1
|
Aslan MN, Sukan-Karaçağıl B, Acar-Tek N. Roles of citrus fruits on energy expenditure, body weight management, and metabolic biomarkers: a comprehensive review. Nutr Rev 2024; 82:1292-1307. [PMID: 37702528 PMCID: PMC11317776 DOI: 10.1093/nutrit/nuad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Citrus fruits are widely consumed for their nutritional and health benefits. They belong to the Rutaceae and have many varieties, such as sweet orange (Citrus sinensis), which is the most popular. Citrus fruits are rich in water (>80%), dietary fiber, and vitamins. They also contain bioactive components, which may modulate energy metabolism and lipid oxidation through various mechanisms. These mechanisms include stimulating β3-adrenergic receptors, increasing mitochondrial biogenesis and thermogenesis, activating AMP kinase and peroxisome proliferator-activated receptor-gamma coactivator-1α pathways, inhibiting lipogenesis and lipid accumulation, and inducing browning of white adipose tissue. This review summarizes the mechanisms and outcomes of citrus fruits and their metabolites on energy metabolism and body weight in different experimental models. The literature was searched for in vitro and in vivo animal and human studies that investigated the effects of citrus consumption on energy expenditure, thermogenesis, adipogenesis, and lipid accumulation. Citrus fruits and their metabolites have shown promising effects on energy metabolism and lipid oxidation in in vitro and in vivo animal studies. However, the evidence from human studies is limited and inconsistent. Possible reasons for the discrepancy are briefly discussed, and knowledge gaps and research needs are identified for future studies. Citrus fruits may have beneficial effects on energy metabolism and body weight, but more rigorous and well-designed human trials are needed to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Merve Nur Aslan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Betül Sukan-Karaçağıl
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Nilüfer Acar-Tek
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Zhou X, Wang H, Huang M, Chen J, Chen J, Cheng H, Ye X, Wang W, Liu D. Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:1806-1824. [DOI: 10.26599/fshw.2022.9250151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Gu Y, Lv J, Gouda M, Zhu Y, He Y, Chen J. Using pectinase enzymatic peeling for obtaining high-quality Huyou (Citrus changshanensis) segments. J Food Compost Anal 2024; 125:105706. [DOI: 10.1016/j.jfca.2023.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
4
|
Wang Z, Zhong T, Mei X, Chen X, Chen G, Rao S, Zheng X, Yang Z. Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chem 2023; 425:136539. [PMID: 37290238 DOI: 10.1016/j.foodchem.2023.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of freeze drying (FD), heat pump drying (HPD), microwave drying (MD), and far-infrared drying (FID) on the quality of brocade orange peels (BOPs). Although the most attractive appearance, maximum levels of ascorbic acid (0.46 mg/g dry weight (DW)), carotenoids (total 16.34 μg/g DW), synephrine (15.58 mg/g DW), limonoids (total 4.60 mg/g DW), phenols (total 9142.80 μg/g DW), and antioxidant activity were observed in FD-BOPs, many aroma components in FD-BOPs were in the minimum levels. HPD-, and MD-BOPs depicted similar trends to FD-BOPs, but they contained the highest concentrations of limonene and β-myrcene. Phenols and ascorbic acid in MD-BOPs generally featured the highest levels of bioavailability, being to 15.99% and 63.94%, respectively. In comparison, FID was not beneficial for the preservation of bioactive compounds and volatile. Therefore, considering time and energy costs, HPD and particularly MD are more appropriate for the commercial production of dried BOPs.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Tao Zhong
- Sichuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, PR China
| | - Xiaofei Mei
- Chongqing Vocational Institute of Engineering, Jiangjin, Chongqing 402260, PR China
| | - Xuhui Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
5
|
Zhu Z, Wang J, Tang L, Tang J, Liu D, Geng F. Quantitative metabolomic analysis reveals the fractionation of active compounds during lemon fruit juicing. Food Res Int 2023; 169:112829. [PMID: 37254405 DOI: 10.1016/j.foodres.2023.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
In this study, metabolomic analysis was employed to investigate the separation (fractionation) of active compounds into lemon juice (LJ) and lemon pomace (LP) during lemon juicing. A total of 968 metabolites were identified, and 438 differentially abundant metabolites (DAMs) were screened out between LJ and LP, suggesting significant metabolite fractionation during juicing. The "flavonoids", "phenolic acids", and "saccharides and alcohols" were mainly retained in the LP, while the fractionation of major "organic acids" was differentiated. Seven of the 12 potential bitter metabolites were more abundant in the LP and two were more abundant in the LJ, suggesting that LP would be more bitter. L-Ascorbic acid, thiamine, and acitretin were significantly lost during juicing, while riboflavin was newly dissolved during juicing. The antioxidant capacity of LP was significantly higher than that of LJ, which was closely related to the higher abundance of phenolic acid metabolites in LP. These findings suggtested that promoting the release of flavonoids and phenolic acids from LP is a potential strategy to improve the quality of LJ. Results also provides important information and reference for developing high-value products by using LP.
