (10.1186/s12906-018-2362-y) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Sun S, Li T, Jin L, Piao ZH, Liu B, Ryu Y, Choi SY, Kim GR, Jeong JE, Wi AJ, Lee SJ, Kee HJ, Jeong MH. Dendropanax morbifera Prevents Cardiomyocyte Hypertrophy by Inhibiting the Sp1/GATA4 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1021-1044. [PMID: 29986596 DOI: 10.1142/s0192415x18500532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An extract of Dendropanax morbifera branch exerts antioxidant, anti-inflammatory, antithrombotic, and anticancer activities. The purpose of this study was to investigate the effect of the extract in isoproterenol-induced cardiac hypertrophy. Phalloidin staining showed that treatment with the extract dramatically prevents isoproterenol-induced H9c2 cell enlargement and the expression of cardiac hypertrophic marker genes, including atrial natriuretic peptide (ANP) and B-type brain natriuretic peptide (BNP). Further, pretreatment with the extract decreased isoproterenol-induced GATA4 and Sp1 expression in H9c2 cells. Overexpression of Sp1 induced the expression of GATA4. The forced expression of Sp1 or its downstream target GATA4, as well as the co-transfection of Sp1 and GATA4 increased the expression of ANP, which was decreased by treatment with the extract. To further elucidate the regulation of the Sp1/GATA4-mediated expression of ANP, knockdown experiments were performed. Transfection with small interfering RNAs (siRNAs) for Sp1 or GATA4 decreased ANP expression. The extract did not further inhibit the expression of ANP reduced by the transfection of GATA4 siRNA. Sp1 knockdown did not affect the expression of ANP that was induced by the overexpression of GATA4; however, GATA4 knockdown abolished the expression of ANP that had been induced by Sp1 overexpression. The extract treatment also attenuated the isoproterenol-induced activation of p38 MAPK, ERK1/2, and JNK1. Hesperidin, catechin, 2,5-dihydroxybenzoic acid, and salicylic acid are the main phenolic compounds present in the extract as observed by high performance liquid chromatography. Hesperidin and 2,5-dihydroxybenzoic acid attenuated isoproterenol-induced cardiac hypertrophy. These findings suggest that the D. morbifera branch extract prevents cardiac hypertrophy by downregulating the activation of Sp1/GATA4 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Simei Sun
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Zhengjiang Rongjun Hospital, 352 Zhongshan Road, Jianxing City, Zhejiang Province 314000, P. R. China
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
| | - Tianyi Li
- The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- The Second Affiliated Hospital and Yuying Children’s Hospital, Jilin 132011, P. R. China
| | - Zhe Hao Piao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Bin Liu
- The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Ji Eun Jeong
- Jeonnam Forest Resources Research Institute, Naju 58213, Republic of Korea
| | - An Jin Wi
- Jeonnam Forest Resources Research Institute, Naju 58213, Republic of Korea
| | - Song Ju Lee
- Department of Food & Nutrition, Gwangju Health University, Gwangju 62287, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
41
|
Birhanu BT, Kim JY, Hossain MA, Choi JW, Lee SP, Park SC. An in vivo immunomodulatory and anti-inflammatory study of fermented Dendropanax morbifera Léveille leaf extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:222. [PMID: 30041643 PMCID: PMC6057031 DOI: 10.1186/s12906-018-2282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Background Medicinal plants represent a source of new drugs for the prevention and treatment of infectious diseases. Dendropanax morbifera Léveille is an economically and medicinally important subtropical tree that has various biological activities. However, its ability to affect immune responses in vivo is unknown. Hence, this study was designed to examine the immunomodulatory activity of fermented D. morbifera extract in BALB/c mice. Methods five-week-old female BALB/c mice were arranged in six groups and kept under a standard laboratory condition. Splenocyte counts were determined using the trypan blue dye exclusion method, and splenic lymphocyte proliferation was determined using concanavalin A and lipopolysaccharide (LPS). Flow cytometric analysis was performed to phenotype T-lymphocytes. Next, cytokine and immunoglobulin quantitation was performed using sandwich ELISA. Results The results showed an increase in spleen cells by 71 and 67% in mice treated with 125 and 250 mg/kg of D. morbifera, respectively. In addition, splenocyte proliferation was increased 58.7% in response to concanavalin A treatment, while LPS treatment induced a 73.3% increase in mice treated with 125 mg/kg. T-cell phenotypic analysis indicated that D. morbifera-treated groups showed higher CD8a+, CD11b and CD3+ T-cell expression. However, the treatment groups showed suppression of IL-1α, Il-1β and IL-4. In addition, the IgG super-family was downregulated in a dose-dependent manner by 4.5% up to 43.7%. Conclusions Taken together, we show that D. morbifera increases the number and proliferation of T- and B-lymphocytes. Moreover, these effects may play a role in boosting non-specific immunity, while suppressing proinflammatory cytokines and immunoglobulins after a single antigen exposure.
