1
|
Yang J, Zhang CR, Li ZX, Gao YH, Jiang L, Zhang J, Wang PY, Liu T. Spermine alleviates myocardial cell aging by inhibiting mitochondrial oxidative stress damage. Eur J Pharmacol 2025; 997:177477. [PMID: 40058754 DOI: 10.1016/j.ejphar.2025.177477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Myocardial aging, involving oxidative stress, mitochondrial dysfunction, and cellular senescence, is crucial to DOX - induced heart failure. DOX has dose - dependent cardiotoxicity. Sper a natural polyamine with antioxidant and anti - aging effects, remains unstudied in this context. AIM This study hypothesizes Sper can alleviate DOX - induced heart failure by curbing myocardial aging and oxidative stress. It aims to assess Sper's protective impacts on cardiac function, pathology, oxidative stress, mitochondrial damage, and aging in a rat model, using captopril as a control. METHODS 80 male Sprague Dawley rats were assigned to 8 groups: normal control, 150 mg/kg Sper, DOX, and DOX +10/50/100/150 mg/kg Sper, DOX +30 mg/kg captopril. DOX was given intraperitoneally at 15 mg/kg total dose, while Sper or captopril was administered daily via gavage for six weeks. Cardiac function was evaluated using echocardiography, and histopathological changes, oxidative stress markers, mitochondrial damage, and myocardial aging were assessed via H&E staining, immunofluorescence, Western blot, and electron microscopy. RESULTS Sper boosted cardiac function in DOX - treated rats, upping EF and SV, and lessening cardiac tissue damage. It cut oxidative stress by reducing MDA levels and boosting SOD activity. Sper also eased mitochondrial damage by enhancing mitochondrial membrane potential and cutting mitochondrial fission proteins (Drp1 and Fis1). Plus, Sper held back myocardial aging by trimming β - galactosidase activity and downregulating p - P53 and p21 expression. At 150 mg/kg/day, Sper worked much like 30 mg/kg/day captopril. CONCLUSION Sper effectively eased DOX - induced heart failure by targeting oxidative stress and aging, showing potential as an adjunct therapy for DOX - related cardiotoxicity. Future research should explore Sper's molecular mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Jing Yang
- Puyang Medical College, Puyang, 457000, China.
| | - Chun-Rui Zhang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Zi-Xuan Li
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Yi-He Gao
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Li Jiang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Jing Zhang
- Puyang Medical College, Puyang, 457000, China
| | | | - Tong Liu
- Puyang Medical College, Puyang, 457000, China
| |
Collapse
|
2
|
Samková E, Dadáková E, Matějková K, Hasoňová L, Janoušek Honesová S. Can the Contents of Biogenic Amines in Olomoucké Tvarůžky Cheeses Be Risky for Consumers? Foods 2025; 14:456. [PMID: 39942049 PMCID: PMC11816877 DOI: 10.3390/foods14030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Smear-ripened cheeses are fermented dairy products characterised by an increased content of biogenic amines (BAs). The high contents of these bioactive compounds can negatively affect consumers. The study aimed to observe the contents of BAs and po-lyamines (PAs) in Olomoucké tvarůžky cheeses depending on selected factors (year, batch, ripening/storage time, shape, weight, specific surface area, acidity, and salt content). The results showed that the variability was explained primarily by the batch (83% for the sum of BAs) and by the year (63% for the sum of PAs). The storage time significantly influenced the contents of putrescine, cadaverine, spermidine, and spermine (the explained variability was only 1-3%). The total BA contents negatively correlated with weight (r = -0.6374; p < 0.001) and positively with specific surface area (r = +0.4349; p < 0.001). A negligible positive correlation coefficient was found between the total BAs and pH (r = +0.1303). A low negative correlation was also found between the total BAs and salt content (r = -0.1328). Compared to previous studies, the total average BA contents were considerably low. In conclusion, this type of cheese does not represent a serious problem for most consumers.
Collapse
Affiliation(s)
- Eva Samková
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| | - Eva Dadáková
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.D.); (K.M.)
| | - Kateřina Matějková
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.D.); (K.M.)
| | - Lucie Hasoňová
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| | - Simona Janoušek Honesová
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| |
Collapse
|
3
|
Zhang X, Qian M, Liu M, He M, Li FR, Zheng L. The Associations of Dietary Polyamines with Incident Type 2 Diabetes Mellitus: A Large Prospective Cohort Study. Nutrients 2025; 17:186. [PMID: 39796620 PMCID: PMC11722915 DOI: 10.3390/nu17010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVES This study aimed to analyze the associations between dietary polyamine intake and incident T2DM. METHODS This prospective analysis included 168,137 participants from the UK Biobank who did not have T2DM at baseline. Dietary polyamines were calculated based on portion sizes of food items and a nutrient database. Incident T2DM was defined by hospital admissions with ICD10 codes E11-E14. Cox proportional hazard regression models and restricted cubic splines were used to examine the associations between dietary polyamine intake and incident T2DM. RESULTS During a median follow-up of 11.2 years (IQR, 11.8-13.2), 4422 (2.6%) participants developed T2DM. The average (SD) daily dietary intake was 10.5 (11.8) mg/day for spermidine, 4.3 (2.1) mg/day for spermine, and 12.7 (6.9) mg/day for putrescine. Compared to quintile 1, the multivariable-adjusted hazard ratios (95% CI) for quintiles 2-5 of dietary spermidine were 0.87 (0.79 to 0.96), 0.87 (0.79 to 0.96), 0.91 (0.82 to 0.99), and 0.96 (0.88 to 1.06); for dietary spermine, they were 1.01 (0.91 to 1.11), 1.03 (0.93 to 1.13), 1.07 (0.97 to 1.18), and 1.11 (1.01 to 1.23); and for dietary putrescine, they were 0.84 (0.76 to 0.92), 0.83 (0.79 to 0.91), 0.82 (0.74 to 0.90), and 0.87 (0.80 to 0.96). CONCLUSIONS Higher dietary spermidine and putrescine were associated with a lower risk of T2DM, while higher dietary spermine appeared to be associated with a higher risk of T2DM. These findings suggest optimal levels of dietary polyamine intake and indicate that polyamines may be promising targets for nutritional interventions in the prevention and management of T2DM.
Collapse
Affiliation(s)
- Xiaohong Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.Z.); (M.Q.)
| | - Mingxia Qian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.Z.); (M.Q.)
| | - Min Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (M.L.); (M.H.)
| | - Mengyao He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (M.L.); (M.H.)
| | - Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.Z.); (M.Q.)
| |
Collapse
|
4
|
Han S, Qian M, Zhang N, Zhang R, Liu M, Wang J, Li F, Zheng L, Sun Z. The Association of Dietary Polyamines with Mortality and the Risk of Cardiovascular Disease: A Prospective Study in UK Biobank. Nutrients 2024; 16:4335. [PMID: 39770955 PMCID: PMC11678356 DOI: 10.3390/nu16244335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are essential for cellular physiology and various cellular processes. This study aimed to examine the associations of dietary polyamines intake and all-cause mortality and incident cardiovascular disease (CVD). METHODS This prospective cohort study included 184,732 participants without CVD at baseline from the UK Biobank who had completed at least one dietary questionnaire. Diet was assessed using Oxford WebQ, a web-based 24 h recall questionnaire, with polyamines intakes estimated from previous studies. Cox proportional models with restricted cubic splines were employed to investigate nonlinear associations. The primary endpoint was all-cause mortality or incident CVD (including CVD death, coronary heart disease and stroke). RESULTS During a median follow-up period of 11.5 years, 7348 (3.9%) participants died and 12,316 (6.5%) developed incident CVD. Polyamines intake showed nonlinear associations with all-cause mortality and incident CVD (P for nonlinear < 0.01). Compared to the lowest quintile group of dietary polyamines intake (≤17.4 mg/day), the quintile 2 to 5 groups demonstrated a reduced risk of all-cause mortality, with the lowest risk in quintile 2 group (>17.4-22.3 mg/day) (HR:0.82, 95% CI: 0.76-0.88). Similar results were observed for incident CVD, with the lowest risk in the quintile 4 group (>27.1-33.5 mg/day) (HR: 0.86, 95% CI: 0.82-0.92). CONCLUSIONS We found that dietary polyamines intake was associated with a lower risk of all-cause mortality or incident CVD. Furthermore, our study identified an optimal range of dietary polyamines intake.
Collapse
Affiliation(s)
- Su Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.H.); (J.W.)
| | - Mingxia Qian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Q.); (N.Z.)