Collapse
Affiliation(s)
- Zhu Zhu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Linyi Tang
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Jiang Tang
- Lemon Industry Development Center of Anyue County, Ziyang 642350, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
6
|
Shorbagi M, Fayek NM, Shao P, Farag MA. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Combined Transcriptome and Metabolome Analyses Reveal Candidate Genes Involved in Tangor ( Citrus reticulata × Citrus sinensis) Fruit Development and Quality Formation. Int J Mol Sci 2022; 23:ijms23105457. [PMID: 35628266 PMCID: PMC9141862 DOI: 10.3390/ijms23105457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Tangor, an important citrus type, is a hybrid of orange and mandarin and possesses their advantageous characteristics. Fruit quality is an important factor limiting the development of the citrus industry and highly depends on fruit development and ripening programs. However, fruit development and quality formation have not been completely explored in mandarin-orange hybrids. We sequenced the metabolome and transcriptome of three mandarin-orange hybrid cultivars at the early fruiting [90 days after full bloom (DAFB)], color change (180 DAFB), and ripening (270 DAFB) stages. Metabolome sequencing was performed to preliminarily identify the accumulation patterns of primary and secondary metabolites related to fruit quality and hormones regulating fruit development. Transcriptome analysis showed that many genes related to primary metabolism, secondary metabolism, cell wall metabolism, phytohormones, and transcriptional regulation were up-regulated in all three cultivars during fruit development and ripening. Additionally, multiple key genes were identified that may play a role in sucrose, citric acid and flavonoid accumulation, cell wall modification, and abscisic acid signaling, which may provide a valuable resource for future research on enhancement of fruit quality of hybrid citrus. Overall, this study provides new insights into the molecular basis of pulp growth and development regulation and fruit quality formation in mandarin-orange hybrids.
Collapse
|
8
|
Grapefruit Debittering by Simultaneous Naringin Hydrolysis and Limonin Adsorption Using Naringinase Immobilized in Agarose Supports. Molecules 2022; 27:molecules27092867. [PMID: 35566219 PMCID: PMC9103998 DOI: 10.3390/molecules27092867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Naringin and limonin are the two main bitter compounds of citrus products such as grapefruit juice. The aim of this investigation was to evaluate the reduction in both bitter components simultaneously using a combined biochemical and physical approach. The proposed strategy was based on the use of heterofunctional supports with glyoxyl groups that allow for the covalent immobilization of naringinase, which hydrolyses naringin and alkyl groups that allow for the adsorption of limonin. The supports were butyl-glyoxyl agarose (BGA) and octyl-glyoxyl agarose (OGA), which were characterized in terms of aldehyde group quantification and FTIR analysis. The optimal pH and temperature of free and immobilized enzymes were assessed. The maximum enzyme loading capacity of supports was analyzed. Debittering of grapefruit juice was evaluated using soluble enzyme, enzyme-free supports, and immobilized catalysts. Enzyme immobilized in BGA reduced naringin and limonin concentrations by 54 and 100%, respectively, while the use of catalyst immobilized in OGA allowed a reduction of 74 and 76%, respectively, obtaining a final concentration of both bitter components under their detection threshold. The use of OGA biocatalyst presented better results than when soluble enzyme or enzyme-free support was utilized. Biocatalyst was successfully applied in juice debittering in five repeated batches.
Collapse
|
9
|
Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Res Int 2022; 153:110958. [DOI: 10.1016/j.foodres.2022.110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
|
10
|
Gupta AK, Dhua S, Sahu PP, Abate G, Mishra P, Mastinu A. Variation in Phytochemical, Antioxidant and Volatile Composition of Pomelo Fruit ( Citrus grandis (L.) Osbeck) during Seasonal Growth and Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091941. [PMID: 34579472 PMCID: PMC8467822 DOI: 10.3390/plants10091941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Citrus fruits exhibit a high level of different phytoconstituents, of which the changes in the different parts of the fruit during ripening have not been thoroughly studied yet. Thus, in this study, we have investigated how different parts of pomelo fruit (Citrus grandis L.) are modified throughout the development of two consecutive growing seasons. In detail, the main phytochemical compounds, such as total phenolic content, total flavonoid content, antioxidant capacity, DPPH free radical scavenging activity, Ferric reducing antioxidant power (FRAP), and naringin and tannin content, were analyzed. A systematic metabolism of these compounds was found during the development of the fruit, but some pomelo tissues showed a fluctuating trend, suggesting a dependence on the different growing season. Focusing on the tissue distribution of these compounds, the fruit membrane contained the highest level of total phenolic and flavonoid content; fruit flavedo displayed the highest antioxidant capacities and FRAP activities, whereas maximum accumulation of naringin was noticed in fruit albedo. Instead, the highest DPPH free radical scavenging activity and tannin contents were found in the pomelo juice. Regarding the distribution of compounds, a possible bias pattern for the accumulation of those compounds has been noticed throughout the fruit development. From the GC-MS analysis, a total of 111 compounds were identified, where 91 compounds were common in both seasons. Overall, these results could be useful for the food processing industry as guidelines for excellent quality foods and for introducing health-beneficial products and components into our daily diets.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Partha Pratim Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur 784028, Assam, India;
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
11
|
