1
|
Zade S, Upadhyay TK, Rab SO, Sharangi AB, Lakhanpal S, Alabdallah NM, Saeed M. Mushroom-derived bioactive compounds pharmacological properties and cancer targeting: a holistic assessment. Discov Oncol 2025; 16:654. [PMID: 40314874 PMCID: PMC12048390 DOI: 10.1007/s12672-025-02371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 05/03/2025] Open
Abstract
Worldwide, cancer is a great cause of death and a public health issue. Cancer has been the leading cause of death in developing nations for many years. Cancers are typically treated with surgery, immunotherapy, chemotherapy, and radiation therapies. However, these techniques have some undesirable side effects, including neurological illness, high toxicity levels, discomfort, and mental stress. Biologically active compounds discovered in mushrooms may be utilized to reduce ill effects and increase the efficacy of the current therapies. Mushrooms have efficient therapeutic activities such as antimicrobial, antitumor, antidiabetic, anticancer, and antioxidant activity. Bioactive compounds like polysaccharides, terpenoids, β-glucan, steroids, polyphenols, flavonoids, proteins, and peptides have precisely well-recognized anticancer activity. In this review paper, we described the biomedical activities of the mushroom against various cancers. The immune-modulating components in mushrooms activate NK cells and macrophages to target cancer cells. Due to immunomodulatory properties of mushroom-derived bioactive compounds in cancer therapy to highlight the need for further research in this area further studies needs to validate in clinical samples.
Collapse
Affiliation(s)
- Sakshi Zade
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, 391760, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, 391760, Gujarat, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal and Aromatic Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144401, India
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Ma D, Sheng Q, Liang W, Zhang J, Wang Y, Chen H. A Neutral Polysaccharide from Medicago Sativa L.: Structural Properties and Hypoglycemic Activity In Vitro and In Vivo. Chem Biodivers 2024; 21:e202401162. [PMID: 39117565 DOI: 10.1002/cbdv.202401162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Medicago sativa polysaccharides (MSPs) are beneficial compounds extracted from Medicago sativa L. that exhibit multiple medicinal activities. However, little is known about their hypoglycemic effects. In this study, MSP-II-a, a neutral polysaccharide with an Mw of 4.3×104 Da, was isolated and purified from M. sativa L. Monosaccharide composition analysis determined that MSP-II-a was composed of arabinose, glucose, galactose, mannose, rhamnose, and xylose in a molar ratio of 2.1 : 4.0 : 1.1:0.4 : 1.4 : 1.1. Structural characterization of MSP-II was performed using a combination of methylation analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results showed that MSP-II-a was mainly comprised of 1,4-p-Glc, 1,3,4-Rha, and 1,3-p-Gal glycosidic linkages, revealing a mesh-like texture with irregular blade shapes. In vitro assays demonstrated that MSP-II-a, at concentrations of 200 and 400 μg/mL, promoted glucose uptake in insulin-resistant 3T3-L1 adipocytes. In vivo studies have shown that MSP-II-a significantly alleviates insulin resistance by reducing fasting blood glucose levels and increasing hepatic glycogen synthesis in HFD/STZ-induced diabetic mice. These findings revealed that MSP-II-a is a promising source of bioactive polysaccharides with potential hypoglycemic activity.