Collapse
|
42
|
Lee KH, Na HJ, Song CK, Kang SY, Kim S. Quercetin quantification in a Jeju Dendropanax morbifera Lev. extract by varying different parts, harvest times, and extraction solvents. ACTA ACUST UNITED AC 2018. [DOI: 10.11002/kjfp.2018.25.3.344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Kang MJ, Kwon EB, Ryu HW, Lee S, Lee JW, Kim DY, Lee MK, Oh SR, Lee HS, Lee SU, Kim MO. Polyacetylene From Dendropanax morbifera Alleviates Diet-Induced Obesity and Hepatic Steatosis by Activating AMPK Signaling Pathway. Front Pharmacol 2018; 9:537. [PMID: 29875667 PMCID: PMC5975361 DOI: 10.3389/fphar.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The extract tea of Dendropanax morbifera is popular beverages in Korea, and their preventive and therapeutic roles in metabolic disorders have been reported. However, the molecular mechanism has not been studied despite the known efficacy of D. morbifera. Eleven fractions (fr.1–fr.11) were divided by MPLC to find the active compound. Among them, Fr.5 was superior to others in that the inhibitory efficacy of de novo triglyceride (TG) biosynthesis. NMR analysis revealed that Fr.5 is composed 98% or more (9Z,16S)-16-hydroxy-9,17-octadecadiene-12,14-diynoic acid (HOD). Treatment of HOD diminished oleic acid (OA)-induced TG accumulation in HepG2 hepatocytes and differentiation of 3T3-L1 preadipocytes by activating LKB1/AMPK. In addition, we determined the effect of the oral administration of the extract of D. morbifera on obesity and hepatic steatosis in high-fat diet (HFD)-induced obese mice. This study proved that D. morbifera containing HOD, the active substance, can show preventive or therapeutic efficacy on obesity and hepatic steatosis through the targeting LKB1/AMPK axis.
Collapse
Affiliation(s)
- Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eun-Bin Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seoghyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi Kyeong Lee
- Department of Pharmacology, Chungbuk National University, Cheongju, South Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hyun-Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
44
|
Kim EH, Jo CS, Ryu SY, Kim SH, Lee JY. Anti-osteoclastogenic diacetylenic components of Dendropanax morbifera. Arch Pharm Res 2018; 41:506-512. [DOI: 10.1007/s12272-018-1033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
45
|
Cho CS, Jeong HS, Kim IY, Jung GW, Ku BH, Park DC, Moon SB, Cho HR, Ku SK, Choi JS. Antiosteoporotic effects of 3:1 (g/g) mixed formulation of exopolymers purified fromAureobasidium pullulansSM-2001 andDendropanax morbiferaleaf extracts in ovariectomized rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chang-Soo Cho
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - Hye-Seong Jeong
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - In-Young Kim
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - Go-Woon Jung
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Bon-Hwa Ku
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Dong-Chan Park
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Seung-Bae Moon
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Hyung-Rae Cho
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine; Daegu Haany University, 1, Hanuidae-ro; Gyeongsan-si Gyeongsangbuk-do 38610 Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences; Silla University, 140, Baegyang-daero 700beon-gil; Busan 46958 Republic of Korea
| |
Collapse
|
46
|
Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson's Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3175214. [PMID: 29849878 PMCID: PMC5925162 DOI: 10.1155/2018/3175214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a commonly reported age-related neurodegenerative disorder. Microglial-mediated neuroinflammation is one of the cardinal hallmarks of various neurodegenerative disorders, including PD progression. Inadequate therapeutic strategies and substantial adverse effects of well-established drug candidates demand new therapeutic leads to treat PD. Dendropanax morbifera (DM) is an endemic plant species of South Korea, and it has been used extensively as traditional medicine to treat numerous clinical complications. In this study, we conducted an initial profiling of the few major phytoconstituents of aqueous DM leaf extracts (DML) and quantified the same using high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS). We subsequently evaluated the antineuroinflammatory activity and ameliorative potential of DML in both in vitro and in vivo experimental PD models. The prophylactic treatment of DML effectually improved the behavioral deficits, curbed the microglial-mediated neuroinflammation, and protected dopaminergic (DA) neuronal loss by restoring tyrosine hydroxylase (TH) levels in brain tissue of the MPTP-induced PD mouse model. We conducted chromatographic profiling and identified chlorogenic acid (CA) as a major constituent (19.5 mg/g of BuOH fraction), which has been well documented as an antioxidant and anti-inflammatory agent. This was found to be in harmony with our in vitro results, where DML suppressed the level of inflammatory mediators and allied the signaling pathway in LPS-stimulated microglial cells. The results of our study indicate that DML and its bioactive constituents can be developed as potential therapeutic candidates against progressive PD complications.