Chen J, Li G, Zhang H, Yuan Z, Li W, Peng Z, Shi M, Ding W, Zhang H, Cheng Y, Yao JL, Xu J. Primary Bitter Taste of Citrus is Linked to a Functional Allele of the 1,2-Rhamnosyltransferase Gene Originating from Citrus grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9869-9882. [PMID: 34410124 DOI: 10.1021/acs.jafc.1c01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,2-Rhamnosyltransferase (1,2RhaT) catalyzes the final step of production of flavanone neohesperidoside (FNH) that is responsible for the primary bitter taste of citrus fruits. In this study, species-specific flavonoid profiles were determined in 87 Citrus accessions by identifying eight main flavanone glycosides (FGs). Accumulation of FNHs was completely correlated to the presence of the 1,2RhaT gene in 87 citrus accessions analyzed using a novel 1,2RhaT-specific DNA marker. Pummelo (Citrus grandis) was identified as the genetic origin for a function allele of 1,2RhaT that underpinned FNH-bitterness in modern citrus cultivars. In addition, genes encoding six MYB and five bHLH transcription factors were shown to coexpress with 1,2RhaT and other flavonoid pathway genes related to FNH accumulation, indicating that these transcription factors may affect the fruit taste of citrus. This study provides a better understanding of bitterness formation in Citrus varieties and a genetic marker for the early selection of nonbitterness lines in citrus breeding programs.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Gu Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyu Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huixian Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
12
|
Huang S, Dong T, Xiong B, Qiu X, Sun G, Liao L, Fan N, Wang X, Deng H, He S, Hu Y, Wang Z. Variation in the content and composition of limonoids in fruits of four pomelo varieties during fruit development: The natural debittering process in pomelo fruits. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Guo P, Pang W, Zhao X, Chen X, Zhang Y, Zhao Q, Jiao B. A rapid UPLC-QqQ-MS/MS method for targeted screening and quantitative analysis of secondary metabolites in satsuma mandarin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03742-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Gupta AK, Pathak U, Tongbram T, Medhi M, Terdwongworakul A, Magwaza LS, Mditshwa A, Chen T, Mishra P. Emerging approaches to determine maturity of citrus fruit. Crit Rev Food Sci Nutr 2021; 62:5245-5266. [PMID: 33583257 DOI: 10.1080/10408398.2021.1883547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Owing to their health-boosting properties and other appreciable properties, citrus fruit is widely consumed and commercialized worldwide. Destination markets around the world vary in their fruit quality requirements and are also highly influenced by climatic conditions, agronomical and postharvest practices. Hence, harvesting decisions are arduous. Maturity indices in citrus fruit are highly variable and dependent on the species and varieties, growing regions, and destination markets. For decades, determination of the maturity of citrus fruit and predicting the near time of harvesting was a challenge for producers, researchers, and food safety agencies. Thus, the current review provides a correlation between maturity and internal components and an overview of techniques of maturity determination for citrus fruits. Also, stress has been given to the destructive and nondestructive methods to determine the maturity level of different citrus species. The techniques presented in this review portray continuous productiveness as an excellent quality assessment, particularly as ripening and maturity analysis tools for citrus fruits. Traditional techniques are time-consuming, laborious, costly, destructive, and tedious. Thus, these nondestructive techniques hold great potential to replace conventional procedures.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Urbi Pathak
- Department of Food Science, ISA Lille, Lille, France
| | - Thoithoi Tongbram
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Manisha Medhi
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India.,Department of Food Processing and Quality Management, Pub Kamrup College, Kamrup, Assam, India
| | | | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
15
|
Li Z, Jin R, Yang Z, Wang X, You G, Guo J, Zhang Y, Liu F, Pan S. Comparative study on physicochemical, nutritional and enzymatic properties of two Satsuma mandarin (Citrus unshiu Marc.) varieties from different regions. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Zhang P, Liu X, Yu X, Wang F, Long J, Shen W, Jiang D, Zhao X. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC PLANT BIOLOGY 2020; 20:254. [PMID: 32493275 PMCID: PMC7271526 DOI: 10.1186/s12870-020-02475-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonoids are major bioactive compounds that are produced by the triterpenoid metabolic pathway. The detailed biochemical process of limonoid biosynthesis and the mechanism of its molecular regulation remain elusive. The identification of transcription factors that regulate limonoid biosynthetic pathways is very important for understanding the underlying regulatory mechanisms. This information could also provide tools for manipulating biosynthesis genes to modulate limonoid production. RESULTS In this study, the CiMYB42 transcription factor was isolated to identify its role in limonoid biosynthesis. Multiple alignment analysis and phylogenetic analysis demonstrated that CiMYB42 is a typical R2R3MYB transcription factor that shares high similarity of its amino acid sequence with AtMYB42. Limonoids contents were higher in Citrus sinensis and Citrus grandis than in other species. Limonoid accumulation during leaf development also showed diverse trends in different genotypes. The expression of CiMYB42 was significantly related to the limonoid content and the expression of CiOSC in some citrus accessions. The overexpression of CiMYB42 in sweet orange resulted in significant accumulation of limonin, whereas the downregulation of CiMYB42 by RNAi resulted in a dwarf phenotype and less nomilin accumulation. Furthermore, the results of a yeast one-hybrid assay and EMSA indicated that CiMYB42 binds exclusively to the TTGTTG sequence (type II MYB core) in the promoter of CiOSC. Together, these results suggest that CiMYB42 positively regulates limonoid biosynthesis by regulating the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core) of its promoter. CONCLUSIONS CiMYB42 is an important transcription activator involved in limonoid biosynthesis that regulates the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core).