Collapse
Affiliation(s)
- Di Ma
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| | - Qi Sheng
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| | - Wei Liang
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| | - Jia Zhang
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| | - Yanni Wang
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| | - Hongman Chen
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 10866, PR China
| |
Collapse
|
3
|
Cui FJ, Fu X, Sun L, Zan XY, Meng LJ, Sun WJ. Recent insights into glucans biosynthesis and engineering strategies in edible fungi. Crit Rev Biotechnol 2024; 44:1262-1279. [PMID: 38105513 DOI: 10.1080/07388551.2023.2289341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 12/19/2023]
Abstract
Fungal α/β-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/β-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/β-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| | - Xin Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| |
Collapse
|
4
|
Teng C, Guo S, Li Y, Ren G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods 2024; 13:2311. [PMID: 39123503 PMCID: PMC11311824 DOI: 10.3390/foods13152311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Quinoa is a highly nutritious and biologically active crop. Prior studies have demonstrated that quinoa polysaccharides exhibit anti-obesity activity. This investigation confirmed that quinoa polysaccharides have the ability to inhibit the growth of 3T3-L1 preadipocytes. The objective of transcriptome research was to investigate the mechanism of quinoa water-extracted polysaccharides and quinoa alkaline-extracted polysaccharides that hinder the growth of 3T3-L1 preadipocytes. There were 2194 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa water-extracted polysaccharides (QWPHs). There were 1774 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa alkaline-extracted polysaccharides (QAPHs). Through gene ontology and KEGG pathway analysis, 20 characteristic pathways are found significantly enriched between the untreated group and the QAPH and QWPH groups. These pathways include the NOD-like receptor, Hepatitis C, and the PI3K-Akt signaling pathway. Atp13A4 and Gbgt1 have been identified as genes that are upregulated and downregulated in both the untreated group and the QWPH group, as well as in the untreated group and the QAPH group. These findings establish a theoretical foundation for exploring quinoa polysaccharides as an anti-obesity agent.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shengyuan Guo
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Guixing Ren
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Xiao H, Wei C, Liu H, Li Z, Zheng C, Luo J. Lentinan alleviates sciatic nerve injury by promoting autophagy to remove myelin fragments. Phytother Res 2023; 37:4042-4058. [PMID: 37165703 DOI: 10.1002/ptr.7862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Collapse
Affiliation(s)
- Haili Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Wei
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiying Liu
- Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Shamim MZ, Mishra AK, Kausar T, Mahanta S, Sarma B, Kumar V, Mishra PK, Panda J, Baek KH, Mohanta YK. Exploring Edible Mushrooms for Diabetes: Unveiling Their Role in Prevention and Treatment. Molecules 2023; 28:molecules28062837. [PMID: 36985818 PMCID: PMC10058372 DOI: 10.3390/molecules28062837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are known to contain natural bioactive components that may be anti-diabetic; thus, scientists are now targeting them. Mushroom extracts, which improve immune function and fight cancer, are becoming more popular. Mushroom-derived functional foods and dietary supplements can delay the onset of potentially fatal diseases and help treat pre-existing conditions, which leads to the successful prevention and treatment of type 2 diabetes, which is restricted to the breakdown of complex polysaccharides by pancreatic-amylase and the suppression of intestinal-glucosidase. Many mushroom species are particularly helpful in lowering blood glucose levels and alleviating diabetes symptoms. Hypoglycaemic effects have been observed in investigations on Agaricussu brufescens, Agaricus bisporus, Cordyceps sinensis, Inonotus obliqus, Coprinus comatus, Ganoderma lucidum, Phellinus linteus, Pleurotus spp., Poria cocos, and Sparassis crispa. For diabetics, edible mushrooms are high in protein, vitamins, and minerals and low in fat and cholesterol. The study found that bioactive metabolites isolated from mushrooms, such as polysaccharides, proteins, dietary fibers, and many pharmacologically active compounds, as well as solvent extracts of mushrooms with unknown metabolites, have anti-diabetic potential in vivo and in vitro, though few are in clinical trials.
Collapse
Affiliation(s)
- Mohammad Zaki Shamim
- Department of Food Nutrition and Dietetics, Faculty of Sciences, Assam Down Town University, Guwahati 781026, Assam, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tahreem Kausar
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, Delhi, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati 781008, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji 787057, Assam, India
| | - Vijay Kumar
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Jibanjyoti Panda
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
7
|
Innayah AM, Hariani ENS, Khotimah H, Kusumastuty I, Yunita EP, Handayani D. β-(1,3)-D-glucan from <em>Pleurotus ostreatus</em> correlates with lower plasma IL-6, IL-1β, HOMA-IR, and higher pancreatic beta cell count in High-Fat and High-Fructose Diet (HFFD) rats. HEALTHCARE IN LOW-RESOURCE SETTINGS 2023. [DOI: 10.4081/hls.2023.11165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction: The increasing consumption of high-fat and high-fructose foods contributes to the increasing prevalence of global obesity. Low-grade chronic inflammation in obesity is a significant risk factor for insulin resistance and type 2 diabetes. Therefore, this study aimed to determine the effect of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract on rats fed with a high-fat and high-fructose diet.