Collapse
|
47
|
Yang DU, Siddiqi MH, Ahn S, Kang S, Noh HY, Yang DC. In vitro evaluation of the potential therapeutic role of Dendropanax morbifera extract in ameliorating osteoporosis and resultant bone impairment using MC3T3-E1 cells. In Vitro Cell Dev Biol Anim 2018; 54:346-354. [PMID: 29560558 DOI: 10.1007/s11626-018-0242-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/04/2018] [Indexed: 01/05/2023]
Abstract
Osteoporosis is a widespread musculoskeletal deformity that affects thousands of older people every year, leading to bone abnormalities and ultimately increasing the risk of bone fractures in both genders. It is considered a lethal disease causing death in thousands of people at the late stage of life. Dendropanax morbifera Leveille is a subtropical broad-leaved prevalent species in Korea. Extracts of the leaves, stems, roots, and seeds of D. morbifera have been used in traditional medicine for the treatment of numerous diseases such as diabetes, atherogenesis, skin disorders, and headaches. However, the anti-osteoporosis effects of D. morbifera have not been examined. The primary objectives of this study were to elucidate the anti-osteoporosis effect of D. morbifera extract through an in vitro study using pre-osteoblastic MC3T3-E1 cells. We found that D. morbifera strongly increased the expression of bone metabolic markers such as alkaline phosphatase (ALP) activity, type I collagen (Col-I) level, and mineralization. Additionally, D. morbifera extract also upregulated the mRNA expression levels of osteogenic genes including ALP, osteocalcin (OCN), osterix (Osx), and runt-related transcription factor 2 (Runx2) in MC3T3-E1 cells via upregulation of bone morphogenetic protein 2 (BMP-2)/p38 MAPK/JNK and Smad1/5/8 signaling pathways. Moreover, addition of D. morbifera significantly suppressed the inhibitory effect of SB203580 (p38 inhibitor). In conclusion, the current study demonstrated that D. morbifera extract significantly increased osteoblast differentiation and mineralization in MC3T3-E1 cells by regulating BMP-2/p38/JNK and Smad1/5/8. Our study might be helpful in the discovery and development of new anti-osteoporosis therapeutic agents.
Collapse
Affiliation(s)
- Dong-Uk Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Muhammad Hanif Siddiqi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do, 449-701, Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sera Kang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hae-Yong Noh
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do, 449-701, Republic of Korea.
| |
Collapse
|
48
|
Youn JS, Kim YJ, Na HJ, Jung HR, Song CK, Kang SY, Kim JY. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci Biotechnol 2018; 28:201-207. [PMID: 30815311 DOI: 10.1007/s10068-018-0352-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
This study compared the antioxidant activity of extracts from Dendropanax morbifera (D. morbifera) Levillis leaves. The concentrations of flavonoids and polyphenols were measured in extracts of D. morbifera leaves. The antioxidant activities were examined by ABTS and DPPH radical scavenging activity and ferric reducing antioxidant power (FRAP). Total flavonoid and polyphenol contents, and FRAP were highest in the 30% ethanol extract collected in May. The ABTS and DPPH radical scavenging activities were the highest in the 60% ethanol extract harvested in May. For investigating the relationship between antioxidant activity and specific polyphenols, rutin and chlorogenic acid of the polyphenol component were quantified by LC-MS/MS analysis. The concentrations of them were highest in the 60% ethanol extract collected in May, and showed positive correlations with antioxidant activities. The optimal extraction conditions to yield the most effective antioxidant activity were obtained using a 60% ethanol extraction solvent with samples collected in May.