Collapse
Affiliation(s)
- Pan Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xin Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Fusheng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Junhong Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Dong Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China.
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China.
| |
Collapse
|
17
|
Fabroni S, Amenta M, Timpanaro N, Todaro A, Rapisarda P. Change in taste-altering non-volatile components of blood and common orange fruit during cold storage. Food Res Int 2020; 131:108916. [DOI: 10.1016/j.foodres.2019.108916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
|
18
|
More AS, Ranadheera CS, Fang Z, Warner R, Ajlouni S. Biomarkers associated with quality and safety of fresh-cut produce. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Zhang M, Jing L, Wu Q, Zhu K, Ke F, Xu J, Zhao S, Wang G, Zhang C. Metabolite profile comparison of a graft chimera 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) and its two donor plants. BMC PLANT BIOLOGY 2019; 19:582. [PMID: 31878871 PMCID: PMC6933880 DOI: 10.1186/s12870-019-2173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou ("C") scion was top-grafted onto a stock Satsuma mandarin 'Owari' (C. unshiu, "O"). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. RESULTS The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and β-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. CONCLUSION The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Luyang Jing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Qun Wu
- Quzhou Technical Extension Station for Cash Crops, Quzhou, 324000 China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Fuzhi Ke
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Jianguo Xu
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Siqing Zhao
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Gang Wang
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| |
Collapse
|
20
|
Liu C, He M, Wang Z, Xu J. Integrative Analysis of Terpenoid Profiles and Hormones from Fruits of Red-Flesh Citrus Mutants and Their Wild Types. Molecules 2019; 24:molecules24193456. [PMID: 31547628 PMCID: PMC6804237 DOI: 10.3390/molecules24193456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/21/2022] Open
Abstract
In citrus color mutants, the levels of carotenoid constituents and other secondary metabolites are different in their corresponding wild types. Terpenoids are closely related to coloration, bitterness, and flavor. In this study, terpenoid profiles and hormones in citrus fruits of two red-flesh mutants—Red Anliu orange and Red-flesh Guanxi pummelo—and their corresponding wild types were investigated using GC/MS, HPLC, and LC-MS/MS. Results showed that Red Anliu orange (high in carotenoids) and Anliu orange (low in carotenoids) accumulated low levels of limonoid aglycones but high levels of monoterpenoids; conversely, Red-flesh Guanxi pummelo (high in carotenoids) and Guanxi pummelo (deficient in carotenoids) accumulated high levels of limonoid aglycones but low levels of monoterpenoids. However, isopentenyl diphosphate was present at similar levels. A correlation analysis indicated that jasmonic and salicylic acids might play important roles in regulating terpenoid biosynthesis. Additionally, the similarities of carotenoid and volatile profiles between each mutant and its corresponding wild type were greater than those between the two mutants or the two wild types. The flux balance of terpenoid metabolism in citrus fruit tends toward stability among various citrus genera that have different terpenoid profiles. Bud mutations could influence metabolite profiles of citrus fruit to a limited extent.
Collapse
Affiliation(s)
- Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Variation in limonin and nomilin content in citrus fruits of eight varieties determined by modified HPLC. Food Sci Biotechnol 2018; 28:641-647. [PMID: 31093421 DOI: 10.1007/s10068-018-0509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023] Open
Abstract
The nomilin and limonin content in citrus fruits of different varieties was determined at fruit growth and maturation stages by HPLC. The results showed that the two limonoids can be separated, identified, and quantified in citrus fruits within 10 min by the developed method. The method exhibited good precision, repeatability, stability, and recovery rate. The content of limonin and nomilin in most citrus fruits presented an increasing trend initially, and then decreased during fruit growth and maturation; a peak was observed at the young fruit or fruit expansion stage. The dropped fruits also contained some amount of limonoids, suggesting their industrial application. The variation and cluster analyses results revealed that the orange varieties contained the highest amount of limonoids at the mature stage. The results of this study will enable better use of citrus limonoids.