Design and Methods: This experimental study was conducted on 35 male Sprague-Dawley rats aged eight weeks. The rats were divided into groups given a normal (N) diet, a high-fat and high-fructose diet (HFFD), D1 (HFFD+125 mg/kg BW β-glucan), D2 (HFFD+250 mg/kg BW β glucan), and D3 (HFFD+375 mg/kg BW β-glucan) with an intervention of 14 weeks. IL-6 and IL-1β levels were measured by the ELISA method, while HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) was calculated by the fasting insulin (ng/mL) x fasting blood glucose (mg/dL)/405 formula. Pancreatic beta-cell counts were measured by hematoxylin and eosin (H&E) staining.
Results: The results showed no differences in IL-6 and IL-1β between the treatment groups. However, there were significant differences in HOMA-IR and pancreatic beta-cell counts between groups. There were negative correlations between the dose of β-glucan and IL-6, IL-1β, and HOMA-IR levels. Also, there was a positive correlation between the dose of β-glucan and the number of pancreatic beta cells.
Conclusions: Administration of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract prevented hyperglycemia and insulin resistance, also reduced inflammation in rats fed with HFFD regardless of weight gain.
Collapse
|
8
|
Hashemi Yusefabad H, Hosseini SA, Zakerkish M, Cheraghian B, Alipour M. The effects of hot air-dried white button mushroom powder on glycemic indices, lipid profile, inflammatory biomarkers and total antioxidant capacity in patients with type-2 diabetes mellitus: A randomized controlled trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:49. [PMID: 36092487 PMCID: PMC9450248 DOI: 10.4103/jrms.jrms_513_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
Background The inflammatory and metabolic responses to mushroom in type 2 diabetes mellitus (T2DM) are unknown. The study aimed to evaluate the effect of Hot Air-dried White Button Mushroom (HAD-WBM) powder on glycemic status, lipid profile, inflammatory markers, and total antioxidant capacity (TAC) in T2DM patients. Materials and Methods This randomized controlled trial was conducted at Golestan Hospital, Ahvaz, Iran. Eligible patients were adults aged 20-50 with Type 2 diabetes. Patients were assigned to each group using a randomized block design with block randomization (n = 22, in each group). Randomization was performed by an assistant and group allocation was blinded for the investigator and participants. The intervention and control groups received 16 g/day HAD-WBM or cornstarch powder for 8 weeks. The primary outcomes of interest were fructosamine, fasting blood sugar (FBS), insulin, homeostatic model assessment for insulin resistance, and secondary outcomes were triglyceride, low-density lipoprotein (LDL), high-density lipoprotein, very-LDL, cholesterol, high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), and TAC. Results After 8 weeks, a significant decrease was observed in fructosamine (-0.228 ± 0.36 vs. 0.03 ± 0.38; P = 0.02) and LDL (-13.05 ± 20.67 vs. 0.81 ± 21.79; P = 0.04) in the HAD-WBM group compared to the control group. No significant changes were observed in fasting insulin and FBS between the two groups. However, a significant within-group reduction (-28.00 ± 42.46; P = 0.006) was observed for FBS in the HAD-WBM group. In the HAD-WBM group, insulin resistance reduced significantly at the end of the study (From 4.92 to 3.81; P = 0.016), but it was not significantly different between the two groups. There was no significant difference in TAC, hs-CRP, and IL-6 between the two groups. Conclusion Considering the results of this study about the beneficial effects of HAD-WBM on the improvement of glycemic indices and LDL in T2DM patients, it is recommended that HAD-WBM could be used to control T2DM.
