1
|
Banerjee S, Beraja G, Eilts KK, Singh V. Redefining the product portfolio of oilcane bagasse biorefinery: Recovering natural colorants, vegetative lipids and sugars. BIORESOURCE TECHNOLOGY 2025; 419:132052. [PMID: 39793670 DOI: 10.1016/j.biortech.2025.132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.9 ± 18.9 µg/g of dried bagasse with cyanidin-3-glucoside (13.5 ± 18.9 µg per g of dried bagasse) as the most prominent anthocyanin present. More than 85 % (w/w) of the total anthocyanins were recovered from oilcane bagasse at a pretreatment temperature of 150 °C for 15 min. These conditions for the hydrothermal pretreatment also led to a 2-fold increase in the glucose yield upon the enzymatic saccharification of the pretreated bagasse. Further, a 1.5-fold enrichment of the vegetative lipids was demonstrated in the pretreated residue.Re-defining green biorefineries with multiple high-value products in a zero-waste approach is the need of the hour for attaining sustainability.
Collapse
Affiliation(s)
- Shivali Banerjee
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Galit Beraja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristen K Eilts
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Huang Q, Wen T, Fang T, Lao H, Zhou X, Wei T, Luo Y, Xie C, Huang Z, Li K. A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chem 2025; 463:141510. [PMID: 39369597 DOI: 10.1016/j.foodchem.2024.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The sugarcane tip is abundant in phenolic compounds. Previous studies have concentrated on the effects of free polyphenols, while bound polyphenols were overlooked. In this study, the content of bound polyphenols (SPB) (31.9 ± 0.9 mg GAE/g DW) was significantly higher than free polyphenols (SPF) (3.4 ± 0.1 mg GAE/g DW). A total of 44 free and 31 bound phenolics were identified by the UPLC-EIS-QTOF-MS/MS. Moreover, the antioxidant activity of SPB was more pronounced, as evidenced by its higher ABTS+ and DPPH scavenging rates than SPF, which was attributed to the higher tannin content. Furthermore, at all tested concentrations (100 and 200 μg/mL), SPB significantly enhanced the survival and antioxidant enzyme activity of Caenorhabditis elegans (C. elegans), while concurrently reducing ROS levels. High concentrations of SPB even exhibited antioxidant activity comparable to Vitamin C (Vc). The collective findings strongly indicate that SPB holds great potential as an effective antioxidant.
Collapse
Affiliation(s)
- Qiqi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tongquan Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Taowen Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Houyuan Lao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tengqing Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiwen Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| |
Collapse
|
3
|
Jiang W, Liu K, Huan W, Wu X, Zhu M, Tao H, Song L, Gao F. Specific extraction of bioactive flavonoids from Torreya grandis pomace using magnetic nanoparticles modified with a ChCl/acetamide deep eutectic solvent. Lebensm Wiss Technol 2024; 211:116914. [DOI: 10.1016/j.lwt.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
4
|
Lv H, Jia Y, Liu C, Xu J, Xie C, Li K, Huang K, Hang F. A Preliminary Study on the Effect of Adding Sugarcane Syrup on the Flavor of Barley Lager Fermentation. Foods 2024; 13:2339. [PMID: 39123531 PMCID: PMC11311557 DOI: 10.3390/foods13152339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This study focuses on the diversified utilization of the sugarcane industry, and sugarcane syrup, as a by-product of the sugarcane industry, is a good raw material for fermentation. Bringing sugarcane syrup into beer is conducive to the enrichment of the sugar industry, and it can improve the flavor of beer and make it more aromatic. This study determined the optimal fermentation process for beer. By analyzing the consumption rate of the carbon and nitrogen sources of raw materials, the nutrient utilization of yeast, and the causes of differences in flavor substances, the flavor composition and flavor stability of beer were determined by SPME-HS-GC-MS technology. The results showed that beer brewed with sugarcane syrup as an auxiliary raw material met the basic specifications of beer. The addition of sugarcane syrup to the wort base increased the utilization of amino acids by the yeast, and LS (lager with added cane syrup) increased the nine flavor compounds of the beer, which constituted the basic flavor of the beer, bringing new flavor compounds compared with the normal all-barley beer. Forced aging experiments showed that LS produced fewer aging compounds than OWBL. Various experiments have shown that it is feasible to ferment beer with sugarcane syrup instead of partial wort.
Collapse
Affiliation(s)
- Hechao Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
| | - Yusheng Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
| | - Chaoyi Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
| | - Jia Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China
| | - Kai Huang
- Guangxi Institute of Industrial Technology, Nanning 530001, China;
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.L.); (Y.J.); (C.L.); (J.X.); (C.X.); (K.L.)
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China
| |
Collapse
|
5
|
Deng S, Pan L, Ke T, Liang J, Zhang R, Chen H, Tang M, Hu W. Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress. MYCORRHIZA 2024; 34:317-339. [PMID: 38836935 DOI: 10.1007/s00572-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.
Collapse
Affiliation(s)
- Shuiqing Deng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Pan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ke
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rongjing Zhang
- College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Wentao Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhang L, Chang Q, He Y, Zhao X, Liu W, Guo Q, Chen K, Hou X. Selenite foliar application increased the accumulation of medicinal components in Paeonia ostii by promoting antioxidant capacity, reducing oxidative stress, and improving photosynthetic capacity. PHOTOSYNTHETICA 2024; 62:168-179. [PMID: 39651417 PMCID: PMC11613835 DOI: 10.32615/ps.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 12/11/2024]
Abstract
The effects of selenite (0, 15, 30, 45 mg L-1) on physiological characteristics and medicinal components of Paeonia ostii were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity. Moreover, selenite treatment also greatly increased the contents of gallic acid, catechin, albiflorin, paeoniflorin, benzoic acid, and paeonol in Moutan cortex radicis (MCR). These results showed that selenite effectively protected the photosynthetic apparatus from photooxidative damage by enhancing antioxidant capacity, improving photosynthetic capacity, and increasing the content of the medicinal compounds in MCR.
Collapse
Affiliation(s)
- L.X. Zhang
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - Q.S. Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, 471003 Luoyang, China
| | - Y.L. He
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - X.L. Zhao
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - W. Liu
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - Q. Guo
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - K. Chen
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - X.G. Hou
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| |
Collapse
|
7
|
Pereira JO, Oliveira D, Faustino M, Vidigal SSMP, Pereira AM, Ferreira CMH, Oliveira AS, Durão J, Rodríguez-Alcalá LM, Pintado ME, Madureira AR, Carvalho AP. Use of Various Sugarcane Byproducts to Produce Lipid Extracts with Bioactive Properties: Physicochemical and Biological Characterization. Biomolecules 2024; 14:233. [PMID: 38397470 PMCID: PMC10886787 DOI: 10.3390/biom14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as β-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.