Collapse
|
22
|
Yan F, Shi M, He Z, Wu L, Xu X, He M, Chen J, Deng X, Cheng Y, Xu J. Largely different carotenogenesis in two pummelo fruits with different flesh colors. PLoS One 2018; 13:e0200320. [PMID: 29985936 PMCID: PMC6037374 DOI: 10.1371/journal.pone.0200320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/23/2018] [Indexed: 02/03/2023] Open
Abstract
Carotenoids in citrus fruits have health benefits and make the fruits visually attractive. Red-fleshed ‘Chuhong’ (‘CH’) and pale green-fleshed ‘Feicui’ (‘FC’) pummelo (Citrus maxima (Burm) Merr.) fruits are interesting materials for studying the mechanisms of carotenoid accumulation. In this study, particularly high contents of linear carotenes were observed in the albedo tissue, segment membranes and juice sacs of ‘CH’. However, carotenoids, especially β-carotene and xanthophylls, accumulated more in the flavedo tissue of ‘FC’ than in that of ‘CH’. Additionally, the contents of other terpenoids such as limonin, nomilin and abscisic acid significantly differed in the juice sacs at 150 days postanthesis. A dramatic increase in carotenoid production was observed at 45 to 75 days postanthesis in the segment membranes and juice sacs of ‘CH’. Different expression levels of carotenogenesis genes, especially the ζ-carotene desaturase (CmZDS), β-carotenoid hydroxylase (CmBCH) and zeaxanthin epoxidase (CmZEP) genes, in combination are directly responsible for the largely different carotenoid profiles between these two pummelo fruits. The sequences of eleven genes involved in carotenoid synthesis were investigated; different alleles of seven of eleven genes might also explain the largely different carotenogenesis observed between ‘CH’ and ‘FC’. These results enhance our understanding of carotenogenesis in pummelo fruits.
Collapse
Affiliation(s)
- Fuhua Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Zhenyu He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Lianhai Wu
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Xianghua Xu
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Min He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Ding S, Wang R, Zhang J, Li G, Zhang J, Ou S, Shan Y. Effect of drying temperature on the sugars, organic acids, limonoids, phenolics, and antioxidant capacities of lemon slices. Food Sci Biotechnol 2017; 26:1523-1533. [PMID: 30263689 PMCID: PMC6049725 DOI: 10.1007/s10068-017-0221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 11/24/2022] Open
Abstract
Changes in contents of sugars, organic acids, limonoids, phenolics contents, and antioxidant capacities of lemon slices dried at different temperatures were evaluated. Air drying (AD) promoted losses of sugars, citric acid, ascorbic acid, extractable phenolics (EPs), and non-extractable phenolics (NEPs), while it introduced an increase in limonoids. Phenolics of lemon were mainly presented in their extractable form. Hesperidin and eriocitrin were the main EPs; protocatechuic acid and poncirin were the predominant NEPs. The decrease in extractable phenolic acid, EP, and NEP content in lemon is lower at low drying temperatures, while the increase in non-extractable phenolic acid content is higher at high drying temperatures. The antioxidant capacity of EP was higher than that of NEP. Phenolics contributed to antioxidant capacities of lemon slices, and flavonoids were the main contributors among phenolics. Considering limonoids contents and the high levels of EP, NEP, and antioxidant capacities, AD at 60 °C could be an appreciate treatment for dehydrating lemon slices.