Collapse
Affiliation(s)
- Hadiseh Hashemi Yusefabad
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Zakerkish
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Epidemiology and Biostatistics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| |
Collapse
|
9
|
Jameel QY, Mohammed NK. Protective rules of natural antioxidants against gamma-induced damage-A review. Food Sci Nutr 2021; 9:5263-5278. [PMID: 34532033 PMCID: PMC8441341 DOI: 10.1002/fsn3.2469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals accessible in food have demonstrated efficiency against impairment by gamma radiation. The review presented here is an attempt to show the pharmacological outline of the activity of the natural antioxidants and its primary action of molecular mechanism against the damage induced by gamma rays. This research focused on the results of the in vitro dosage of natural antioxidants relationship, and on the correlation of this information with the statistical variables. Moreover, it deliberated the natural compounds which could decrease the unwelcome impacts of gamma radiation and safeguard biological systems from radiation-stimulated genotoxicity. The outcomes indicated that natural compounds can be utilized as an adjunct to orthodox radiotherapy and cultivate it as an effectual drug for the clinical administration of ailments.
Collapse
Affiliation(s)
- Qaswaa Y. Jameel
- Department of Food ScienceColleges of Agricultural and ForestryMosul UniversityMosulIraq
| | - Nameer K. Mohammed
- Department of Food ScienceCollege of AgricultureTikrit UniversityTikritIraq
| |
Collapse
|
10
|
Ajith TA, Janardhanan KK. Antidiabetic Properties of Medicinal Mushrooms with Special Reference to Phellinus Species: A Review. THE NATURAL PRODUCTS JOURNAL 2021; 11:120-126. [DOI: 10.2174/2210315510666200124124540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 08/28/2024]
Abstract
Diabetes remains the major public health challenge to the 21st century. It is strongly related
to lifestyle changes. Most chronic complications of diabetes are macrovascular and microvascular
diseases resulting from the existing hyperglycemic status. After the failure of first-line therapy,
which is based on diet modifications and exercise, conventional treatment using antihyperglycemic
agents with different mechanisms of action will be implemented for type II diabetes in modern medicine.
Higher Basidiomycetes mushrooms are highly praised for their nutritional value and pharmacological
properties. They have long been used traditionally for the maintenance of health, prevention
and treatment of various human ailments. Reports indicate the beneficial effects of medicinal
mushrooms in diabetes treatments. However, scientific evidence are insufficient to make definitive
conclusions on the efficacy of individual medicinal mushrooms. Mushrooms belong to the genera
Phellinus such as Phellinus linteus, Phellinus ribis, Phellinus rimosus and Phellinus igniarius. They
possess a significant hypoglycemic effect in experimental diabetic models. However, well-designed
controlled clinical trials are needed to establish their safety and bioactivity.