Collapse
Affiliation(s)
- Joana Odila Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Diana Oliveira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Margarida Faustino
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Susana S. M. P. Vidigal
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana Margarida Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Carlos M. H. Ferreira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Ana Sofia Oliveira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Joana Durão
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Luís M. Rodríguez-Alcalá
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana P. Carvalho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| |
Collapse
|
8
|
Kim RH, Lee SJ, Lee K, Hwang KT, Kim J. Profiling of phenolic acids, flavonoids, terpenoids, and steroid derivatives in coconut ( Cocos nucifera L.) haustorium. Food Sci Biotechnol 2023; 32:1841-1850. [PMID: 37781060 PMCID: PMC10541354 DOI: 10.1007/s10068-023-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Coconut haustorium (CH) is formed inside coconut shell during coconut germination. This study aimed to investigate the compositions and contents of CH phytochemicals. Phytochemical compositions and contents in CH were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and spectrophotometrical method. Five phenolic acids and four flavonoids were identified in CH. Ferulic acid and myricetin were the most abundant among phenolic acids and flavonoids identified in CH, respectively. Nepetariaside and 1-methylene-5α-androstan-3α-ol-17-one glucuronide were the most abundant terpenoids and steroid derivatives identified in CH, respectively. To our knowledge, this study screened several classes of phytochemicals in CH for the first. Terpenoids and steroid derivatives were likely to be more major phytochemicals than phenolic acids and flavonoids in CH. The functionality of CH itself and the compounds found in CH might be utilized in functional foods or cosmetics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01300-6.
Collapse
Affiliation(s)
- Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Jin Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
9
|
Xu S, Chen Q, Luo N, Yang J, Li D. Effects of age and tissue of Juniperus sabina L. on its phytochemical characteristics, anti-cholinesterase, antidiabetes, and anti-drug resistant bacteria activities. FRONTIERS IN PLANT SCIENCE 2023; 14:1174922. [PMID: 37731973 PMCID: PMC10507269 DOI: 10.3389/fpls.2023.1174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023]
Abstract
Juniperus sabina L. is used in the traditional Chinese medicine (TCM) system to prevent or treat various diseases. However, only the leaves and branches are used as medicinal parts. The aim of this study was to compare the chemical characteristics of different tissues (leaves, branches, stems, and roots) of J. sabina at different ages by HPLC-MS and to evaluate the biological activity (enzyme inhibition, anti-drug-resistant bacteria). Total phenol (TPC) and total lignan (TLC) contents in J. sabina were determined by Folin-Ciocalteu method and UV spectrophotometry, respectively. High levels of total phenols (87.16 mg GAE/g dry weight) and total lignans (491.24 mg PPT/g dry weight) were detected in fifteen annual J. sabina roots and current year leaves, respectively. Eleven compounds, of which six were phenolic compounds and five were lignans, were identified and quantified by HPLC/HPLC-MS. Statistical analysis showed that the distribution and content of the detected compounds showed considerable variation among ages and tissues, and that the current year leaves of fifteen annual J. sabina could be used as a potential application site for the source of podophyllotoxin. Acetylcholinesterase (AChE) inhibitory activity was found to be the highest on the extracts of fifteen annual J. sabina current year leaves (47.37 μg/mL), while the highest inhibition towards butyrylcholinesterase (BChE) was observed for the extracts of seven annual J. sabina previous year leaves (136.3 μg/mL). And the second annual J. sabina current year stem's extracts showed the best antidiabetic activity (anti-α-glucosidase, 62.59 μg/mL). In addition, the extracts of fifteen annual J. sabina roots (47.37 μg/mL) showed the highest anti-MRSA activity (31.25 μg/mL). Redundancy analysis (RDA) was conducted to clarify the factors affecting the biological activity of J. sabina, and its results showed that epicatechin and matairesinol showed positive promotion. This study provides a new perspective for understanding the chemical differences and comprehensive utilization of different tissues of J. sabina.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Chen
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Na Luo
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinyan Yang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
11
|
Li C, Shi B, Li X, Zhang W, Pan X. Changes of phenolics contents, antioxidant activities, and enzyme activities in pellicles of Juglans sigillata Dode during fruits development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2125011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Chunxiang Li
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang China
- College of Agriculture, Guizhou University, Guiyang China
| | - Binbin Shi
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang China
- College of Agriculture, Guizhou University, Guiyang China
| | - Xue Li
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang China
- College of Agriculture, Guizhou University, Guiyang China
| | - Wen’e Zhang
- College of Agriculture, Guizhou University, Guiyang China
| | - Xuejun Pan
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang China
- College of Agriculture, Guizhou University, Guiyang China
| |
Collapse
|
12
|
Extraction and Identification of Antioxidant Ingredients from Cyclocarya paliurus (Batal.) Iljinsk Using UHPLC-Q-Orbitrap-MS/MS-Based Molecular Networking. J CHEM-NY 2022. [DOI: 10.1155/2022/8260379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja (LCP) leaves have been widely employed in food and traditional medicine for treating hyperlipidaemia and its complications, possibly owing to their antioxidant properties. The aim of the present study is to identify the chemical ingredients of antioxidant extracts from LCP by using UHPLC-Q-Orbitrap-MS/MS-based molecular networking, a very recent and useful tool for annotation of chemical constituents in mixtures. The extraction conditions of antioxidant extracts from LCP were optimised by single-factor analysis and response surface methodology (RSM). The optimised conditions were a methanol concentration of 32%, a liquid-to-solid ratio of 0.4 ml/mg, an extraction temperature of 25°C, and an extraction time of 32 min. Under these conditions, the antioxidant yield was 516.20 ± 28.52 μmol TE/ml. The main active ingredients in the antioxidants were identified by UHPLC-Q-Exactive Orbitrap-MS-based molecular networking. In total, 42 compounds were identified, including 20 flavonoids, 16 quinic acid derivatives, 4 caffeoyl derivatives, and 2 coumaroyl derivatives. The findings of the present work suggest that LCP could be a suitable source of natural antioxidant compounds, which might be applicable in the development of potential pharmaceutical drugs targeting diseases related to oxidative stress.
Collapse
|
13
|
Oliveira ALS, Carvalho MJ, Oliveira DL, Costa E, Pintado M, Madureira AR. Sugarcane Straw Polyphenols as Potential Food and Nutraceutical Ingredient. Foods 2022; 11:foods11244025. [PMID: 36553767 PMCID: PMC9777897 DOI: 10.3390/foods11244025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
The sugarcane processing industry generates a large amount of straw, which has a negative environmental impact, and high costs are associated with their elimination, wasting their potential bioactive value attributed to their richness in polyphenols. In this study, an ethanolic extract produced from sugarcane straw was screened for its phenolic compounds content, and the potential use of this extract in the development of a food ingredient was further evaluated. Fifty different secondary metabolites belonging to the hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids were identified by liquid chromatography-electrospray ionization-ultrahigh-resolution-quadrupole time of flight-mass spectrometry (LC-ESI-UHR-QqTOF-MS). The predominant phenolic compounds found were 4-hydroxybenzaldehyde, chlorogenic acid, and 5-O-feruloylquinic acid. The obtained extracts showed strong potential as food preservatives by exhibiting (a) antioxidant activity using both 2.2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt radical cation (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods; and (b) antimicrobial capacity, with a minimum inhibitory concentration of 50 mg/mL for Staphylococcus aureus, 74% inhibition for Bacillus cereus, and 44% for Salmonella enterica; and (c) the capacity to inhibit a food browning enzyme, tyrosinase (28-73% for 1-8 mg/ mL). Moreover, the extracts showed antidiabetic potential by inhibiting the enzymes α-glucosidase (15-38% for 1.25-5.00 mg/mL) and dipeptidyl peptidase-IV (DPP-IV) (62-114% for 0.31-5.00 mg/mL). The extract (0.625 mg/mL) also exhibited the capacity to reduce proinflammatory mediators (i.e., interleukins 6 and 8, and tumor necrosis factor alpha) when Caco-2 cells were stimulated with interleukin 1 beta. Thus, sugarcane straw extract, which is rich in phenolic compounds, showed high potential to be used in the development of food-preservative ingredients owing to its antioxidant and antimicrobial potential, and to be explored as a food supplement in diabetes prevention and as coadjuvant to reduce intestinal inflammation by reducing proinflammatory mediators.