Collapse
Affiliation(s)
- Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Rongrong Wang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Jing Zhang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Gaoyang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Juhua Zhang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Shiyi Ou
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| |
Collapse
|
24
|
Putnik P, Barba FJ, Lorenzo JM, Gabrić D, Shpigelman A, Cravotto G, Bursać Kovačević D. An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility. Compr Rev Food Sci Food Saf 2017; 16:1345-1358. [PMID: 33371593 DOI: 10.1111/1541-4337.12310] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023]
Abstract
Mandarins are a member of the Citrus genus and are the focus of growing commercial interest, with satsuma mandarins (Citrus unshiu) and the common mandarin (Citrus reticulata Blanco) being the most important mandarin varieties. The possible health benefits and functional properties of those fruits are often associated with the antioxidative function of vitamin C, carotenoids, and phenolic compounds. While most mandarins are consumed fresh, many are processed into juices (mostly cloudy), usually via thermal processing which can lead to the creation of off-flavors and may diminish nutritional quality. The aim of this review is to summarize the most significant and recent information on the safety, sensorial properties, and nutritional benefits of mandarins and their processing into juice. The article also discusses recent information regarding the bioaccessibility of valuable, mandarin specific, compounds.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Dept., Faculty of Pharmacy, Univ. de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/ Galicia, 4, 32900 San Ciprián de Viñas, Ourense, Spain
| | - Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering, Technion, Israel Inst. of Technology, Haifa, 3200003, Israel
| | - Giancarlo Cravotto
- Dipt. di Scienza e Tecnologia del Farmaco, Univ. of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Wang S, Yang C, Tu H, Zhou J, Liu X, Cheng Y, Luo J, Deng X, Zhang H, Xu J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Sci Rep 2017; 7:10549. [PMID: 28874745 PMCID: PMC5585201 DOI: 10.1038/s41598-017-10970-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
Flavonoids are widely distributed in plants and play important roles in many biological processes. Citrus fruits are rich dietary sources of flavonoids. However, there have been very few reports about the comprehensive metabolic profile and natural diversity of flavonoids in different tissues of various Citrus cultivars. In this study, based on the 7416 metabolic signals detected with non-targeted metabolomics approach, Principal Component Analysis revealed the flavedo has the largest differences from other tissues in metabolite levels; as many as 198 flavonoid signals were then detected in 62 Citrus germplasms from 5 species mainly cultivated worldwide, while 117 flavonoids were identified, including 39 polymethoxylated flavonoids (PMFs), 7 flavones, 10 C-O-glycosylflavonoids, 44 O-glycosylflavonoids, 10 C-glycosylflavonoids and 7 newly annotated O-glycosylpolymethoxylated flavonoids. Tissue-specific accumulations were observed: O-glycosylated flavonoids were abundant in all fruit tissues, while PMFs were accumulated preferentially in the flavedo. Among different species, mandarins had the highest levels of PMFs and O-glycosylpolymethoxylated flavonoids, followed by sweet oranges. Based on the flavonoid profiles, 62 germplasms could be clearly grouped into five distinct clusters via hierarchical clustering analysis, which were perfectly matched with their species, with sweet oranges and mandarins clustering closely and being further away from other three species.
Collapse
Affiliation(s)
- Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Tu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Yang YF, Zhang LZ, Du XP, Zhang SF, Li LJ, Jiang ZD, Wu LM, Ni H, Chen F. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Wang F, Wang M, Liu X, Xu Y, Zhu S, Shen W, Zhao X. Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:782. [PMID: 28553308 PMCID: PMC5427120 DOI: 10.3389/fpls.2017.00782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 05/25/2023]
Abstract
Limonoids produced by citrus are a group of highly bioactive secondary metabolites which provide health benefits for humans. Currently there is a lack of information derived from research on the genetic mechanisms controlling the biosynthesis of limonoids, which has limited the improvement of citrus for high production of limonoids. In this study, the transcriptome sequences of leaves, phloems and seeds of pummelo (Citrus grandis (L.) Osbeck) at different development stages with variances in limonoids contents were used for digital gene expression profiling analysis in order to identify the genes corresponding to the biosynthesis of limonoids. Pair-wise comparison of transcriptional profiles between different tissues identified 924 differentially expressed genes commonly shared between them. Expression pattern analysis suggested that 382 genes from three conjunctive groups of K-means clustering could be possibly related to the biosynthesis of limonoids. Correlation analysis with the samples from different genotypes, and different developing tissues of the citrus revealed that the expression of 15 candidate genes were highly correlated with the contents of limonoids. Among them, the cytochrome P450s (CYP450s) and transcriptional factor MYB demonstrated significantly high correlation coefficients, which indicated the importance of those genes on the biosynthesis of limonoids. CiOSC gene encoding the critical enzyme oxidosqualene cyclase (OSC) for biosynthesis of the precursor of triterpene scaffolds was found positively corresponding to the accumulation of limonoids during the development of seeds. Suppressing the expression of CiOSC with VIGS (Virus-induced gene silencing) demonstrated that the level of gene silencing was significantly correlated to the reduction of limonoids contents. The results indicated that the CiOSC gene plays a pivotal role in biosynthesis of limonoids.