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Q.); (N.Z.)
| | - Rui Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Min Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China;
| | - Jiangbo Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.H.); (J.W.)
| | - Furong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Q.); (N.Z.)
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.H.); (J.W.)
| |
Collapse
|
5
|
Keohane P, Everett JR, Pereira R, Cook CM, Blonquist TM, Mah E. Supplementation of spermidine at 40 mg/day has minimal effects on circulating polyamines: An exploratory double-blind randomized controlled trial in older men. Nutr Res 2024; 132:1-14. [PMID: 39405978 DOI: 10.1016/j.nutres.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
This study represents the first investigation into the safety of a novel, high-purity spermidine trihydrochloride supplement (hpSPD) in humans. Spermidine, a natural compound found in various foods, has demonstrated potential health benefits in animal and epidemiological studies. However, evidence from clinical trials and safety evaluations of spermidine supplements is limited because pure spermidine for human administration has not been available. In this randomized, double-blind, within-subject and placebo-controlled trial, 37 healthy men (age 50-70 years; body mass index, 18.5-28 kg/m2) were administered either hpSPD or a placebo. We hypothesized that 7-day and 28-day dosing of 40 mg/day of hpSPD would have minimal effects on safety, although metabolic and polyamine homeostasis has not previously been examined at this dosage level. Consistent with our hypothesis, 40 mg/day hpSPD did not result in any significant changes in clinical, lipids, chemistry, or hematological parameters compared to placebo. Compliance was high, and no study product-related adverse events were reported. Substantial changes in serum and urine polyamine concentrations were not observed following hpSPD supplementation, suggesting effective homeostatic control of full-dose highly purified spermidine supplements with no evidence of adaptation of spermidine metabolism at 40 mg/day. These findings suggest that hpSPD at 40 mg/day for up to 28 days is safe and well-tolerated in healthy older men. The study is consistent with preclinical results and provides important evidence supporting the safety of high-purity spermidine supplementation, enabling further research with single-molecule spermidine to investigate its potential biology for improving human health. This trial was registered at clinicaltrials.gov (NCT05459961).
Collapse
Affiliation(s)
- Patrick Keohane
- Chrysea Labs, Parque Tecnológico de Cantanhede, Cantanhede, Portugal.
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, United Kingdom ME4 4TB
| | - Rui Pereira
- Chrysea Labs, Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | | | | | | |
Collapse
|
6
|
Qian M, Zhang N, Zhang R, Liu M, Wu Y, Lu Y, Li F, Zheng L. Non-Linear Association of Dietary Polyamines with the Risk of Incident Dementia: Results from Population-Based Cohort of the UK Biobank. Nutrients 2024; 16:2774. [PMID: 39203912 PMCID: PMC11357304 DOI: 10.3390/nu16162774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Natural polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are evolutionarily conserved endogenous molecules crucially involved in central cellular processes. Their physiological importance may extend to the maintenance of cognitive function during aging. However, limited population-based epidemiological studies have explored the link between dietary polyamines and dementia risk. This study was a prospective analysis of 77,092 UK Biobank participants aged ≥ 60 years without dementia at baseline. We used Cox proportional hazard regression models to explore the associations between dietary polyamines and the risk of dementia, and restricted cubic splines to test the non-linear relationships. During a median follow-up of 12 years, 1087 incidents of all-cause dementia cases occurred, including 450 Alzheimer's disease (AD) cases and 206 vascular dementia (VD) cases. The fully adjusted hazard ratios (HRs) for the upper fourth quintile of dietary SPD, in comparison with the lowest quintile of intake, were 0.68 (95% confidence interval [95% CI]: 0.66-0.83) for the risk of all-cause dementia, 0.62 (95% CI: 0.45-0.85) for AD and 0.56 (95% CI: 0.36-0.88) for VD, respectively. A 26% reduction in dementia risk [HR: 0.74, (95% CI: 0.61-0.89)] and a 47% reduction in AD [HR: 0.53, (95%CI: 0.39-0.72)] were observed comparing the third with the lowest quintiles of dietary SPM. Dietary PUT was only associated with a reduced risk of all-cause dementia in the fourth quintile [HR (95% CI): 0.82 (0.68-0.99)]. Reduced risk was not found to be significant across all quintiles. There were 'U'-shaped relationships found between dietary polyamines and all-cause dementia, AD and VD. Stratification by genetic predisposition showed no significant effect modification. Optimal intake of polyamines was linked to a decreased risk of dementia, with no modification by genetic risk. This potentially suggests cognitive benefits of dietary natural polyamines in humans.
Collapse
Affiliation(s)
- Mingxia Qian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Rui Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, No. 279 Zhouzhu Road, Pudong New District, Shanghai 201318, China;
| | - Min Liu
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China;
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Furong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| |
Collapse
|
7
|
Natrella G, Vacca M, Minervini F, Faccia M, De Angelis M. A Comprehensive Review on the Biogenic Amines in Cheeses: Their Origin, Chemical Characteristics, Hazard and Reduction Strategies. Foods 2024; 13:2583. [PMID: 39200510 PMCID: PMC11353796 DOI: 10.3390/foods13162583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Most of the biogenic amines are naturally found in fermented foods as a consequence of amino acid decarboxylation. Their formation is ascribable to microorganisms (starters, contaminants and autochthonous) present in the food matrix. The concentration of these molecules is important for food security reasons, as they are involved in food poisoning illnesses. The most frequent amines found in foods are histamine, putrescine, cadaverine, tyramine, tryptamine, phenylethylamine, spermine and spermidine. One of the most risk-prone foods are cheeses, mostly ripened ones, which could easily accumulate amines due to their peculiar manufacturing process and ripening. Cheeses represent a pivotal food in our diet, providing for nutrients such as amino acids, calcium, vitamins and others; thus, since they are widely consumed, it is important to evaluate the presence of toxic molecules to avoid consumers' poisoning. This review aimed to gather general information on the role of biogenic amines, their formation, the health issues and the microorganisms and processes that produce/reduce them, with a focus on their content in different types of cheese (from soft to hard cheeses) and the biotic and abiotic factors that influence their formation or reduction and concentration. Finally, a multivariate analysis was performed on the biogenic amine content, derived from data available in the literature, to obtain more information about the factors influencing their presence in cheeses.
Collapse
Affiliation(s)
- Giuseppe Natrella
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.); (M.F.); (M.D.A.)
| | | | | | | | | |
Collapse
|
8
|
Qi G, Wang J, Chen Y, Wei W, Sun C. Association between dietary spermidine intake and depressive symptoms among US adults: National Health and Nutrition Examination Survey (NHANES) 2005-2014. J Affect Disord 2024; 359:125-132. [PMID: 38729223 DOI: 10.1016/j.jad.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Spermidine (SPD) has a number of advantageous effects, including life extension and neuroprotection. However, few observational studies have investigated the association of dietary SPD intake with depression. METHODS We used data from the 2005-2014 National Health and Nutrition Examination Survey (NHANES) and the corresponding Food Patterns Equivalents Database (FPED). SPD content of food groups from published data were merged with the appropriate FPED data to estimate the SPD intake for each subject. Patients with Patient Health Questionnaire-9 (PHQ-9) scores of 10 or above were thought to experience clinically relevant depression symptoms. Logistic regression, sensitivity analysis, and restricted cubic spline (RCS) were used. RESULTS Among the 19,306 participants, the overall prevalence of depression was 8.72 %. After controlling for relevant confounders, individuals in the highest tertile or quartile of total SPD and SPD derived from fruits, vegetables, cereals, nuts, eggs and seafood had a significantly lower prevalence of depression (OR total SPD = 0.77, 95 % CI: 0.63-0.93); OR fruit-sourced SPD = 0.81, 95 % CI: 0.68-0.95; OR vegetable-sourced SPD = 0.72, 95 % CI: 0.61-0.85; OR cereals-sourced SPD = 0.73,95 % CI:0.60-0.88; OR nuts- sourced SPD = 0.80, 95 % CI: 0.71-0.91; OR egg-sourced = 0.72, 95 % CI: 0.62-0.84 and OR seafood-sourced SPD = 0.65, 95 % CI: 0.55-0.77) comparing those in the lowest tertile or quartile. CONCLOUSION Our fndings reveal a negative association between dietary SPD intake and depression.