Collapse
|
14
|
High Levels of Policosanols and Phytosterols from Sugar Mill Waste by Subcritical Liquefied Dimethyl Ether. Foods 2022; 11:foods11192937. [PMID: 36230017 PMCID: PMC9564350 DOI: 10.3390/foods11192937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Extracting nutraceuticals with high value from bagasse, filter mud, and sugarcane leaves discarded as sugar mill by-products, is crucial for the development of a sustainable bio-economy. These by-products are important sources of policosanols and phytosterols, which have a cholesterol-lowering effect. This research focused on using a promising green technology, subcritical liquefied dimethyl ether extraction, with a low pressure of 0.8 MPa, to extract policosanols and phytosterols and on application of pretreatments to increase their contents. For direct extraction by subcritical liquefied dimethyl ether without sample pretreatment, the highest extraction yield (7.4%) and policosanol content were found in sugarcane leaves at 2888 mg/100 g, while the highest and lowest phytosterol contents were found in filter mud at 20,878.75 mg/100 g and sugarcane leaves at 10,147.75 mg/100 g, respectively. Pretreatment of filter mud by ultrasonication in hexane solution together with transesterification before the second subcritical liquefied dimethyl ether extraction successfully increased the policosanol content, with an extract purity of 60%, but failed to increase the phytosterol content.
Collapse
|
15
|
Chen E, Zhao S, Song H, Zhang Y, Lu W. Analysis and Comparison of Aroma Compounds of Brown Sugar in Guangdong, Guangxi and Yunnan Using GC-O-MS. Molecules 2022; 27:molecules27185878. [PMID: 36144613 PMCID: PMC9505416 DOI: 10.3390/molecules27185878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Guangdong, Guangxi and Yunnan are the three provinces in China that yield the most brown sugar, a brown-red colored solid or powdered sugar product made from sugar cane. In the present study, the differences between odor compounds of brown sugar from Guangdong, Guangxi, and Yunnan provinces in China were compared and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS). A total of 80 odor compounds, including 5 alcohols, 9 aldehydes, 8 phenols, 21 acids, 14 ketones, 5 esters, 12 pyrazines, and 6 other compounds, were detected. The fingerprint analysis of the brown sugar odor compounds showed 90% similarity, indicating a close relationship among the odor properties of brown sugar in each province. Moreover, the orthogonal partial least squares discriminant analysis (OPLS-DA) was performed to identify the compounds contributing to the volatile classification of the brown sugar from three provinces, which confirmed that OPLS-DA could be a potential tool to distinguish the brown sugar of three origins.
Collapse
Affiliation(s)
- Erbao Chen
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuna Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Correspondence: (S.Z.); (H.S.)
| | - Huanlu Song
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (S.Z.); (H.S.)
| | - Yu Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyao Lu
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- COFCO Sugar Co., Ltd., Key Laboratory of Quality & Safety Control for Sugar Crops and Tomato, Ministry of Agriculture of the PRC, Changji 831100, China
| |
Collapse
|
16
|
Su J, Zhang X, Kan Q, Chu X. Antioxidant Activity of Acanthopanax senticosus Flavonoids in H2O2-Induced RAW 264.7 Cells and DSS-Induced Colitis in Mice. Molecules 2022; 27:molecules27092872. [PMID: 35566218 PMCID: PMC9101407 DOI: 10.3390/molecules27092872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
The redox reaction is a normal process of biological metabolism in the body that leads to the production of free radicals. Under conditions such as pathogenic infection, stress, and drug exposure, free radicals can exceed normal levels, causing protein denaturation, DNA damage, and the oxidation of the cell membrane, which, in turn, causes inflammation. Acanthopanax senticosus (A. senticosus) flavonoids are the main bioactive ingredients with antioxidant function. H2O2-treated RAW 264.7 cells and DSS-induced colitis in mice were used to evaluate the antioxidant properties of A. senticosus flavonoids. The results show that A. senticosus flavonoids can significantly downregulate the levels of ROS and MDA in H2O2-treated RAW 264.7 cells and increase the levels of CAT, SOD, and GPx. A. senticosus flavonoids can also increase the body weights of DSS-induced colitis mice, increase the DAI index, and ameliorate the shortening of the colon. ELISA experiments confirmed that A. senticosus flavonoids could reduce the level of MDA in the mouse serum and increase the levels of SOD, CAT, and GPx. Histopathology showed that the tissue pathological changes in the A. senticosus flavonoid group were significantly lower than those in the DSS group. The Western blot experiments showed that the antioxidant capacity of A. senticosus flavonoids was accomplished through the Nrf2 pathway. In conclusion, A. senticosus flavonoids can relieve oxidative stress in vivo and in vitro and protect cells or tissues from oxidative damage.
Collapse
Affiliation(s)
- Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
17
|
Wang L, Wu J, Huang H, Huang W, Wang P, Chen J. Coloration mechanisms of fresh sugarcane juice: Investigating the critical components and enzyme activity. J Food Sci 2022; 87:1552-1562. [PMID: 35257376 DOI: 10.1111/1750-3841.16081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
The color of sugarcane juice has a great influence on the preferences of consumers. The contents of pigments, sugars, free amino acids, organic acids, phenolic compounds, enzyme activities, antioxidant activities, and color differences among juices produced from four sugarcane varieties were investigated in this study. The data suggested that variety played an important role in the color and chemicophysical properties of sugarcane juice. The color of four varieties of sugarcane juice varied from greenish yellow to light brown. Bamboo cane juice and black rind sugarcane juice presented similar color properties and both had high contents of phenolic compounds and strong antioxidant activities. Yellow rind sugarcane juice with higher value of L* (26.10) and more pigment contents than the other varieties was attractive. Sucrose, glucose, β-alanine, chlorogenic acid, p-hydroxybenzoic acid, isochlorogenic acid, DPPH, and polyphenol oxidase activity had positive correlations with a* value. The effects of organic acids on color were limited. PRACTICAL APPLICATION: This study demonstrated the relationships between color parameters and contents of pigments, sugars, free amino acids, organic acids, phenolics, enzyme activities, and antioxidant activities of sugarcane juice. This could help to find out the coloration mechanisms of sugarcane juice. Our manuscript created a paradigm for future studies on color control during juice processing and storage.