Collapse
Affiliation(s)
- Thekkuttuparambil A. Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur-680 555, Kerala,India
| | - Kainoor K. Janardhanan
- Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur-680 555, Kerala,India
| |
Collapse
|
11
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
12
|
A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydr Polym 2020; 243:116398. [DOI: 10.1016/j.carbpol.2020.116398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
13
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
14
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhao S, Zhang S, Zhang W, Gao Y, Rong C, Wang H, Liu Y, Wong JH, Ng T. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci Rep 2019; 9:13725. [PMID: 31548551 PMCID: PMC6757109 DOI: 10.1038/s41598-019-49925-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver (FLD) disease is a consequence of metabolic syndrome, which is a health problem worldwide with a phenomenal rise in prevalence. In this study, two hepatoprotective polysaccharide-peptides were extracted from the mushroom Auricularia polytricha followed by chromatographic fractionation of the extract on the ion exchanger DEAE-cellulose and gel filtration on Sephadex-200 to yield two purified fractions: APPI and APPII. The monosaccharide compositions, FT-IR, N-terminal sequences, internal peptide sequences and molecular weights of the two fractions were determined. Furthermore, their hepatoprotective effect on human hepatoma HepG2 cells in vitro and in an animal model of fatty liver disease was evidenced by the findings that APPI and APPII diminished lipid deposit in cells, blood and the liver, increased cellular antioxidant activity and viability, and protected the liver against injury. The mechanistic study revealed that APPI and APPII activated the adiponectin pathway, up-regulated expression of genes controlling free fatty acid (FFA) oxidation, such as AMPK, CPTl, ACOX1 and PPARα genes, enhanced lipid metabolism, preserved hepatic function, promoted the antioxidant defense system and reduced lipid peroxidation. Hence the bioactive compounds of A. polytricha could serve as therapeutic agents in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, 100097, China
| | - Shuman Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Weiwei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
16
|
Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121:1240-1253. [DOI: 10.1016/j.ijbiomac.2018.10.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
|
17
|
Phan CW, Wang JK, Tan EYY, Tan YS, Sathiya Seelan JS, Cheah SC, Vikineswary S. Giant oyster mushroom,Pleurotus giganteus(Agaricomycetes): Current status of the cultivation methods, chemical composition, biological, and health-promoting properties. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1542710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chia-Wei Phan
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Department of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Joon-Keong Wang
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Elson Yi-Yong Tan
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Department of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee-Shin Tan
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Mycology and Pathology Laboratory, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Shiau-Chuen Cheah
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Sabaratnam Vikineswary
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Khan AA, Gani A, Khanday FA, Masoodi F. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Zong J, Liao X, Ren B, Wang Z. The antidepressant effects of rosiglitazone on rats with depression induced by neuropathic pain. Life Sci 2018; 203:315-322. [DOI: 10.1016/j.lfs.2018.04.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
20
|
Liu B, Yang T, Luo Y, Zeng L, Shi L, Wei C, Nie Y, Cheng Y, Lin Q, Luo F. Oat β-glucan inhibits adipogenesis and hepatic steatosis in high fat diet-induced hyperlipidemic mice via AMPK signaling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_83-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Liu JL, Yang LC, Zhu XJ, Wang WJ, Zheng GD. Combinational Effect of Pine Needle Polysaccharide and Kudzu Flavonoids on Cell Differentiation and Fat Metabolism in 3T3-L1 Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ji-Luan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Li-Cong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Xiao-Juan Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - We-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| |
Collapse
|
23
|
Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal Chim Acta 2017; 979:1-23. [PMID: 28599704 DOI: 10.1016/j.aca.2017.05.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/18/2022]
Abstract
With the rapid development of ionic liquid analogues, termed 'deep eutectic solvents' (DESs), and their application in a wide range of chemical and biochemical processes in the past decade, the extraction of bioactive compounds has attracted significant interest. Recently, numerous studies have explored the extraction of bioactive compounds using DESs from diverse groups of natural sources, including animal and plant sources. This review summarizes the-state-of-the-art effort dedicated to the application of DESs in the extraction of bioactive compounds. The aim of this review also was to introduce conventional and recently-developed extraction techniques, with emphasis on the use of DESs as potential extractants for various bioactive compounds, such as phenolic acid, flavonoids, tanshinone, keratin, tocols, terpenoids, carrageenans, xanthones, isoflavones, α-mangostin, genistin, apigenin, and others. In the near future, DESs are expected to be used extensively for the extraction of bioactive compounds from various sources.