Collapse
Affiliation(s)
- Guolian Qi
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Jianing Wang
- Department of Cerebrovascular Disease, The Fifth Afliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
9
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Barzegar F, Nabizadeh S, Kamankesh M, Ghasemi JB, Mohammadi A. The selective extraction of dietary polyamines from chicken breast using the application of a lab-on-a-chip electromembrane and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2585-2596. [PMID: 38606467 DOI: 10.1039/d3ay02172f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Excessive dietary polyamines (PAs), including putrescine (PUT), spermine (SPM), and spermidine (SPD), have become a worldwide concern due to their carcinogenicity and reduced shelf life. A modern miniaturized on-chip electromembrane extraction (EME) has been applied to extract these compounds from chicken breast samples. This method is based fundamentally on ionic compounds' electrostatic attraction, diffusion, and solubility in the acceptor phase. The chemical structure of polyamines enables their efficient extraction using an electric driving force on a microchip device. HCl solution (0.1 mol L-1) was applied as an aqueous acceptor solvent. Dispersive liquid-liquid microextraction was performed after EME to facilitate joining three-phase EME to GC-MS and improve the merit figures. The total ranges of 3.77-7.89 μg g-1, 3.48-7.02 μg g-1, and 0.78-2.20 μg g-1 were acquired as PUT, SPM and SPD concentrations in chicken breast, respectively. The results demonstrate that the level of PAs in fresh chicken breast samples is not concerning, but it may reduce the quality of chicken meat over time. This novel analytical technique has several advantages: high recovery, substantial quickness, remarkable selectivity, and good enrichment factors. This emerging method could be generalized to other studies to analyze different foodstuffs.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marzieh Kamankesh
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Jahan B Ghasemi
- Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li Z, Wu Y, Yang W, Wang W, Li J, Huang X, Yang Y, Zhang X, Ye X. Characterization of polyamine metabolism predicts prognosis, immune profile, and therapeutic efficacy in lung adenocarcinoma patients. Front Cell Dev Biol 2024; 12:1331759. [PMID: 38650895 PMCID: PMC11033315 DOI: 10.3389/fcell.2024.1331759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Polyamine modification patterns in lung adenocarcinoma (LUAD) and their impact on prognosis, immune infiltration, and anti-tumor efficacy have not been systematically explored. Methods Patients from The Cancer Genome Atlas (TCGA) were classified into subtypes according to polyamine metabolism-related genes using the consensus clustering method, and the survival outcomes and immune profile were compared. Meanwhile, the geneCluster was constructed according to the differentially expressed genes (DEGs) of the subtypes. Subsequently, the polyamine metabolism-related score (PMRS) system was established using the least absolute shrinkage and selection operator (LASSO) multivariate regression analysis in the TCGA training cohort (n = 245), which can be applied to characterize the prognosis. To verify the predictive performance of the PMRS, the internal cohort (n = 245) and the external cohort (n = 244) were recruited. The relationship between the PMRS and immune infiltration and antitumor responses was investigated. Results Two distinct patterns (C1 and C2) were identified, in which the C1 subtype presented an adverse prognosis, high CD8+ T cell infiltration, tumor mutational burden (TMB), immune checkpoint, and low tumor immune dysfunction and exclusion (TIDE). Furthermore, two geneClusters were established, and similar findings were observed. The PMRS, including three genes (SMS, SMOX, and PSMC6), was then constructed to characterize the polyamine metabolic patterns, and the patients were divided into high- and low-PMRS groups. As confirmed by the validation cohort, the high-PMRS group possessed a poor prognosis. Moreover, external samples and immunohistochemistry confirmed that the three genes were highly expressed in tumor samples. Finally, immunotherapy and chemotherapy may be beneficial to the high-PMRS group based on the immunotherapy cohorts and low half-maximal inhibitory concentration (IC50) values. Conclusion We identified distinct polyamine modification patterns and established a PMRS to provide new insights into the mechanism of polyamine action and improve the current anti-tumor strategy of LUAD.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Wu
- Health Team, Jiangsu Marine Police Bureau, Nanjing, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinbo Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Del Rio B, Fernandez M, Redruello B, Ladero V, Alvarez MA. New insights into the toxicological effects of dietary biogenic amines. Food Chem 2024; 435:137558. [PMID: 37783126 DOI: 10.1016/j.foodchem.2023.137558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Biogenic amines (BA) are molecules with biological functions, which can accumulate at toxic concentrations in foods. Several microorganisms have been identified as responsible for their accumulation at elevated concentrations. Histamine, tyramine and putrescine are the BA most commonly found at highest concentrations. The ingestion of food containing high BA concentrations leads to intoxication with symptoms depending on the BA and the amount consumed. Moreover, there is evidence of synergy between different BA, something of toxicological importance given that some foods accumulate different BA. This work reviews the BA toxic effects and examines recent discoveries regarding their synergy, cytotoxicity and genotoxicity. These advances in the toxicological consequences of ingesting BA contaminated foods support the need to regulate their presence in foods to preserve the consumer's health. However, more research efforts -focused on the establishment of risk assessments- are needed to reach a consensus in their limits in different food matrices.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - María Fernandez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Begoña Redruello
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Victor Ladero
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Miguel A Alvarez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
13
|
Brito BDNDC, Martins MG, Chisté RC, Lopes AS, Gloria MBA, Pena RDS. Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods 2023; 12:4333. [PMID: 38231841 DOI: 10.3390/foods12234333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Tucupi is a broth derived from cassava roots which is produced after the spontaneous fermentation of manipueira (the liquid portion obtained by pressing cassava roots), followed by cooking. This product is widely consumed along with traditional dishes in the Brazilian Amazonia and is already used in different places worldwide. In this study, tucupi obtained from the markets of Belém (Pará, Brazil) and produced using agroindustrial (11 samples) and non-agroindustrial (11 samples) units were investigated to determine their physicochemical characteristics, total and free HCN contents, and free bioactive amine profiles. Most of the samples showed significant variations (p ≤ 0.05) in pH (2.82-4.67), total acidity (0.14-1.36 g lactic acid/100 mL), reducing sugars (up to 2.33 g/100 mL), and total sugars (up to 4.35 g/100 mL). Regarding the amines, four biogenic amines (0.5-4.2 mg/L tyramine, 1.0-23.1 mg/L putrescine, 0.5-66.8 mg/L histamine, and 0.6-2.9 mg/L tryptamine) and one polyamine (0.4-1.7 mg/L spermidine) were identified in the tucupi samples. Even in the tucupi produced using the agroindustrial units, which had quality seals provided by the local regulatory agency, high levels of biogenic amines (4.4-78.2 mg/L) were observed, as well as high dosages of total (8.87-114.66 mg/L) and free (0.80-38.38 mg/L) HCN. These facts highlight the need for better knowledge regarding the product manufacturing process to establish standardization and high-quality conditions for tucupi processing since high contents of biogenic amines and HCN are commonly associated with adverse health effects.
Collapse
Affiliation(s)
- Brenda de Nazaré do Carmo Brito
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Mayara Galvão Martins
- Innovation, Development and Adaptation of Sustainable Technologies Research Group (GPIDATS), Mamirauá Institute for Sustainable Development (IDSM), Tefé 69553-225, AM, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Maria Beatriz Abreu Gloria
- Laboratory of Food Biochemistry-LBqA & LCQ, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| |
Collapse
|
14
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
15
|
Pinto CFD, Monteiro CFC, Bortolo M, Marx FR, Model JFA, Vinagre AS, Trevizan L. Effects of Diets Based on Hydrolyzed Chicken Liver and Different Protein Concentrations on the Formation and Deamination of Biogenic Amines and Total Antioxidant Capacity of Dogs. Animals (Basel) 2023; 13:2578. [PMID: 37627369 PMCID: PMC10451964 DOI: 10.3390/ani13162578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biogenic amines are synthesized through the bacterial decarboxylation of amino acids, commonly found in high levels in animal by-product meals due to spoilage. Furthermore, biogenic amines and other metabolites can be produced by the fermentation of proteins in the hindgut according to the protein source and concentration of crude protein (CP) in the diet. Thus, this study aimed to evaluate two protein sources (poultry by-product meal (PBPM) and hydrolyzed chicken liver powder (HCLP)) and three CP concentrations (24, 32, and 40%) and their effects on the consumption and fecal excretion of biogenic amines, plasma monoamine oxidase (MAO) and diamine oxidase (DAO) activities, and total antioxidant capacity (TAC) of healthy adult dogs after 30 days of feeding the experimental diets. Twelve dogs were randomly distributed into six treatments (n = 6/treatment): PBPM24 (PBPM with 24% CP); PBPM32 (PBPM with 32% CP); PBPM40 (PBPM with 40% CP); HCLP24 (HCLP with 24% CP); HCLP32 (HCLP with 32% CP); HCLP40 (HCLP with 40% CP). The PBPM and PBPM-based diets had higher concentrations of putrescine, cadaverine, tyramine, histamine, agmatine, and total biogenic amines. In contrast, HCLP and HCLP-based diets contained higher concentrations of spermidine, phenylethylamine, and spermine. The PBPM and PBPM-diets had higher biogenic amine index (BAI) indicating lower quality due to the high content of putrescine, cadaverine and tyramine. Dogs fed diets with PBPM and higher protein concentrations consumed more putrescine, cadaverine, tyramine, agmatine, and total amines (p < 0.0001), while dogs fed with HCLP consumed more spermidine, phenylethylamine, and spermine (p < 0.0001). Fecal excretion of phenylethylamine was greater in dogs fed HCLP32 and HCLP40 diets (p = 0.045). Dogs fed with HCLP tended to excrete more spermidine and tryptamine via feces, while higher protein concentrations tended to increase fecal excretion of cadaverine (p < 0.10). Plasma MAO activity was higher in dogs fed HCLP24 and PBPM32 diets (p = 0.024). The plasma activities of DAO and TAC were not different between diets (p > 0.05). Although we did not evaluate the intestinal activities of MAO and DAO, our results suggest that healthy adult dogs have an efficient deamination process on the gut epithelium.