Collapse
Affiliation(s)
- Lu Wang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiamin Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huimei Huang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Huang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiebo Chen
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
A Green Method of Extracting and Recovering Flavonoids from Acanthopanax senticosus Using Deep Eutectic Solvents. Molecules 2022; 27:molecules27030923. [PMID: 35164188 PMCID: PMC8838195 DOI: 10.3390/molecules27030923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.
Collapse
|
19
|
Alvarez-Henao MV, Cardona L, Hincapié S, Londoño-Londoño J, Jimenez-Cartagena C. Supercritical fluid extraction of phytosterols from sugarcane bagasse: Evaluation of extraction parameters. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Qiang Y, Si R, Tan S, Wei H, Huang B, Wu M, Shi M, Fang L, Fu J, Zeng S. Spatial variation of volatile organic compounds and antioxidant activity of turmeric ( Curcuma longa L.) essential oils harvested from four provinces of China. Curr Res Food Sci 2021; 4:882-890. [PMID: 34917948 PMCID: PMC8646137 DOI: 10.1016/j.crfs.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the spatial variation of volatile organic compounds and antioxidant activity of turmeric essential oils (TEOs) harvested from four provinces of China. The major chemical components of these TEOs were analyzed using headspace solid-phase micro-extraction gas chromatography-mass spectrometry. More than forty volatile organic compounds in TEOs were identified, which accounted for 82.09–93.64% of the oil components. The relative abundances of the main volatile organic compounds in TEOs at the genus level were visualized by a heat map. The antioxidant activity of the TEOs of five different origins was characterized by the DPPH free radical scavenging activity, in which the antioxidant activity of the TEOs from Guangxi was superior to those of other sources. Furthermore, the IC50 values of the antioxidants TEOs collected from Guangxi, Sichuan, Yunnan, Changting, and Liancheng were 33.30, 42.5, 35.22, 63.27, and 39.96 mg/mL, respectively, which indicated the excellent free radical scavenging activity of those TEOs. Therefore, the TEOs might be considered as a natural antioxidant with potential applications in food and pharmaceutical industries. Turmeric essential oils stemmed from four provinces of China were investigated. Multivariate analysis of volatile organic compounds in TEOs was performed. The major components of volatile organic compounds exhibited a spatial variation. Antioxidant activity of turmeric essential oils demonstrated a spatial variation. TEOs of Guangxi had a superior antioxidant activity to those of other origins.
Collapse
Affiliation(s)
- Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Miaohong Wu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
21
|
Vodo S, Uemura K, Nakajima M, Neves MA. Conversion of aqueous extracts from thermochemical treatment of bagasse into functional emulsifiers. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sekove Vodo
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Kunihiko Uemura
- Food Research Institute NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Faculty of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Marcos A. Neves
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Faculty of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| |
Collapse
|
22
|
do Nascimento CD, de Paula ACCFF, de Oliveira Júnior AH, Mendonça HDOP, Reina LDCB, Augusti R, Figueiredo-Ribeiro RDCL, Melo JOF. Paper Spray Mass Spectrometry on the Analysis of Phenolic Compounds in Rhynchelytrum repens: A Tropical Grass with Hypoglycemic Activity. PLANTS (BASEL, SWITZERLAND) 2021; 10:1617. [PMID: 34451661 PMCID: PMC8398573 DOI: 10.3390/plants10081617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
The characterization of plant compounds with pharmacological activity is a field of great relevance in research and development. As such, identification techniques with the goal of developing new drugs or even validating the bioactive properties of extracts must be explored in order to further expand the knowledge of plant extract composition. Most works in this field employ HPLC, when exploring non-structural and cell wall carbohydrates from Rhynchelytrum repens. Phenolic compounds were studied by classical chromatography techniques and UV-vis spectrophotometry, with C-glycosylated flavonoids being detected but with no further details regarding the chemical structure of these compounds. In this work we employ paper spray ionization mass spectrometry (PS-MS) for the evaluation of the chemical profile of R. repens methanol extract. Positive ionization mode identified 15 compounds, belonging to flavonoids, fatty acids, and other classes of compounds; negative mode ionization was able to identify 20 compounds comprising the classes of quinic acids, stilbenes and flavonoids. PS-MS proved effective for the evaluation of R. repens extracts, making it possible to identify a total of thirty-five compounds. The bioactive properties attributed to R. repens were confirmed by the identification and characterization of compounds identified by PS-MS.
Collapse
Affiliation(s)
- Cezar D. do Nascimento
- Department of Agrarian Sciences (DCA), Federal Institute of Education, Science and Technology of Minas Gerais (IFMG), Campus Bambuí, Rodovia Bambuí/Medeiros, km 05, Bambuí 38900-000, Brazil;
| | - Ana C. C. F. F. de Paula
- Department of Agrarian Sciences (DCA), Federal Institute of Education, Science and Technology of Minas Gerais (IFMG), Campus Bambuí, Rodovia Bambuí/Medeiros, km 05, Bambuí 38900-000, Brazil;
| | - Afonso H. de Oliveira Júnior
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| | - Henrique de O. P. Mendonça
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| | - Luisa del C. B. Reina
- Campus Sinop, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1200—Res. Cidade Jardim, Sinop 78550-728, Brazil;
| | - Rodinei Augusti
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627—Pampulha, Belo Horizonte 31270-901, Brazil;
| | - Rita de C. L. Figueiredo-Ribeiro
- Physiology and Biochemistry Section of Plants, Botanic Institute of São Paulo, Av. Miguel Stéfano, 3687—Agua Funda, São Paulo CEP 04301-902, Brazil;
| | - Júlio O. F. Melo
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| |
Collapse
|
23
|
Ismail BB, Guo M, Pu Y, Çavuş O, Ayub KA, Watharkar RB, Ding T, Chen J, Liu D. Investigating the effect of in vitro gastrointestinal digestion on the stability, bioaccessibility, and biological activities of baobab (Adansonia digitata) fruit polyphenolics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Chen E, Song H, Zhao S, Liu C, Tang L, Zhang Y. Comparison of odor compounds of brown sugar, muscovado sugar, and brown granulated sugar using GC-O-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Prakash MD, Stojanovska L, Feehan J, Nurgali K, Donald EL, Plebanski M, Flavel M, Kitchen B, Apostolopoulos V. Anti-cancer effects of polyphenol-rich sugarcane extract. PLoS One 2021; 16:e0247492. [PMID: 33690618 PMCID: PMC7946306 DOI: 10.1371/journal.pone.0247492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/07/2021] [Indexed: 11/25/2022] Open
Abstract
Plant polyphenols have an array of health benefits primarily thought to be related to their high content of anti-oxidants. These are commonly undervalued and knowledge of their biological properties have grown exponentially in the last decade. Polyphenol-rich sugarcane extract (PRSE), a natural extract from sugar cane, is marketed as high in anti-oxidants and polyphenols, but its anti-cancer activity has not been reported previously. We show that, PRSE exerts anti-cancer properties on a range of cancer cells including human (LIM2045) and mouse (MC38, CT26) colon cancer cells lines; human lung cancer (A549), human ovarian cancer (SKOV-3), pro-monocytic human leukemia (U937) and to mouse melanoma (B16) cell lines; whereas no effects were noted on human breast (ZR-75-1) and human colon (HT29) cancer cell lines, as well as to human normal colon epithelial cell line (T4056). Anti-proliferative effects were shown to be mediated via alteration in cytokines, VEGF-1 and NF-κB expression.