Collapse
Affiliation(s)
- Fusheng Wang
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
- National Citrus Engineering Research CenterChongqing, China
- College of Horticulture and Landscape Architecture, Southwest UniversityChongqing, China
| | - Mei Wang
- Chongqing Yongchuan Institute for Food and Drug ControlChongqing, China
| | - Xiaona Liu
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
| | - Yuanyuan Xu
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
| | - Shiping Zhu
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
- National Citrus Engineering Research CenterChongqing, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
- National Citrus Engineering Research CenterChongqing, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University and Chinese Academy of Agricultural SciencesChongqing, China
- National Citrus Engineering Research CenterChongqing, China
| |
Collapse
|
28
|
Grilo FS, Di Stefano V, Lo Bianco R. Deficit irrigation and maturation stage influence quality and flavonoid composition of 'Valencia' orange fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1904-1909. [PMID: 27528197 DOI: 10.1002/jsfa.7993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Effects of continuous deficit irrigation (DI) and partial rootzone drying (PRD) treatments (50% ETc) in comparison with full irrigation (CI, 100% ETc) were investigated during 'Valencia' orange fruit maturation. Ultra-high-performance liquid chromatography/high-resolution mass spectrometry was used to quantify hesperidin, narirutin, tangeritin, nobiletin, didymin and neoeriocitrin in the fruit juice and peel. RESULTS No significant effect of irrigation was found on yield, juice soluble solids or acidity. Juice color was not influenced by irrigation or harvest date, whereas peel color increased during maturation and was more pronounced in CI and PRD fruits. Juice acidity reached a peak in May, while soluble solids increased linearly throughout maturation. Hesperidin was the major flavanone detected during maturation, with concentrations 200-fold higher in the fruit peel than in the juice. In the peel, narirutin, didymin and neoeriocitrin decreased while hesperidin, nobiletin and tangeritin increased with maturation. Narirutin synthesis in the orange fruit was insensitive to irrigation strategy. In fruit peels, PRD and DI induced the decline of hesperidin, nobiletin and tangeritin only in June, whereas in the juice, deficit irrigation treatments induced an increase in hesperidin and didymin. CONCLUSION These results suggest that deficit irrigation, in particular the conditions imposed with PRD, may cause a significant accumulation shift of total flavonoids from the fruit peel into the juice, with a positive impact on juice quality and nutritional value. Fruit compositional changes during maturation also suggest that late harvest can improve fruit palatability and nutritional quality under the cultural and environmental conditions of this study. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filipa S Grilo
- Department of Agricultural and Forest Sciences, University of Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, Italy
| | - Riccardo Lo Bianco
- Department of Agricultural and Forest Sciences, University of Palermo, Italy
| |
Collapse
|
29
|
Zhang H, Xie Y, Liu C, Chen S, Hu S, Xie Z, Deng X, Xu J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 2017; 230:316-326. [PMID: 28407917 DOI: 10.1016/j.foodchem.2017.03.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shilin Chen
- Agricultural Bureau of Yichang District, Yiling 443310, PR China.
| | - Shuangshuang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
30
|
Li W, Liu C, He M, Li J, Cai Y, Ma Y, Xu J. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type. BMC PLANT BIOLOGY 2017; 17:36. [PMID: 28158965 PMCID: PMC5291992 DOI: 10.1186/s12870-017-0988-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Niurouhong (Citrus reticulata Blanco. Niurouhong) (NRH) is a spontaneous beef-red flesh mutant with distinctive flavor compared with its wild type orange-red flesh Zhuhongju (ZHJ). To illustrate the biochemical mechanism of its special flesh color and flavor, fruits at commercial mature stage were used to profile the volatiles in the flavedo and determine the levels of carotenoids, limonoid aglycones and phytohormones in the juice sacs in two seasons. RESULTS Our results showed the content of total volatile terpenoids in NRH was 1.27-fold that in ZHJ. The components of volatiles were found to be common between the two tangerines. This result indicates that the distinctive flavor of NRH might not be derived from the presence/absence of specific volatiles; instead, it was derived from the altered concentrations or balance of α-citral, β-citral, 2-cyclohexen-1-one, (S)-3-methyl-6-(1-methylethenyl) and n-hexadecanoic acid. Analyses of the contents of total and specific carotenoids indicated that the beef-red color of NRH flesh might be largely attributed to the over accumulation of β-cryptoxanthin and β-carotene. However, lower ABA level was found in NRH than in ZHJ, reflecting a possible feedback regulation of ABA biosynthesis on carotenogenesis and the balance in the metabolism among terpenoids. CONCLUSIONS Collectively, our study suggested that the MEP pathway was enhanced in NRH tangerine. However, a certain unknown co-regulatory mechanism might be present in the metabolism pathway of secondary metabolites (especially terpenoids) in beef-red flesh mutant. Our study provides new insights into the regulatory network of terpenoid metabolism and mutation mechanism of red-fleshed citrus.
Collapse
Affiliation(s)
- Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Cuihua Liu
- College of Horticulture, Northwest A & F University, Yangling, Shanxi Province 712100 China
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinqiang Li
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yongqiang Cai
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yuhua Ma
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
31
|
Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016; 21:E1530. [PMID: 27845763 PMCID: PMC6273274 DOI: 10.3390/molecules21111530] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.
Collapse
Affiliation(s)
- Roberta Gualdani
- Department of Chemistry "U. Shiff", University of Florence, Via della Lastruccia 3, Florence 50019, Italy.