Collapse
Affiliation(s)
- Caroline Fredrich Dourado Pinto
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil; (C.F.D.P.); (C.F.C.M.)
| | | | - Marcelino Bortolo
- Nutrisurance Division, Kemin Industries, Inc., Indaiatuba 13347-394, Brazil;
| | - Fábio Ritter Marx
- Nutrisurance Division, Kemin Industries, Inc., Des Moines, IA 50317, USA;
| | - Jorge Felipe Argenta Model
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (J.F.A.M.); (A.S.V.)
| | - Anapaula Sommer Vinagre
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (J.F.A.M.); (A.S.V.)
| | - Luciano Trevizan
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil; (C.F.D.P.); (C.F.C.M.)
| |
Collapse
|
16
|
Lindinger S, Bauer S, Dicakova Z, Pilz B, Paulsen P. Microflora, Contents of Polyamines, Biogenic Amines, and TVB-N in Bovine Offal and Game Meat for the Raw-Feeding of Adult Dogs. Animals (Basel) 2023; 13:1987. [PMID: 37370497 DOI: 10.3390/ani13121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Microflora and contents of biogenic amines/polyamines and total volatile basic nitrogen (TVB-N) in 99 samples of bovine offal (red offal, n = 41 and other offal and mixes, n = 45) and wild game meat (n = 13) for raw meat-based diets (RMBD) for dogs were analyzed. Samples were bought in 11 local pet food shops and in one game-handling establishment in Austria (Lower Austria, Styria, and Vienna) in September and October 2022. Median contents (first and third quartiles in brackets) of cadaverine, histamine, tyramine, spermidine, and spermine were 20.7 [16.7; 28.6]; 25.4 [17.1; 47.2]; 18.9 [13.6; 38.9]; 15.2 [11.2; 21.2]; and 41.9 [<limit of detection; 64.5] mg/kg wet weight, respectively. The sum of putrescine + cadaverine + histamine + tyramine was >50 mg/kg in 85.9% of samples, indicating the use of low-quality ingredients or inappropriate storage conditions. However, only 10.1% of samples were determined to be not compliant with a maximum amine content proposed for pet food. Median contents of the total aerobic bacteria counts (TACs), Pseudomonas, and Enterobacteriaceae were 7.4 [6.4; 8.0]; 6.5 [5.5; 7.7]; and 4.8 [3.9; 5.6] log CFU/g, respectively, with significantly lower counts in red offal RMBD (p < 0.05). TVB-N exceeded 150 mg/kg in 87.9% of samples. The TACs and Enterobacteriaceae numbers in red offal RMBD were comparable to those in food-grade red offal after 6 days of aerobic storage at 7 °C, i.e., temperatures higher than required for food-grade offal, but acceptable for animal by-products intended for RMBD production. In 80.8% of samples, numbers of Enterobacteriaceae exceeded the EU legal limit. From 12 of these samples, Salmonellae was able to be isolated, with counts from 0.03 MPN/g to 110 MPN/g. Salmonella enterica ser. Montevideo (n = 3), and S. enterica ser. Give and S. enterica ssp. Diarizonae (n = 2 each) were the most frequently isolated, while Listeria monocytogenes was rarely recovered (2%). Whilst exposure of humans handling such pet food can be reduced by hygiene precautions, the risk remains that dogs can acquire a feed-borne salmonellosis and shed the pathogen.
Collapse
Affiliation(s)
- Sarah Lindinger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Susanne Bauer
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Zuzana Dicakova
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04181 Košice, Slovakia
| | - Brigitte Pilz
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
17
|
Majer-Baranyi K, Székács A, Adányi N. Application of Electrochemical Biosensors for Determination of Food Spoilage. BIOSENSORS 2023; 13:bios13040456. [PMID: 37185531 PMCID: PMC10135962 DOI: 10.3390/bios13040456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Food security is significantly affected by the mass production of agricultural produce and goods, the growing number of imported foods, and new eating and consumption habits. These changed circumstances bring food safety issues arising from food spoilage to the fore, making food safety control essential. Simple and fast screening methods have been developed to detect pathogens and biomarkers indicating the freshness of food for safety. In addition to the traditional, sequential, chemical analytical and microbiological methods, fast, highly sensitive, automated methods suitable for serial tests have appeared. At the same time, biosensor research is also developing dynamically worldwide, both in terms of the analytes to be determined and the technical toolkit. Consequently, the rapid development of biosensors, including electrochemical-based biosensors, has led to significant advantages in the quantitative detection and screening of food contaminants. These techniques show great specificity for the biomarkers tested and provide adequate analytical accuracy even in complex food matrices. In our review article, we summarize, in separate chapters, the electrochemical biosensors developed for the most important food groups and the food safety issues they can ensure, with particular respect to meat and fish products, milk and dairy products, as well as alcoholic and non-alcoholic beverages.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary
| |
Collapse
|
18
|
Vinci G, Prencipe SA, Armeli F, Businaro R. A Multimethodological Approach for the Valorization of "Senatore Cappelli" Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5057. [PMID: 36981970 PMCID: PMC10048793 DOI: 10.3390/ijerph20065057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Wheat is the third most cultivated cereal in the world and represents the major contributor to human nutrition. Milling wheat by-products such as husks (17-20% of the total processing output weight), even if still containing high-value-added bioactive compounds, are often left untreated or unused, thus resulting in environmental and human health burdens. In these regards, the present study is aimed at evaluating in a multimethodological approach the nutraceutical properties of durum wheat husks belonging to the ancient cultivar "Senatore Cappelli", thus assessing their potential as bioactive compound sources in terms of phytochemical, cytotoxic, and nutraceutical properties. By means of HPLC-FD analyses, wheat husk samples analyzed revealed a higher content of serotonin, amounting to 35% of the total BAs, and were confirmed to occur at biogenic amines quality index (BAQI) values <10 mg/100 g. In addition, spectrophotometric assays showed a significant variable content in the phenolic (189.71-351.14 mg GAE/100 g) and antioxidant compounds (31.23-37.84 mg TE/100 g) within the wheat husk samples analyzed, according to the different cultivar areas of origin. Considering wheat husk extracts' anti-inflammatory and antioxidant activity, in vitro analyses were performed on BV-2 murine microglia cells cultured in the presence or absence of LPS, thus evaluating their ability to promote microglia polarization towards an anti-inflammatory phenotype. Cytotoxicity assays showed that wheat extracts do not affect microglia viability. Wheat husks activity on microglial polarization was assessed by analyzing the expression of M1 and M2 markers' mRNA by RT-PCR. Wheat husk antioxidant activity was assessed by analysis of NRF2 and SOD1 mRNA expression. Moreover, the sustainability assessment for the recovery of bioactive components from wheat by-products was carried out by applying the life cycle assessment (LCA) methodology using SimaPro v9.2.2. software.