Collapse
Affiliation(s)
- Monica D. Prakash
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Lily Stojanovska
- College of Food and Agriculture, Department of Nutrition and Health, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Medicine–Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Elizabeth L. Donald
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Matthew Flavel
- Bioactives Division, The Product Makers, Melbourne, Victoria, Australia
| | - Barry Kitchen
- Bioactives Division, The Product Makers, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
26
|
Ebadi S, Azlan A. Nutritional Composition and Role of Non-centrifugal Sugar (NCS) in Human Health. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200728184917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-centrifugal sugar (NCS) has several traditional names such as brown sugar (Europe
& North America), Gula Melaka (Malaysia), Jaggery and Gur (India), Kokuto (Japan), Panela
(Colombia) and Muscovado (Philippines). It is obtained by boiling down the sugarcane juice until
its water content evaporates. NCS has various benefits for our health as it is anti-diabetic, anti-cariogenic,
antioxidant and has radical scavenging activity due to the presence of vitamins, minerals,
phenolic acids and flavonoid components as well as total antioxidant capacity. This review provides
a general overview of the nutritional composition and health outcomes of NCS compared to
refined sugar based on literature published in scientific journals. The NCS can be considered as a
nutraceutical and functional food. However, more scientific research will be needed to confirm the
outcomes and increase awareness, which could then encourage more usage of this product in sugar-
based food.
Collapse
Affiliation(s)
- Samarghand Ebadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
27
|
Zidan D, Sabran MR, Ramli NS, Shafie SR, Fikry M. Prebiotic properties of xylooligosaccharide extracted from sugarcane wastes (pith and rind): a comparative study. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dina Zidan
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Nurul Shazini Ramli
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Siti Raihanah Shafie
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Mohammad Fikry
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture Benha University Toukh Qalyoubia Governorate13736Egypt
| |
Collapse
|
28
|
Velazquez-Martinez V, Valles-Rosales D, Rodriguez-Uribe L, Holguin O, Quintero-Quiroz J, Reyes-Jaquez D, Rodriguez-Borbon MI, Villagrán-Villegas LY, Delgado E. Antimicrobial, Shelf-Life Stability, and Effect of Maltodextrin and Gum Arabic on the Encapsulation Efficiency of Sugarcane Bagasse Bioactive Compounds. Foods 2021; 10:foods10010116. [PMID: 33429841 PMCID: PMC7827221 DOI: 10.3390/foods10010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023] Open
Abstract
This study shows the effects of maltodextrins and gum arabic as microencapsulation agents on the stability of sugarcane bagasse extracts and the potential use of the extracts as antimicrobial agents. The bioactive compounds in sugarcane bagasse (SCB) were extracted using 90% methanol and an orbital shaker at a fixed temperature of 50 °C, thereby obtaining a yield of the total phenolic content of 5.91 mg GAE/g. The bioactive compounds identified in the by-product were flavonoids, alkaloids, and lignan (-) Podophyllotoxin. The total phenolic content (TPC), antioxidant activity, and shelf-life stability of fresh and microencapsulated TPC were analyzed. This experiment's optimal microencapsulation can be obtained with a ratio of 0.6% maltodextrin (MD)/9.423% gum arabic (GA). Sugarcane bagasse showed high antioxidant activities, which remained stable after 30 days of storage and antimicrobial properties against E. coli, B. cereus, S. aureus, and the modified yeast SGS1. The TPC of the microencapsulated SCB extracts was not affected (p > 0.05) by time or storage temperature due to the combination of MD and GA as encapsulating agents. The antioxidant and antimicrobial capacities of sugarcane bagasse extracts showed their potential use as a source of bioactive compounds for further use as a food additive or nutraceutical. The results are a first step in encapsulating phenolic compounds from SCB as a promising source of antioxidant agents and ultimately a novel resource for functional foods.
Collapse
Affiliation(s)
- Victor Velazquez-Martinez
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
- Department of Family and Consumer Sciences, Food Science and Technology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Delia Valles-Rosales
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
| | - Laura Rodriguez-Uribe
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (L.R.-U.); (O.H.)
| | - Omar Holguin
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (L.R.-U.); (O.H.)
| | - Julian Quintero-Quiroz
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, University Campus, Medellin 050010, Colombia;
| | - Damian Reyes-Jaquez
- Posgrado en Ingenieria Quimica, Instituto Tecnologico de Durango Durango, Durango 34080, DGO., Mexico;
| | - Manuel Ivan Rodriguez-Borbon
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
| | | | - Efren Delgado
- Department of Family and Consumer Sciences, Food Science and Technology, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: ; Tel.: +1-575-646-1759
| |
Collapse
|
29
|
Inhibitory effect of sugarcane (Saccharum officinarum L.) molasses extract on the formation of heterocyclic amines in deep-fried chicken wings. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Xiang Z, Lin C, Zhu Y, Deng J, Xia C, Chen J. Phytochemical profiling of antioxidative polyphenols and anthocyanins in the wild plant Campanumoea lancifolia (Roxb.) Merr. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1867570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Changbin Lin
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
31
|
Jiang B, Geng F, Chang R, Ruan M, Bian Y, Xu L, Feng F, Chen Q. Comprehensive Evaluation of the Effect of Ultraviolet Stress on Functional Phytochemicals of Hulless Barley (Qingke) Grass in Different Growth Times at Vegetative Stage. ACS OMEGA 2020; 5:31810-31820. [PMID: 33344835 PMCID: PMC7745435 DOI: 10.1021/acsomega.0c04576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 05/08/2023]
Abstract
The present study was executed to analyze the functional phytochemicals of hulless barley grass grown under different intensities of ultraviolet stress. The wheat seedlings were imposed to 0.5, 1.0, 1.5, 2.0, and 2.5 h ultraviolet radiation and harvested in different times at vegetative stage. Specifically, the contents of total polyphenols, total flavonoids, total triterpenes, total polysaccharides, proanthocyanidins, and chlorophyll were determined and antioxidants capacity was evaluated by OH• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging ability. A mathematical model (Technique for Order Preference by Similarity to Ideal Solution, TOPSIS) was also employed for the comprehensive evaluation of functional components of hulless barley grass at different growth stages. The results showed that the UV stress could efficiently improve/preserve the contents of total polyphenols, total flavonoids, total triterpenes, total polysaccharides, proanthocyanidins, chlorophyll a, chlorophyll b, and total chlorophyll, as well as the OH• and ABTS scavenging capacity. TOPSIS evaluation revealed that the highest phytochemical contents were yield on the 15th day under 1.0 h ultraviolet treatment.
Collapse
|
32
|
Abstract
Plants that are primarily used as a food source commonly have undervalued biological properties beyond the basic supply of nutrients. One important example of this are the antimicrobial properties of plants. Inclusion of natural and food grade antimicrobial ingredients in recipes to prevent food spoilage and disease transmission, or in cosmetic products to prevent transient and pathogenic bacteria would have world-wide public health implications. A patented natural polyphenol rich sugar cane extract (PRSE), is marketed as a high anti-oxidant and polyphenol ingredient, but its anti-microbial activity has not been reported previously. We determined the anti-bacterial properties of PRSE on common human pathogens relating to a range of diseases including food poisoning, tooth decay, acne and severe skin infections using disc/well diffusion experiments. Our findings indicate that PRSE is an efficient antimicrobial, which could be included at differing dosages to target a range of food borne and environmental pathogens.