Collapse
Affiliation(s)
- Ji Sun Youn
- 1Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 139-743 Korea
| | - Young-Jun Kim
- 1Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 139-743 Korea
| | - Hye Jin Na
- Korea Food Information Institute, Banseok-ro, Yuseong-gu, DaeJeon, 34068 Korea
| | - Hae Rim Jung
- Korea Food Information Institute, Banseok-ro, Yuseong-gu, DaeJeon, 34068 Korea
| | - Chang Khil Song
- Agency for Jeju Plant Resources Dendropanax, Jejuuniversity-ro, Jeju, 63243 Korea
| | - So Young Kang
- Agency for Jeju Plant Resources Dendropanax, Jejuuniversity-ro, Jeju, 63243 Korea
| | - Ji Yeon Kim
- 1Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 139-743 Korea
| |
Collapse
|
49
|
Development and Validation of a HPLC-UV Method for Extraction Optimization and Biological Evaluation of Hot-Water and Ethanolic Extracts of Dendropanax morbifera Leaves. Molecules 2018. [PMID: 29534045 PMCID: PMC6017506 DOI: 10.3390/molecules23030650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dendropanax morbifera Leveille (Araliaceae) has been used in traditional oriental remedies for cancer, inflammation, diabetes, and thrombosis. However, a validated analytical method, standardization, and optimization of extraction conditions with respect to biological activity have not been reported. In this study, a simple and validated HPLC method for identifying and quantifying active substances in D. morbifera was developed. Hot water and ethanolic D. morbifera leaf extracts from different production regions were prepared and evaluated with regard to their chemical compositions and biological activities. The contents of active compounds such as rutin and chlorogenic acid were determined in four samples collected from different regions. The 80% ethanolic extract showed the best antioxidant activity, phenolic content, reducing power, and xanthine oxidase (XO) inhibitory activity. The validated HPLC method confirmed the presence of chlorogenic acid and rutin in D. morbifera leaf extracts. The antioxidant and XO inhibitory activity of D. morbifera extract could be attributed to the marker compounds. Collectively, these results suggest that D. morbifera leaves could be beneficial for the treatment or prevention of hyperuricemia-related disease, and the validated HPLC method could be a useful tool for the quality control of food or drug formulations containing D. morbifera.
Collapse
|
50
|
Choi EH, Lee DY, Kim S, Chung JO, Choi JK, Joo KM, Jeong HW, Kim JK, Kim WG, Shim SM. Influence of flavonol-rich excipient food (onion peel and Dendropanax morbifera) on the bioavailability of green tea epicatechins in vitro and in vivo. Food Funct 2018; 8:3664-3674. [PMID: 28914949 DOI: 10.1039/c7fo01173c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impacts of onion peel (OP) and Dendropanax morbifera (DM), as excipient foods rich in flavonols, on the digestive recovery, intestinal absorption, and pharmacokinetics of GT epicatechins were studied via an in vitro digestion model system with Caco-2 cells and an in vivo study. The digestive stability of total epicatechins recovered from GT upon the addition of 2% DM was up to 1.12 times higher than that observed with OP. The combined effects of OP and DM, which were observed with 2% OP + DM in a ratio of 1 : 4 (w : w), significantly increased (by a factor of 1.31) the digestive recovery of total epicatechins (p < 0.05). Remarkable cellular uptakes of EC (185.36%) and ECG (188.08%) were found with 4% OP + DM (4 : 1, w : w), and those of EGC (112.30%) and EGCG (136.27%) were obtained with 2% OP + DM (4 : 1, w : w) and 1% OP + DM (1 : 1, w : w), respectively. The peak plasma concentrations of total epicatechins from GT, GT + 5% OP, GT + 5% DM, and GT + 2% OP + 2% DM were 1044.78 ± 609.10, 2267.18 ± 3734.38, 1270.35 ± 547.59, and 714.53 ± 499.27 ng mL-1, respectively. The Cmax value of total epicatechins in rats orally administrated with GT with 5% OP was found to be approximately twice of that obtained with GT alone. The co-ingestion of GT with flavonol-rich excipient foods possibly enhances the absorption of epicatechins because flavonols act as not only enhancers of digestive stability but also modulators of the biotransformation of epicatechins. The results obtained from the current study suggest that the absorption of GT catechins can vary depending upon the kinds and doses of excipient foods co-ingested.
Collapse
Affiliation(s)
- Eun-Hye Choi
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|