Collapse
Affiliation(s)
- Giuliana Vinci
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
19
|
Kmieciak A, Jastrzębska A, Szymańska K, Krzemiński MP, Muzioł TM, Kurzawa M, Szłyk E. The Selection of the Best Derivatization Reagents for the Determination of Polyamines in Home-Made Wine Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1474. [PMID: 36837108 PMCID: PMC9960030 DOI: 10.3390/ma16041474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The procedures of putrescine, spermine, spermidine, and cadaverine derivatization using 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene, 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, and 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for chromatographic determination in home-made wine samples are compared in the present study. The procedures discussed were compared regarding simplicity, linearity, precision, and accuracy. The polyamines derivatives were isolated and characterized by X-ray crystallography and 1H, 13C, and 19F NMR spectroscopy. The obtained structures of aliphatic amines showed that all amino groups, four in spermine, two in putrescine and cadaverine, and three in spermidine, regardless of the applied reagent, were substituted. The applicability of the described procedures was tested during the chromatographic analysis of the compounds' content in home-made wines. For this purpose, a simple and environmentally friendly sample preparation procedure was developed. The obtained results present the derivatization of polyamines with 1-fluoro-2-nitro-4-(trifluoromethyl)benzene as a better choice for the determination of these compounds in food samples.
Collapse
Affiliation(s)
- Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Karolina Szymańska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Tadeusz M. Muzioł
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
20
|
Comparative Analysis of Volatile and Non-Volatile Metabolites Derived from Bacillus subtilis Strains Producing Different Levels of Biogenic Amines. Metabolites 2023; 13:metabo13020219. [PMID: 36837838 PMCID: PMC9963581 DOI: 10.3390/metabo13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biogenic amines (BAs), which are mainly generated by the microbial decarboxylation of amino acids, are important nitrogen compounds in fermented foods because of their toxicology. However, amino acids, the precursors of BAs, also play an important role in generating volatile and non-volatile metabolites, which are strongly associated with quality indicators for foods. Bacillus subtilis is one of dominant fermentative microorganism in various fermented foods and is well known as a BA-producing bacterium. In this study, B. subtilis strains which have different BAs-producing capacities, higher level of BAs production strain (BH) and lower level of BAs production strain (BL), were applied to compare the formations of volatile and non-volatile metabolite profiles according to cultivation times. In this study, histamine, putrescine, and spermidine were detected in all strains, however, 2-phenylethylamine was detected only in BH. Partial least squares discriminant analysis (PLS-DA) was applied to investigate the difference of metabolic profiles according to strains. In BH, some amino acids (phenylalanine, leucine, and threonine) and related volatile metabolites (3-methylbutanoic acid, pyrazines, styrene, and 1H-indole) were produced higher levels. On the other hand, BL produced significantly higher contents of metabolites associated with metabolism of fatty acids and nucleotides. It is necessary to consider the formation of metabolites in terms of quality as well as that of BAs during fermentation.
Collapse
|
21
|
Wu J, Wu Y, Bian H, Peng Z, Liu Y, Yin Y, Du J, Lu X. Fabrication of a ratiometric electrochemiluminescence biosensor using single self-enhanced nanoluminophores for the detection of spermine. Talanta 2023; 253:123880. [PMID: 36095937 DOI: 10.1016/j.talanta.2022.123880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
A ratiometric electrochemiluminescence strategy using a single luminophore for accurate and sensitive biomolecule detection could be immensely valuable in bioanalysis. Herein, an ultrasensitive ratiometric electrochemiluminescence sensing system was fabricated using a self-enhanced luminophore with dual-signal emission for the detection of spermine. A nanocomposite was synthesized by the covalent attachment of N, N-diisopropylethylenediamine onto glutathione-protected Au-Ag bimetallic nanoclusters (DPEA-GSH@Au/Ag BNCs). The nanocomposite exhibited efficient intra-cluster charge transfer to produce strong anodic self-enhanced electrochemiluminescence emission at 0.8 V without external co-reactants. Interestingly, the DPEA@GSH@Au-Ag BNCs exhibited cathodic electrochemiluminescence emission upon the addition of the co-reactant potassium persulfate at -1.6 V, exhibiting stable and efficient dual-signal electrochemiluminescence emission features at a continuous potential window of -1.75 to 1.2 V. Thus, they were used to fabricate a single-luminophore electrochemiluminescence sensor with dual emission. The cathodic emission of the biosensor gradually increased with increasing concentrations of spermine, whereas the anodic electrochemiluminescence intensity remained almost constant, enabling the ratiometric detection of spermine. The fabricated biosensor, with an internal standard, significantly improved the accuracy and reliability of spermine detection in a wide concentration range of 0.85 pM-100 μM, with a low limit of detection of 0.12 pM (S/N = 3) under optimum conditions. This single-luminophore electrochemiluminescence sensing system could be used for the detection of spermine and could guide the construction of ratiometric electrochemiluminescence sensors in the future.
Collapse
Affiliation(s)
- Jiangmin Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yang Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Huifang Bian
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Zhengdong Peng
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yongmei Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yongde Yin
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Jie Du
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
22
|
Silveira PTDS, Glória MBA, Tonin IP, Martins MOP, Efraim P. Varietal Influence on the Formation of Bioactive Amines during the Processing of Fermented Cocoa with Different Pulp Contents. Foods 2023; 12:foods12030495. [PMID: 36766023 PMCID: PMC9914241 DOI: 10.3390/foods12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
During cocoa processing, there can be the formation of bioactive amines, which are compounds that play relevant roles not only in plant development but also in human health. Thus, we aimed to investigate the presence and levels of bioactive amines during the processing of two important varieties of cocoa (PS 1319 and Parazinho). The seeds were fermented using five different pulp proportions: 100% (E1), 80% (E2), 60% (E3), and 0% (total pulp removal) (E4). The beans were fermented and dried on a farm following traditional procedures. Soon after, they were roasted and processed into chocolates with 60% cocoa in the laboratory. Bioactive amine contents were determined by ion-pair reversed-phase HPLC and fluorometric detection in the samples before, during, and after fermentation, after drying and roasting (nibs), and in the liquor and chocolate. The only amines found before processing in PS 1319 and Parazinho, respectively, in dry weight basis (dwb), were putrescine (pulp, 13.77 and 12.31; seed, 5.88 and 4.58) and serotonin (seed, 2.70 and 2.54). Fermentation was shorter for Parazinho (156 h) compared to PS 1319 (180 h). The changes in amines were affected by the cocoa variety. During drying, the presence of cadaverine stood out, appearing in all treatments of the PS 1319 variety, reaching 17.96 mg/kg dwb, and in two treatments of the Parazinho variety (100 and 60% pulp). During roasting, most of the amines decreased, except for phenylethylamine, which increased up to 2.47 mg/kg dwb for Parazinho and 1.73 mg/kg dwb for PS 1319. Most of the amines formed and built up (e.g., tyramine, putrescine, and cadaverine) during fermentation were not available or were at low levels in the nibs. Most of the amines found during processing did not reach the final product (chocolate), except for cadaverine in PS 1319 without pulp (7.54 mg/kg dwb). Finally, we confirmed how pulp content, processing, and variety influence the content of bioactive amines in cocoa and chocolate. These changes can be better demonstrated through a heatmap and principal component analysis.
Collapse
Affiliation(s)
| | | | | | | | - Priscilla Efraim
- School of Food Engineering, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Correspondence: ; Tel.: +55-19-35214006
| |
Collapse
|
23
|
Wu H, Wang J, Jiang H, Liu X, Sun X, Chen Y, Hu C, Wang Z, Han T, Sun C, Wei W, Jiang W. The association of dietary spermidine with all-cause mortality and CVD mortality: The U.S. National Health and Nutrition Examination Survey, 2003 to 2014. Front Public Health 2022; 10:949170. [PMID: 36249217 PMCID: PMC9554131 DOI: 10.3389/fpubh.2022.949170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Background Current studies on the protective effects of dietary spermidine (SPD) on cardiovascular disease (CVD) are mainly limited to animal studies, and the relationship between dietary SPD and CVD mortality remains inconclusive. Objective This study aims to evaluate the association between dietary SPD intake and CVD and all-cause mortality. Methods A total of 23,894 people enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2014 were recruited for this study. The dietary intake of SPD from 11 specific food origins and total SPD was categorized into tertiles or quartiles. Cox proportional hazard regression models were developed to evaluate the association of SPD intake with CVD and all-cause mortalities. Results Among the 23,894 participants, 2,365 deaths, including 736 deaths due to CVD, were documented. After adjustment for potential confounders, compared with participants in the lowest quartile, participants in the highest quartile of total SPD had a significantly lower risk of CVD mortality (HR = 0.68, 95% CI: 0.51-0.91) and all-cause mortality (HR = 0.70, 95% CI: 0.60-0.82); participants in the highest tertiles or quartiles of vegetable-derived SPD, cereal-derived SPD, legume-derived SPD, nut-derived SPD, and cheese-derived SPD had a lower risk of CVD mortality (HR vegetable - derivedSPD = 0.68, 95% CI: 0.54-0.86; HR cereal - derivedSPD = 0.75, 95% CI: 0.57-0.97; HR legume - derivedSPD = 0.68, 95% CI: 0.52-0.88; HR nut - derivedSPD = 0.66, 95% CI: 0.53-0.80; HR cheese - derivedSPD = 0.68, 95% CI: 0.52-0.88) and all-cause mortality (HR vegetable - derivedSPD = 0.73, 95% CI: 0.64-0.84; HR cereal - derivedSPD = 0.80, 95% CI: 0.69-0.93; HR legume - derivedSPD = 0.70, 95% CI: 0.60-0.80;HR nut - derivedSPD = 0.72, 95% CI: 0.64-0.81; HR cheese - derivedSPD = 0.70, 95% CI: 0.61-0.81) than those in the lowest tertiles or quartiles. Moreover, subgroup analysis showed consistent associations among the people with hypertension and hyperlipidemia. Conclusion Higher intake of dietary SPD is associated with decreased risk of CVD and all-cause mortality, and among specific food origin SPD, SPD derived from vegetables, cereals, legumes, nuts, and cheese was associated with reduced CVD and all-cause mortality.