Collapse
|
33
|
Physicochemical, antioxidant, volatile component, and mass spectrometry-based electronic nose analyses differentiated unrefined non-centrifugal cane, palm, and coconut sugars. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00749-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Wang L, Luo Z, Yan J, Ban Z, Yang M, Qi M, Xu Y, Wang F, Li L. Ultrasonic nebulization-assisted layer-by-layer assembly based on carboxymethyl chitosan: An emerging alternative for promoting phenylpropanoid metabolism. ULTRASONICS SONOCHEMISTRY 2020; 68:105184. [PMID: 32505101 DOI: 10.1016/j.ultsonch.2020.105184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
To enrich the properties of chitosan (CS) and improve its applicability, we prepared carboxymethyl-chitosan (CMCS) by carboxymethylation and developed a layer-by-layer assembly (LBL) by the ultrasonic nebulization-assisted technique. The degree of carboxymethylation was 42.20% and the structure of CMCS was characterized using Fourier transform infrared, nuclear magnetic resonance spectroscopy. The ultrasonic nebulization-assisted LBL (UNLBL) edible coating was developed based on an inner negatively CMCS charged layer and an external positively charged CS layer. As compared to conventional LBL (CLBL) assembly, the greater thickness, stronger mechanical properties and lower water vapor permeability were detected in UNLBL assembly. Through an untargeted metabolomic analysis and real-time quantitative PCR, it was evident that ultrasonic nebulization-assisted LBL assembly is a promising alternative for promoting phenylpropanoid metabolism in strawberries.
Collapse
Affiliation(s)
- Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| | - Jiawei Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| | - Ming Qi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
35
|
Alarcón AL, Palacios LM, Osorio C, César Narváez P, Heredia FJ, Orjuela A, Hernanz D. Chemical characteristics and colorimetric properties of non-centrifugal cane sugar ("panela") obtained via different processing technologies. Food Chem 2020; 340:128183. [PMID: 33032151 DOI: 10.1016/j.foodchem.2020.128183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Non-centrifugal cane sugar (NCS) samples obtained by traditional moulding and granulation, and also via a novel spray-drying powdering process without additives, were assessed to characterise their sugar and phenolic profiles, flavonoid content, as well as colour parameters. As expected, sucrose was the predominant sugar (91.9-95.5%), followed by glucose (2.9-4.6%), and fructose (1.6-3.7%). Total phenolic content was between 0.4 and 0.6% and total flavonoid content into the range of 0.2-0.4%. Six phenolic acids were found in all NCS samples: protocatechuic acid (0.36-0.94 µg/100 g), vanillic acid (0.70-1.45 µg/100 g), chlorogenic acid (2.08-3.82 µg/100 g), syringic acid (1.08-2.80 µg/100 g), p-coumaric acid (0.69-1.35 µg/100 g), and ferulic acid (0.50-0.95 µg/100 g). The thermal treatment under high temperatures required in the production of granulated products was related with darker colours and changes in phenol and flavonoid contents. In contrast, spray drying generates clearer products, but with slightly less phenol and flavonoid contents.
Collapse
Affiliation(s)
- Angela L Alarcón
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Laura M Palacios
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Coralia Osorio
- Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá, Colombia
| | - Paulo César Narváez
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Francisco J Heredia
- Food Colour & Quality Lab., Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Alvaro Orjuela
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia.
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
36
|
Azlan A, Khoo HE, Sajak AAB, Aizan Abdul Kadir NA, Yusof BNM, Mahmood Z, Sultana S. Antioxidant activity, nutritional and physicochemical characteristics, and toxicity of minimally refined brown sugar and other sugars. Food Sci Nutr 2020; 8:5048-5062. [PMID: 32994965 PMCID: PMC7500760 DOI: 10.1002/fsn3.1803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 01/21/2023] Open
Abstract
Minimally refined brown sugar (MRBS) is a brown sugar derived from sugarcane that has a low glycemic index. This study aimed to determine and compare the antioxidant contents and nutritional and physicochemical properties of MRBS, refined sugar (RS), and brown sugar (BS). In addition, the toxicity of these sugars was evaluated via in vitro cytotoxicity method and by using a zebrafish model. Results showed that MRBS was better than the two other sugars because it has a lower moisture content and higher ash content. The contents of potassium and manganese of MRBS were higher than those of the two other sugars. Surprisingly, MRBS also contained selenium, which was not detected in RS and BS. The major phenolics in MRBS are 4-hydroxybenzoic acid, chlorogenic acid, protocatechuic acid, trans-Ferulic acid, and apigenin. All sugar solutions and their antioxidant-containing extracts were not cytotoxic to 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Azrina Azlan
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Research Centre of Excellence for Nutrition and Non‐Communicable DiseasesFaculty of Medicine and Health SciencesUniversiti Putra MalaysiaUPM SerdangSerdangSelangorMalaysia
- Halal Products Research InstituteUniversiti Putra MalaysiaUPM SerdangSerdangSelangorMalaysia
| | - Hock Eng Khoo
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Azliana Abu Bakar Sajak
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Noor Atiqah Aizan Abdul Kadir
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Barakatun Nisak Mohd Yusof
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Research Centre of Excellence for Nutrition and Non‐Communicable DiseasesFaculty of Medicine and Health SciencesUniversiti Putra MalaysiaUPM SerdangSerdangSelangorMalaysia
| | | | - Sharmin Sultana
- Department of Nutrition & DieteticsFaculty of Medicine & Health SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| |
Collapse
|
37
|
Policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedling extracts according to cultivar and growth time. Food Chem 2020; 317:126388. [PMID: 32078993 DOI: 10.1016/j.foodchem.2020.126388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022]
Abstract
Policosanols is a health promoting aliphatic alcohol known as lipid-lowing agent. To enable maximising the functional properties of wheat, this research investigates the policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedlings according to cultivars and growth times. GC-MS revealed six policosanols that differed markedly in content between 17 cultivars, especially, octacosanol (8) showed the most predominant component (49-83%), varying significantly in average concentrations with growth times as 361.4 (3 days) → 613.0 (6 days) → 203.1 (9 days) → 196.5 (12 days) → 50.9 mg/100 g (19 days). The highest average policosanol (738.7 mg/100 g) exhibited after 6 days, while the lowest was 104.4 mg/100 g on 19 days. Moreover, the wheat cultivars including Shinmichal 1, Anbaek, Namhae, and Joah at 6 days may be recommended as potential sources because of high policosanols (921.7-990.6 mg/100 g). Western blot analysis revealed markedly higher AMPK activation in cells treated with the hexane extracts (150-370% at 100 μg/ml) and octacosanol (8) possessed potent AMPK activator (control; 100 → 280% at 200 μg/ml). It is confirmed that the AMPK activation by wheat seedlings are positively related to the highest policosanol content at the 6 days of growth time, independent of the cultivar. Our results may be contributed to enhance the wheat value regarding development of new cultivars and functional foods.