Collapse
Affiliation(s)
- Mohamad Hamdi Zainal-Abidin
- University of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- University of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; Institute of Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Adeeb Hayyan
- University of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; Institute of Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Natesan Subramanian Jayakumar
- University of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
24
|
Li X, Wang L, Wang Z. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int J Biol Macromol 2017; 98:59-66. [DOI: 10.1016/j.ijbiomac.2016.12.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 01/01/2023]
|
25
|
Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5:E80. [PMID: 28231175 PMCID: PMC5302426 DOI: 10.3390/foods5040080] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
27
|
Tang W, Lin L, Xie J, Wang Z, Wang H, Dong Y, Shen M, Xie M. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydr Polym 2016; 151:305-312. [DOI: 10.1016/j.carbpol.2016.05.078] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
28
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
29
|
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148:86-97. [PMID: 27185119 DOI: 10.1016/j.carbpol.2016.02.060] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease attracted worldwide concerns, which severely impairs peoples' quality of life and is attributed to several life-threatening complications, including atherosclerosis, nephropathy and retinopathy. The current therapies for DM include mainly oral anti-diabetic drugs and insulin. However, continuous use of these causes insulin resistance and side-effects, and the demand of effective, nontoxic and affordable drugs for DM patients is eager. Several previous studies have shown that non-toxic biological macromolecules, mainly polysaccharides, possess prominent efficacies on DM. Based on these encouraging observations, a great deal of efforts have been focused on discovering anti-diabetic polysaccharides for the development of effective therapeutics for DM. This review focuses on the advancements in the anti-diabetic efficacy of various natural polysaccharides and polysaccharide complexes from 2010 to 2015.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
30
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Tan X, Chua K, Ravishankar Ram M, Kuppusamy U. Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chem 2016; 196:242-50. [DOI: 10.1016/j.foodchem.2015.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023]
|
32
|
Zhang TT, Lu CL, Jiang JG, Wang M, Wang DM, Zhu W. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydr Polym 2015; 130:307-15. [DOI: 10.1016/j.carbpol.2015.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023]
|
33
|
Silveira MLL, Smiderle FR, Moraes CP, Borato DG, Baggio CH, Ruthes AC, Wisbeck E, Sassaki GL, Cipriani TR, Furlan SA, Iacomini M. Structural characterization and anti-inflammatory activity of a linear β-D-glucan isolated from Pleurotus sajor-caju. Carbohydr Polym 2014; 113:588-96. [PMID: 25256522 DOI: 10.1016/j.carbpol.2014.07.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
Glucans comprise an important class of polysaccharides present in basidiomycetes with potential biological activities. A (1 → 3)-β-D-glucan was isolated from Pleurotus sajor-caju via extraction with hot water followed by fractionation by freeze-thawing and finally by dimethyl sulfoxide extraction. The purified polysaccharide showed a (13)C-NMR spectrum with six signals consisting of a linear glucan with a β-anomeric signal at 102.8 ppm and a signal at 86.1 ppm relative to O-3 substitution. The other signals at 76.2, 72.9, 68.3, and 60.8 ppm were attributed to C5, C2, C4, and C6, respectively. This structure was confirmed by methylation analysis, and HSQC studies. The β-d-glucan from P. sajor-caju presented an immunomodulatory activity on THP-1 macrophages, inhibited the inflammatory phase of nociception induced by formalin in mice, and reduced the number of total leukocytes and myeloperoxidase levels induced by LPS. Taken together, these results demonstrate that this β-d-glucan exhibits a significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Marcia L L Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil; Universidade da Região de Joinville, CEP 89219-710 Joinville, SC, Brazil
| | - Fhernanda R Smiderle
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Carla Porto Moraes
- Universidade da Região de Joinville, CEP 89219-710 Joinville, SC, Brazil
| | - Débora G Borato
- Departamento de Farmacologia, Universidade Federal do Paraná, CP 19031, 81531-980 Curitiba, PR, Brazil
| | - Cristiane H Baggio
- Departamento de Farmacologia, Universidade Federal do Paraná, CP 19031, 81531-980 Curitiba, PR, Brazil
| | - Andrea Caroline Ruthes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Elisabeth Wisbeck
- Universidade da Região de Joinville, CEP 89219-710 Joinville, SC, Brazil
| | - Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Thales R Cipriani
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Sandra A Furlan
- Universidade da Região de Joinville, CEP 89219-710 Joinville, SC, Brazil
| | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|