Collapse
Affiliation(s)
- Huanyu Wu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Jianing Wang
- Department of Cerebrovascular Disease, The Fifth Afliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyan Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinyi Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yunyan Chen
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Cong Hu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Zheng Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China,Changhao Sun
| | - Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China,Wei Wei
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China,*Correspondence: Wenbo Jiang
| |
Collapse
|
24
|
Boehm AC, Friedrich AB, Hunt S, Bandow P, Siju KP, De Backer JF, Claussen J, Link MH, Hofmann TF, Dawid C, Grunwald Kadow IC. A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females. eLife 2022; 11:e77643. [PMID: 36129174 PMCID: PMC9536836 DOI: 10.7554/elife.77643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.
Collapse
Affiliation(s)
- Ariane C Boehm
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
| | - Anja B Friedrich
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Sydney Hunt
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Paul Bandow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
| | - KP Siju
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Jean Francois De Backer
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Julia Claussen
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Marie Helen Link
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Thomas F Hofmann
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Corinna Dawid
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Ilona C Grunwald Kadow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- University of Bonn, Faculty of Medicine, Institute of Physiology IIBonnGermany
| |
Collapse
|
25
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
26
|
Sun X, Sun L, Su L, Wang H, Wang D, Liu J, Sun E, Hu G, Liu C, Gao A, Jin Y, Zhao L. Effects of Microbial Communities on Volatile Profiles and Biogenic Amines in Beef Jerky from Inner Mongolian Districts. Foods 2022; 11:foods11172659. [PMID: 36076844 PMCID: PMC9455903 DOI: 10.3390/foods11172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Beef jerky is a traditional fermented meat product from Inner Mongolia, handcrafted by artisans. We investigated the bacteria of the microbial community, volatile flavor components, and biogenic amines of Inner Mongolia beef jerky via high-throughput sequencing, solid-phase microextraction with gas chromatography−mass spectrometry, and high-performance liquid chromatography, respectively. Thirty-three bacteria were identified, predominantly from the genera Pseudomonas (45.4%), Ralstonia (13.4%), and Acinetobacter (7.3%). Fifty-nine volatile flavor compounds and eight biogenic amines were detected. Based on Spearman’s correlation coefficient, 20 bacterial genera were significantly associated with the dominant volatile compounds in the beef jerky samples (p < 0.05). The results demonstrated that beef jerky may be toxic due to cadaverine, putrescine, and histamine; moreover, the amounts of putrescine and cadaverine were positively correlated with the abundance of unclassified_f_Enterobacteriaceae (p < 0.05). These findings shed light on the formation of the microbial community, flavor components, and biogenic amines of beef jerky, thereby providing a basis for improving its quality.
Collapse
|
27
|
Research Progress and Potential Applications of Spermidine in Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071500. [PMID: 35890394 PMCID: PMC9323341 DOI: 10.3390/pharmaceutics14071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Spermidine, a natural polyamine, exists in almost all human tissues, exhibiting broad properties like anti-aging, autophagy induction, anti-inflammation, anti-oxidation, cell proliferation activation, and ion channel regulation. Considering that spermidine is already present in human nutrition, recent studies targeting supplementing exogenous sources of this polyamine appear feasible. The protective role of spermidine in various systems has been illuminated in the literature, while recent progress of spermidine administration in ocular diseases remains to be clarified. This study shows the current landscape of studies on spermidine and its potential to become a promising therapeutic agent to treat ocular diseases: glaucoma, optic nerve injury, age-related macular degeneration (AMD), cataracts, dry eye syndrome, and bacterial keratitis. It also has the potential to become a potent biomarker to predict keratoconus (KC), cataracts, uveitis, glaucoma, proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and retinopathy of prematurity (ROP). We also summarize the routes of administration and the effects of spermidine at different doses.
Collapse
|
28
|
van den Oever SP, Mayer HK. Can oligomeric proanthocyanidins interfere with UHPLC analysis of spermidine in nutritional supplements? J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
30
|
Brito BDNDC, Chisté RC, Lopes AS, Gloria MBA, Chagas Junior GCA, Pena RDS. Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production. Microorganisms 2022; 10:microorganisms10050840. [PMID: 35630286 PMCID: PMC9144197 DOI: 10.3390/microorganisms10050840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
There is scarce information regarding lactic acid bacteria (LAB) and the production of biogenic amines during manipueira fermentation for tucupi. Thus, the objective of this study was to isolate and identify LAB, and to determine their impact on bioactive amine formation. Spontaneous fermentation of manipueira was carried out at laboratory scale and selected LAB colonies were isolated and identified by sequencing techniques and comparison with sequences from a virtual database. Only two LAB species of the genus Lactobacillus were identified during fermentation: Lactobacillus fermentum and Lactobacillus plantarum. L. fermentum was the predominant, whereas L. plantarum was only detected in manipueira prior to fermentation. Spermidine and putrescine were detected throughout fermentation, whereas histamine was produced at the final stage. There was positive correlation between LAB counts and putrescine and histamine levels, suggesting that the identified LAB are responsible for the synthesis of these amines during manipueira fermentation. Genetic assays are needed to verify whether the LAB identified have the genes responsible for decarboxylation of amino acids.
Collapse
Affiliation(s)
- Brenda de Nazaré do Carmo Brito
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (B.d.N.d.C.B.); (R.C.C.); (A.S.L.); (G.C.A.C.J.)
| | - Renan Campos Chisté
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (B.d.N.d.C.B.); (R.C.C.); (A.S.L.); (G.C.A.C.J.)
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Alessandra Santos Lopes
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (B.d.N.d.C.B.); (R.C.C.); (A.S.L.); (G.C.A.C.J.)
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Maria Beatriz Abreu Gloria
- Laboratory of Quality Control (LQC), Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Gilson Celso Albuquerque Chagas Junior
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (B.d.N.d.C.B.); (R.C.C.); (A.S.L.); (G.C.A.C.J.)
| | - Rosinelson da Silva Pena
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (B.d.N.d.C.B.); (R.C.C.); (A.S.L.); (G.C.A.C.J.)
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Correspondence: ; Tel.: +55-91-3201-8994
| |
Collapse
|
31
|
Mutz YS, Kaic Alves Rosario D, Alves de Aguiar Bernardo Y, Paulo Vieira C, Vilela Pinto Moreira R, Bernardes PC, Conte‐Junior CA. Unravelling the relation between natural microbiota and biogenic amines in Brazilian dry‐cured loin: a chemometric approach. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yhan S. Mutz
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Food Science Program Institute of Chemistry Federal University of Rio de Janeiro Av. Athos da Silveira Ramos Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | - Denes Kaic Alves Rosario
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Food Science Program Institute of Chemistry Federal University of Rio de Janeiro Av. Athos da Silveira Ramos Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | - Yago Alves de Aguiar Bernardo
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | - Carla Paulo Vieira
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Food Science Program Institute of Chemistry Federal University of Rio de Janeiro Av. Athos da Silveira Ramos Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | - Rodrigo Vilela Pinto Moreira
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | | | - Carlos A. Conte‐Junior
- Center for Food Analysis (NAL) Technological Development Support Laboratory (LADETEC) Polo de Química Avenida Horácio Macedo Ilha do Fundão Cidade Universitária Rio de Janeiro Brazil
- Food Science Program Institute of Chemistry Federal University of Rio de Janeiro Av. Athos da Silveira Ramos Rio de Janeiro Brazil
- Analytical and Molecular Laboratory Center Faculty of Veterinary Medicine Fluminense Federal University Niterói, Rio de Janeiro Brazil
| |
Collapse
|
32
|
Lima ÂCDO, Conceição RS, Freitas LS, de Carvalho CAL, Conceição ALDS, Freitas HF, Pita SSDR, Ifa DR, Pinheiro AM, Branco A. Hydroxycinnamic acid-spermidine amides from Tetragonisca angustula honey as anti-Neospora caninum: In vitro and in silico studies. Chem Biol Drug Des 2021; 98:1104-1115. [PMID: 34614302 DOI: 10.1111/cbdd.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.