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
32
|
Chaudhary PR, Yu X, Jayaprakasha GK, Patil BS. Influence of storage temperature and low-temperature conditioning on the levels of health-promoting compounds in Rio Red grapefruit. Food Sci Nutr 2016; 5:545-553. [PMID: 28572940 PMCID: PMC5448389 DOI: 10.1002/fsn3.429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023] Open
Abstract
Commercial operations use low‐temperature conditioning of citrus fruits to reduce the incidence of chilling injury (CI) during cold storage and quarantine treatments. Rio Red grapefruits (Citrus paradisi Macf) were stored for 12 weeks at 11°C or 5°C; an additional set was temperature conditioned at 16°C for 7 days before storing at 5°C (CD). Every 3 weeks, samples were assessed for chilling injury (CI) and health‐promoting compounds such as ascorbic acid, carotenoids, limonoids, flavonoids, and furocoumarins. Low‐temperature conditioning significantly reduced CI but did not affect the total soluble solids, acidity, and ripening ratio. After 12 weeks of storage, grapefruits showed no significant differences in lycopene, narirutin, poncirin, furocoumarins, and radical scavenging activity in all the three treatments. Limonin was significantly higher (p < .05) in CD fruits, nomilin was significantly higher in fruits stored at 11°C, whereas fruits stored at 5°C had lower levels of naringin, neohesperidin, and didymin after 12 weeks of storage. Low‐temperature conditioning treatment helped fruits to retain similar or higher levels of most of the health‐promoting compounds by the end of storage period while maintaining better quality than the nonconditioned fruits.
Collapse
Affiliation(s)
- Priyanka R Chaudhary
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| | - Xiang Yu
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| |
Collapse
|
33
|
Wang F, Yu X, Liu X, Shen W, Zhu S, Zhao X. Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:23-9. [PMID: 27135815 DOI: 10.1016/j.plaphy.2016.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 05/01/2023]
Abstract
Limonoids are the important secondary metabolites in the citrus. In this study, the accumulation of limonoids at different fruit developmental stages and distribution among different genotypes, tissues and developmental stages were investigated in 12 pummelo varieties. The large variations on limonoids concentration were found among different varieties, which ranged from 233.78 mg/kg FW to 4090.41 mg/kg FW in the seeds at full color stage of the fruit. Classification of pummelos based on the limonoids content divided 12 varieties into three groups. It was matched well with the geographic origination of the pummelo varieties, suggesting that the accumulation of limonoids was mainly determined by the genotype of the pummelo. Accumulation of the limonoids in different tissues was highly variable, and in a tissue specific fashion. The trend of the change on the levels of nomilin and limonin in the seeds and segment membrane were corresponded to the physiological development of the fruit. The rapid accumulation of nomilin and limonoids was observed from the physiological ripening of the seeds. It suggested that physiological maturation of the seeds is a key point that the seeds accelerate the accumulation of nomilin and limonin. In most of pummelo varieties, 10% color break of the fruit was a phenotypic landmark associated with the maximum level of nomilin accumulated in the seeds.
Collapse
Affiliation(s)
- Fusheng Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Xiaohan Yu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaona Liu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Shiping Zhu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China.
| |
Collapse
|
34
|
Wang S, Tu H, Wan J, Chen W, Liu X, Luo J, Xu J, Zhang H. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem 2015; 199:8-17. [PMID: 26775938 DOI: 10.1016/j.foodchem.2015.11.113] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species.
Collapse
Affiliation(s)
- Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Tu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Development and evaluation of simultaneous quantification of naringin, prunin, naringenin, and limonin in citrus juice. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0159-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Liu C, Yan F, Gao H, He M, Wang Z, Cheng Y, Deng X, Xu J. Features of citrus terpenoid production as revealed by carotenoid, limonoid and aroma profiles of two pummelos (Citrus maxima) with different flesh color. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:111-9. [PMID: 24723118 DOI: 10.1002/jsfa.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/04/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Terpenoids are major components of carotenoids, limonoids and aromas in citrus fruits, resulting in fruit coloration, bitterness and aroma. In this study the carotenoid, limonoid and volatile profiles of red-flesh Chuhong pummelo (CH) and pale green-flesh Feicui pummelo (FC) were investigated by HPLC and GC/MS. RESULTS Large differences were found in constituents of carotenoids and limonoids in juice sacs and flavedo and of aromas in flavedo of the two pummelos. For carotenoids in juice sacs, CH contained 57 times the amount in FC, mainly all-trans-lycopene and phytoene, whereas in flavedo it contained only 25% of that in FC, the latter showing a high proportion of β-carotene and other chloroplastic carotenoids. In comparison with FC, limonin and nomilin aglycone production was boosted in juice sacs of CH while being almost absent in flavedo. For volatiles in flavedo, the total amount was significantly higher in CH. PCA suggested that germacrene-type sesquiterpenoids, etc. were principal in distinguishing volatile profiles of the two pummelos. CONCLUSION The data showed a different tissue-biased pattern of carotenoid and limonoid aglycone synthesis in pummelos with different flesh color, and the possible independently regulated synthesis of those metabolites in different fruit tissues. Furthermore, decreased carotenoid and limonoid aglycone production accompanied by increased accumulation of volatile terpenoids in flavedo of red-flesh CH was identified, indicating that a total capacity or a balance of production of various terpenoids might exist in pummelo fruit tissues. It was also suggested that substrate concentration is not the key factor affecting product concentrations during the synthesis of monoterpene derivatives.
Collapse
Affiliation(s)
- Cuihua Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|