Collapse
|
38
|
Pedrosa AM, de Castro WV, Castro AHF, Duarte-Almeida JM. Validated spectrophotometric method for quantification of total triterpenes in plant matrices. Daru 2020; 28:281-286. [DOI: 10.1007/s40199-020-00342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
|
39
|
Deseo MA, Elkins A, Rochfort S, Kitchen B. Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chem 2020; 314:126180. [PMID: 31954937 DOI: 10.1016/j.foodchem.2020.126180] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The antioxidant activity of sugarcane molasses ethanol extract (ME) and its fraction (ME-RBF) was evaluated using ABTS, ORAC 6.0 and CAA assays and ME-RBF demonstrated 26-fold, 12-fold and 2-fold higher values, respectively than ME. Likewise, total polyphenol and flavonoid concentration in ME-RBF are more than 10-fold higher than ME, that suggested antioxidant activity is correlated with polyphenol composition. Quantitative analysis of 13 polyphenols (chlorogenic acid, caffeic acid, sinapic acid, syringic acid, vanillin, homoorientin, orientin, vitexin, swertisin, diosmin, apigenin, tricin and diosmetin) was carried out by LCMS. MS/MS analysis allowed the tentative identification of seven apigenin-C-glycosides, three methoxyluteolin-C-glycosides and three tricin-O-glycosides some of which have not been reported in sugarcane before to the best of our knowledge. The results demonstrated that sugarcane molasses can be used as potential source of polyphenols that can be beneficial to health.
Collapse
Affiliation(s)
- Myrna A Deseo
- Agriculture Victoria Research Division, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road, Bundoora, Victoria 3083, Australia; La Trobe Institute for Agriculture and Food (LIAF), School of Life Sciences, Department of Animal, Plant and Soil Sciences, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia.
| | - Aaron Elkins
- Agriculture Victoria Research Division, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road, Bundoora, Victoria 3083, Australia.
| | - Simone Rochfort
- Agriculture Victoria Research Division, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| | - Barry Kitchen
- The Product Makers Pty. Ltd., 50-60 Popes Road, Keysborough, Victoria 3173, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
40
|
Chen E, Song H, Li Y, Chen H, Wang B, Che X, Zhang Y, Zhao S. Analysis of aroma components from sugarcane to non-centrifugal cane sugar using GC-O-MS. RSC Adv 2020; 10:32276-32289. [PMID: 35516501 PMCID: PMC9056611 DOI: 10.1039/d0ra05963c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
A total of 84 volatile aroma components were determined in the 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds. Of these compounds, 10 were with high flavor dilution (FD) factors based on the aroma extract dilution analysis (AEDA). 4-Hydroxy-2,5-dimethyl-3(2H)furanone exhibited the highest FD factor of 2187, followed by (E)-2-nonenal, 2-hydroxy-3-methyl-2-cyclopentene-1-one, and 4-allyl-2,6-dimethoxyphenol with a FD factor of 729. The odor compounds showed no significant change and were similar to that of sugarcane during the first four steps in the production of non-centrifugal cane sugar. In the middle three stages, the heating slightly affected the aroma composition. Additionally, a prolonged period of high-temperature heating, lead to the production of the Maillard reaction products, such as pyrazines, pyrroles, and furans, differentiating the step to be unique from the previous seven stages. However, the content of the NCS odorants was significantly reduced due to the loss of odor compounds during the drying process. 84 volatile aroma components were determined in 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds.![]()
Collapse
Affiliation(s)
- Erbao Chen
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Huanlu Song
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Yi Li
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Haijun Chen
- COFCO Tunhe Chongzuo Sugar Co., Ltd
- Chongzuo
- China
| | - Bao Wang
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Xianing Che
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Yu Zhang
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Shuna Zhao
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| |
Collapse
|
41
|
Zhang C, Liu D, Wu L, Zhang J, Li X, Wu W. Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato ( Ipomoea batatas L.) Leaves. Foods 2019; 9:foods9010015. [PMID: 31877941 PMCID: PMC7022882 DOI: 10.3390/foods9010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022] Open
Abstract
Sweet potato (Ipomoea batatas L.) leaf is a natural source of phenolic compounds with strong antioxidant activity and potential utility as an antioxidant. The aim of this study was to evaluate the polyphenol composition and antioxidant activities of ethanol extracts and their various solvent-partitioned fractions (petroleum ether, ethyl acetate, and aqueous fraction) from sweet potato leaves and petioles. Seven caffeoylquinic acid (CQA) derivatives and four flavonoids were detected in sweet potato leaves by HPLC-ESI-MS. The total phenolic content (TPC) and total flavonoid content (TFC) in leaf (112.98 ± 4.14 mg gallic acid equivalent (GAE)/g of dried extract, 56.87 ± 5.69 mg rutin equivalent (RE)/g of dried extract) was more than ten times higher than in petiole (9.22 ± 2.67 mg GAE/g of dried extract, 3.81 ± 0.52 mg RE/g of dried extract). The antioxidant contents of ethyl acetate fractions increased dramatically relative to those of crude extracts for both leaves and petioles. Purification using solvent partition with ethyl acetate increased TPC and TFC of crude extracts, especially the CQA derivatives including 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, and 3,4,5-tricaffeoylquinic acid. Meanwhile, the ethyl acetate fractions with the highest CQA content were associated with the highest scavenging activities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and higher ferric ion reducing antioxidant power (FRAP)-reducing power.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (D.L.); (J.Z.); (X.L.)
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (D.L.); (J.Z.); (X.L.)
| | - Liehong Wu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (D.L.); (J.Z.); (X.L.)
| | - Xiaoqiong Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (D.L.); (J.Z.); (X.L.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (D.L.); (J.Z.); (X.L.)