Collapse
Affiliation(s)
- Ângela C de O Lima
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Rodrigo S Conceição
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
| | - Luciana S Freitas
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Carlos A L de Carvalho
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Antônio L da S Conceição
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Humberto F Freitas
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Samuel S da R Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Demian R Ifa
- Department of Chemistry, Center for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - Alexandre M Pinheiro
- Veterinary, Biochemistry and Immunology Laboratory, Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo da Bahia, Cruz das Almas, Brazil
| | - Alexsandro Branco
- Graduate Program in Biotechnology, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
- Laboratory of Phytochemistry, State University of Feira de Santana - UEFS, Feira de Santana, Brazil
| |
Collapse
|
33
|
Barik A, Patel GD, Sen SK, Rajhans G, Nayak C, Raut S. Probiotic Characterization of Indigenous Kocuria flava Y4 Strain Isolated from Dioscorea villosa Leaves. Probiotics Antimicrob Proteins 2021; 15:614-629. [PMID: 34825308 DOI: 10.1007/s12602-021-09877-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
This aim of the study was to isolate and screen potential probiotics from Dioscorea villosa leaves. The potential isolate Y4 was obtained from the Dioscorea villosa leaves, and its ability to grow in a medium containing high NaCl concentrations (2-10%) indicated its negative hemolytic activity. Furthermore, Y4 demonstrated inhibitory activity against human pathogens, such as Klebsiella pneumonia, Staphylococcus aureus, Citrobacter koseri, and Vibrio cholerae, as well as towards a plant pathogen isolate OR-2 (obtained from Citrus sinensis). Some biologically important functional groups of Y4 metabolites, such as sulfoxide; aliphatic ether; 1, 2, 3-trisubstituted, tertiary alcohol: vinyl ether; aromatic amine; carboxylic acid; nitro compound; alkene mono-substituted; and alcohol, were identified through FTIR analysis. The 16S rRNA sequencing and subsequent phylogenetic tree analysis indicated that Y4 and OR-2 are the closest neighbors to Kocuria flava (GenBank accession no. MT773277) and Pantoea dispersa (GenBank accession no. MT766308), respectively. The potential isolate Y4 was found to exhibit adhesion, auto-aggregation, co-aggregation, and weak biofilm activity. It also exhibited a high level of antimicrobial activity and antibiotic susceptibility. The safety of K. flava Y4 isolate, which is proposed to be a probiotic, was evaluated through acute oral toxicity test and biogenic amine production test. Moreover, the preservation potential of isolate Y4 was assessed through application on fruits under different temperatures. Thus, our results confirmed that Kocuria flava Y4 is a prospective probiotic and could also be used for the preservation of fruits.
Collapse
Affiliation(s)
- Adyasa Barik
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Bhubaneswar, 751003, Odisha, India
| | - Gaurav D Patel
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Bhubaneswar, 751003, Odisha, India
| | | | - Geetanjali Rajhans
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Bhubaneswar, 751003, Odisha, India
| | - Chirasmita Nayak
- Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Sangeeta Raut
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
34
|
Differences in Polyamine Content between Human Milk and Infant Formulas. Foods 2021; 10:foods10112866. [PMID: 34829148 PMCID: PMC8620792 DOI: 10.3390/foods10112866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Human milk is the gold standard for nutrition during the first months of life, but when breastfeeding is not possible, it may be replaced by infant formulas, either partially or totally. Polyamines, which play an important role in intestinal maturation and the development of the immune system, are found both in human milk and infant formulas, the first exogenous source of these compounds for the newborn. The aim of this study was to evaluate the occurrence and evolution of polyamines in human milk during the first semester of lactation and to compare the polyamine content with that of infant formulas. In total, 30 samples of human milk provided by six mothers during the first five months of lactation as well as 15 different types of infant formulas were analyzed using UHPLC-FL. Polyamines were detected in all human milk samples but with great variation among mothers. Spermidine and spermine levels tended to decrease during the lactation period, while putrescine remained practically unchanged. Considerable differences were observed in the polyamine contents and profiles between human milk and infant formulas, with concentrations being up to 30 times lower in the latter. The predominant polyamines in human milk were spermidine and spermine, and putrescine in infant formulas.
Collapse
|
35
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
36
|
Yu Z, Fu W, Fu Y, Tang W, Li R, Li X. The biogenic amine-producing bacteria from craft beer and their kinetic analysis between growth characteristics and biogenic amine formation in beer. J Food Sci 2021; 86:4991-5003. [PMID: 34699076 DOI: 10.1111/1750-3841.15934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Craft beer because of its fresh flavor, unique taste, and rich nutrition is becoming more popular to consumers. Compared with industry beer, craft beer is often nonfiltered and nonpasteurized, for this reason, it has a short shelf life and is more susceptible to microbial spoilage, which may cause the quality deterioration of craft beer and the formation of biogenic amine as a harmful factor for consumer's health. In this study, the 23 beer-spoilage bacteria were isolated from craft beer, which were identified as 15 Lactobacillus (L.) brevis, 3 L. plantarum, 1 L. parabuchneri, 2 L. paracasei, and 2 Pediococcus damnosus. Among 23 beer-spoilage isolates, 20 representatives were able to form tyramine, histamine, putrescine, cadaverine, and/or tryptamine in MRS broth. The nine Lactobacillus strains were incubated in beer and produced tyramine, histamine, putrescine, cadaverine, and/or tryptamine during beer storage process. Logistic and Gompertz model could be adopted to respectively describe the kinetics of microorganism growth and biogenic amine formation. The relationship between the biogenic amines and biomass was simulated by Luedeking-Piret model very well, and showed that the formation of biogenic amine was mainly bacteria growth-associated in beer. These findings may be helpful for finding the preventive measures to control biogenic amine formation and for enhancing the safety of craft beer. PRACTICAL APPLICATION: The selection of the biogenic amine-producing spoilage bacteria from craft beer and the investigation their kinetics of the growth and biogenic amines production under beer environmental conditions was very helpful for finding preventive measures to eliminate or reduce biogenic amine formation and for appropriate increase in food safety.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Wei Fu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Yang Fu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Wenzhu Tang
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Rong Li
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Xianzhen Li
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
37
|
Quantification of Biogenic Amines in 35 Korean Cottage Industry Traditional Gochujang (Fermented Red Pepper Paste) Products. Foods 2021; 10:foods10102370. [PMID: 34681419 PMCID: PMC8535449 DOI: 10.3390/foods10102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Traditional gochujang is well known for its distinguished flavor and taste. However, the safety of cottage industry gochujang products is uncertain, particularly, in terms of biogenic amine (BA) content which is not yet documented. The present study aimed to determine the level of BAs present in 35 traditional gochujang products nationwide. All gochujang products had considerable amounts of total BAs ranging from 52.95 mg/kg to 176.24 mg/kg. Individually, histamine and tyramine were either not detected or detected up to 16.94 mg/kg and 2.15–52.34 mg/kg, respectively. In all the tested gochujang products, putrescine, spermidine, and spermine were detected in the range of 7.60–56.72 mg/kg, 14.96–36.93 mg/kg, and 4.68–16.31 mg/kg, respectively. A total of 22 and 19 gochujang products had less than 1 mg/kg of cadaverine and histamine, respectively. The findings indicate that all the gochujang products tested herein had BA levels below the suggested toxicity limits recommended by the various regulatory authorities, which reveal that they are safe for human consumption.