- Correspondence: ; Tel.: +86-571-8849-5100
| |
Collapse
|
42
|
Ismail BB, Pu Y, Fan L, Dandago MA, Guo M, Liu D. Characterizing the phenolic constituents of baobab (Adansonia digitata) fruit shell by LC-MS/QTOF and their in vitro biological activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133387. [PMID: 31386951 DOI: 10.1016/j.scitotenv.2019.07.193] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Baobab (Adansonia digitata) fruit is a part of the baobab tree, a revered multi-purpose tree native to Africa with a myriad of potentials in providing shelter, food, medicine, clothing and as a valuable source of natural antioxidants. A massive quantity of baobab fruit shells (BFS) is generated as a waste from the baobab fruit processing representing significant economic and environmental challenges at the same time an opportunity for its valorization and commercial utilization. The present study explored the potentials of BFS as a source of phenolic compounds. For this purpose, the phenolic constituents of BFS were identified by LC-MS/QTOF analysis. Also, the Total Phenolic Chromatographic Index (TPCI), TPC, TFC, and antioxidant capacity were compared with the baobab seeds and pulp. The antidiabetic potential through α-amylase and α-glucosidase inhibitory activities was also compared with that of acarbose. The LC-MS/QTOF analysis led to the identification of 45 compounds, including quercetin, kaempferol, proanthocyanidins, phenolic acids and their derivatives, several of which had never been reported in baobab fruit. Moreover, the BFS showed higher TPC, TFC, and antioxidant capacity than the baobab seeds and pulp and inhibited α-amylase and α-glucosidase enzymes activities with much higher potency than acarbose. This research demonstrated the promising potentials of BFS as a good source of phenolic compounds that can further be utilized for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Department of Food Science & Technology, Faculty of Agriculture, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Yunfeng Pu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Munir A Dandago
- Department of Food Science & Technology, Faculty of Agriculture, Kano University of Science and Technology, Wudil, Kano, PMB 3244, Kano, Nigeria
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
43
|
|
44
|
Identification of Microfluidization Processing Conditions for Quality Retention of Sugarcane Juice Using Genetic Algorithm. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Feng S, Ning K, Luan D, Lu S, Sun P. Chemical composition and antioxidant capacities analysis of different parts of
Brasenia schreberi. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Ke Ning
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Di Luan
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Shengmin Lu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou People's Republic of China
| | - Peilong Sun
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
46
|
Dehghani SM, Bahroloolomifard MS, Yousefi G, Pasdaran A, Hamedi A. A randomized controlled double blinded trial to evaluate efficacy of oral administration of black strap molasses (sugarcane extract) in comparison with polyethylene glycol on pediatric functional constipation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111845. [PMID: 30946967 DOI: 10.1016/j.jep.2019.111845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/18/2019] [Accepted: 03/29/2019] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a significant health issue, Functional Constipation (FC) has a high prevalence of 0.7%-29% worldwide. In Persian ethnomedicine, several formulations of sugarcane extracts including faniz, shekar-e- sorkh and black strap molasses have been used to treat pediatric constipation. AIM OF THE STUDY To evaluate efficacy and safety of oral intake of black strap molasses syrup (BSM) on FC in children. MATERIALS AND METHODS A randomized controlled double blinded trial was performed on children aged 4-12 years diagnosed with FC according to ROMIII Constipation Measurement Questionnaire. Ninety-two patients were randomly divided in two groups of BSM or PEG syrups (40%) with a dose of 1 mL/kg body weight/day for 1 month. Symptoms were evaluated every two weeks. Possible serological side-effects and changes in children's body weight were investigated. BSM syrup constituents were determined by pharmacognostic methods. RESULTS Treatment was successful with both interventions with no significant difference between the groups. Defecation per week was significantly improved in both groups. Symptoms including volitional stool retention, large diameter stool, painful or hard stool and large fecal mass in the rectum decreased significantly two and four weeks after intervention (P < 0.05). There was no significant difference between groups except for the rate of large diameter stool. No side -effects were observed. The BSM naturally contained polyphenols (960 μg/mL), potassium (12430 μg/mL), iron (80 μg/mL) and calcium (3320 μg/mL). CONCLUSION BSM and PEG syrups had similar efficacy on FC. Compared with PEG, BSM syrup contained different natural micronutrients.
Collapse
Affiliation(s)
- Seyed Mohsen Dehghani
- Department of Pediatric Gastroentrology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Profiling Metabolites and Biological Activities of Sugarcane ( Saccharum officinarum Linn.) Juice and its Product Molasses via a Multiplex Metabolomics Approach. Molecules 2019; 24:molecules24050934. [PMID: 30866484 PMCID: PMC6429268 DOI: 10.3390/molecules24050934] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is an important perennial grass in the Poaceae family cultivated worldwide due to its economical and medicinal value. In this study, a combined approach using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy was employed for the large-scale metabolite profiling of sugarcane juice and its by-product molasses. The polyphenols were analysed via UPLC-UV-ESI-MS, whereas the primary metabolites such as sugars and organic and amino acids were profiled using NMR spectroscopy and gas chromatography/mass spectrometry (GC/MS). UPLC/MS was more effective than NMR spectroscopy or GC/MS for determining differences among the metabolite compositions of the products. Under the optimized conditions, UPLC/MS led to the identification of 42 metabolites, including nine flavonoids, nine fatty acids, and two sterols. C/O Flavone glycosides were the main subclass detected, with tricin-7-O-deoxyhexosyl glucuronide being detected in sugarcane and molasses for the first time. Based on GC/MS analysis, disaccharides were the predominant species in the sugarcane juice and molasses, with sucrose accounting for 66% and 59%, respectively, by mass of all identified metabolites. The phenolic profiles of sugarcane and molasses were further investigated in relation to their in vitro antioxidant activities using free radical scavenging assays such as 2,2-Diphenyl-1-picrylhydrazyl free radical-scavenging ability (DPPH), Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). In view of its higher total phenolic content (TPC) (196 ± 2.1 mg GAE/100 g extract) compared to that of sugarcane juice (93 ± 2.9 mg GAE/100 g extract), molasses exhibited a substantially higher antioxidant effect. Interestingly, both extracts were also found to inhibit α-glucosidase and α-amylase enzymes, suggesting a possible antihyperglycaemic effect. These findings suggest molasses may be a new source of natural antioxidants for functional foods.
Collapse
|
48
|
Improvement of phenolic compounds extraction from high-starch lotus (Nelumbo nucifera G.) seed kernels using glycerol: New insights to amylose/amylopectin – Phenolic relationships. Food Chem 2019; 274:933-941. [DOI: 10.1016/j.foodchem.2018.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
|
49
|
Yu Y, Du Y, Ramaswamy HS, Wang H, Jiang X, Zhu S. Comparison of Germination-Parboiling, Freeze-Thaw Cycle and High Pressure Processing on Phytochemical Content and Antioxidant Activity in Brown Rice Evaluated after Cooking and In-Vitro Digestion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2018-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Three treatments, namely germination-parboiling (PG), freeze-thaw cycle (FTC) and high pressure processing (HPP) were compared for phytochemical content and antioxidant activity of brown rice (BR). These were determined in raw (uncooked), cooked, and in-vitro digested BR and compared with those from untreated BR and white rice (WR). PG showed the highest retention of phytochemicals after cooking (87–100%) while it dropped to 59–72% with FTC and 64–76% with HPP. After in-vitro digestion, the highest amount of phenolics was found in PG-24 h and flavonoids in FTC for two cycles. The antioxidant activity, as determined by oxygen radical absorbance capacity and ABTS methods, showed the highest value to be associated with in-vitro digested sample of PG-24 h, and lowest in WR. The results of this study show that these three treatments could improve or retain the phenolic content and antioxidant activity in cooked BR after in-vitro digestion.
Collapse
|
50
|
Huang H, Wang Z, Aalim H, Limwachiranon J, Li L, Duan Z, Ren G, Luo Z. Green recovery of phenolic compounds from rice byproduct (rice bran) using glycerol based on viscosity, conductivity and density. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hao Huang
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| | - Zhenni Wang
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| | - Halah Aalim
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| | - Li Li
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| | - Zhenhua Duan
- Institute of Food Science and Engineering Hezhou University Hezhou China
| | - Guoping Ren
- Hangzhou Wanxiang Polytechnic Huawu Road 3 Hangzhou 310023 China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agri‐Food Processing Zhejiang University Hangzhou 310058 China
| |
Collapse
|