Collapse
|
38
|
Contents of Polyamines and Biogenic Amines in Canned Pet (Dogs and Cats) Food on the Austrian Market. Foods 2021; 10:foods10102365. [PMID: 34681414 PMCID: PMC8535367 DOI: 10.3390/foods10102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
Biogenic amines accumulate in proteinaceous raw materials used for pet food production. In canned, sterilized food, amine levels of the ingredients are preserved and may both be indicative of hygiene deficiencies in the ingredients as well as for potential adverse effects to the animals feeding on it. We determined the contents of biogenic amines and polyamines (dansyl derivatives, high performance liquid chromatography) in a variety of canned food for dogs (n = 72) and cats (n = 114) on the Austrian market and compared the results with common quality indices. Contents of putrescine, cadaverine, and tyramine were below the limit of detection in >70% of samples (maximum values: 21.5, 98.4 and 32.5 mg/kg wet weight, respectively). Median contents of histamine, spermidine, and spermine were 14.5, 12.7, and 29.4 mg/kg, and maximum values were 61.6, 28.2, and 53.6 mg/kg wet weight, respectively. The sum of (putrescine + cadaverine + histamine + tyramine) was >50 mg/kg in 22.6% of samples. The biogenic amine index exceeded “1” in 26.7% of samples. Whilst cat food contained significantly higher amounts of tyramine, dog food contained significantly higher amounts of histamine and spermine. In canned cat food, the ingredient “fish” was identified as a statistically significant risk factor for a biogenic amine index > 1 (relative risk = 3.0 (95% confidence interval: 1.8–5.5)) and for (putrescine + cadaverine + histamine + tyramine) exceeding 50 mg/kg (relative risk = 2.4 (95% confidence interval: 1.2–4.6)), due to higher contents of cadaverine in food samples containing fish. While all samples met the limits suggested in pet food production, we could demonstrate that the inclusion of fish in the formulation bears a significant risk for higher cadaverine contents.
Collapse
|
39
|
|
40
|
Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021; 10:foods10081752. [PMID: 34441529 PMCID: PMC8392025 DOI: 10.3390/foods10081752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
Collapse
|
41
|
van den Oever SP, Haselmann A, Schreiner M, Fuerst-Waltl B, Zebeli Q, Mayer HK, Knaus W. Hay versus silage: Does hay feeding positively affect milk composition? Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Liu C, Zhu T, Song H, Niu C, Wang J, Zheng F, Li Q. Evaluation and prediction of the biogenic amines in Chinese traditional broad bean paste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2734-2748. [PMID: 34194109 PMCID: PMC8196132 DOI: 10.1007/s13197-020-04781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 06/13/2023]
Abstract
Biogenic amines (BAs) are a threat to the safety of broad bean paste, and biosynthetic mechanism of BA and its regulation are unknown. This study aimed to assess microbial BA synthesis in Chinese traditional broad bean paste and determine favorable fermentation conditions for BA regulation. The BAs content in 27 pastes was within the safe range. 64 strains with potential decarboxylation were screened in Luria-Bertani Glycerol medium and identified as Bacillus spp. Although Bacillus amyloliquefaciens produced highest levels of BAs (70.14 ± 2.69 mg/L) in LBAA, Bacillus subtilis produced 6% more BAs than B. amyloliquefaciens. Meanwhile, temperature was the most remarkable factor affecting BAs production by B. amyloliquefaciens 1-13. Furthermore, the fermented broad bean paste model revealed that BA content increased by 61.2 mg/kg every 10 days at 45 °C, which was approximately threefold of that at 25 °C. An ARIMA prediction model of BAs content was constructed, and the total BAs content of 40 mg/100 g was set as the critical value. This study not only contributed to understanding the BAs formation mechanism, but also provided potential measures to control the BAs in fermented soybean products.
Collapse
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Tianao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Haoyang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| |
Collapse
|
43
|
Wójcik W, Łukasiewicz M, Puppel K. Biogenic amines: formation, action and toxicity - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2634-2640. [PMID: 33159318 DOI: 10.1002/jsfa.10928] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biogenic amines (BA) are organic compounds commonly found in food, plants and animals, as well as microorganisms that are attributed with the production of BAs. They are formed as an effect of a chemical process: the decarboxylation of amino acids. Factors determining the formation of BAs include the availability of free amino acids and the presence of microorganisms that show activity with respect to carrying out the decarboxylation process. On the one hand, BAs are compounds that are crucial for maintaining cell viability, as well as the proper course of the organism's metabolic processes, such as protein synthesis, hormone synthesis and DNA replication. On the other hand, despite their positive effects on the functioning of the organism, an excessive content of BAs proves to be toxic (diarrhea, food poisoning, vomiting, sweating or tachycardia). Moreover, they can accelerate carcinogenesis. Amines are a natural component of plant and animal raw materials. As a result of the proven negative effects of amines on living organisms, the reduction of these compounds should be the subject of scientific research. The present review aims to synthesize and summarize the information currently available on BAs, as well as discuss the interpretation of the results. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wojciech Wójcik
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Monika Łukasiewicz
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
44
|
Peng Q, Wong CYP, Cheuk IWY, Teoh JYC, Chiu PKF, Ng CF. The Emerging Clinical Role of Spermine in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094382. [PMID: 33922247 PMCID: PMC8122740 DOI: 10.3390/ijms22094382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.
Collapse
Affiliation(s)
| | | | | | | | | | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +85-235-052-625 (C.-F.N.)
| |
Collapse
|
45
|
Deus VL, Resende LM, Bispo ES, Franca AS, Gloria MBA. FTIR and PLS-regression in the evaluation of bioactive amines, total phenolic compounds and antioxidant potential of dark chocolates. Food Chem 2021; 357:129754. [PMID: 33894573 DOI: 10.1016/j.foodchem.2021.129754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022]
Abstract
Cloning techniques are used to improve agronomical traits and answer to the demand for fine chocolate. The objective of this study was to predict the concentrations of bioactive amines, phenolic compounds, and the antioxidant potential of dark monoclonal chocolate from nine fine cocoa varieties by FTIR analysis and conventional techniques. Total phenolic compounds, bioactive amines and antioxidant activity varied significantly among chocolates. The antioxidant activity was also affected by the analytical method (DPPH vs. Rancimat). Chemometric models based on FTIR data provided satisfactory predictions of the concentrations of the amines: spermidine (R2 = 0.92; RMSEP = 0.39; RMSEC = 0.21), tryptamine (R2 = 0.92; RMSEP = 0.41; RMSEC = 0.20), cadaverine (R2 = 0.82; RMSEP = 1.58; RMSEC = 0.75) and tyramine (R2 = 0.87; RMSEP = 1.87; RMSEC = 0.68); as well as phenolic compounds and antioxidant activity by Rancimat® (R2 = 0.98; RMSEP = 0.32; RMSEC = 0.21) and DPPH (R2 = 0.97; RMSEP = 4.05; RMSEC = 1.66). The wavenumbers of amines vibrations are among those that most affected antioxidant prediction models, confirming the contribution of amines to the antioxidant activity of chocolates.
Collapse
Affiliation(s)
- Valterney L Deus
- LBqA & CEDAFAR, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil; PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Laís M Resende
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Eliete S Bispo
- Departamento de Análises Bromatológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Adriana S Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Beatriz A Gloria
- LBqA & CEDAFAR, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil; PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil; Departamento de Ciências do Consumo, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE 52171-900, Brazil.
| |
Collapse
|
46
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
47
|
Deus VL, Bispo ES, Franca AS, Gloria MBA. Understanding amino acids and bioactive amines changes during on-farm cocoa fermentation. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Dala-Paula BM, Starling MDFV, Gloria MBA. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res Int 2021; 144:110341. [PMID: 34053537 DOI: 10.1016/j.foodres.2021.110341] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Fermented and/or protein-rich foods, the most widely consumed worldwide, are the most susceptible to the presence of high levels of biogenic amines (BAs). Many reviews have focused on BAs toxicity and presence in foods; however, technological strategies such as evaluation of physical parameters, the addition of natural or synthetic compounds or the use of specific starter cultures of BAs reduction, and quick detection methods have been scarcely approached. In current research, there has been a focus on fast detection of BAs through colorimetric methods that allow these compounds to be quickly and easily identified by consumers. To reduce BAs presence in food, several alternatives have been developed and investigated with the aim of preventing negative effects caused by their intake, which can be applied before, during, or after processing. Food safety is one of the most important concerns of consumer and sanitary authorities. Therefore, detecting toxins such as BAs in food has become a priority for research. Recent reports that focus on the development of rapid detection methods of BAs are reviewed in this analysis. These methods have been successfully applied to food matrices with little to no sample pretreatment. Several alternatives for BAs reduction in food was also summarized. These findings will help the food industry to improve its processes for developing safe food.
Collapse
Affiliation(s)
- Yari Jaguey-Hernández
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Carr. Tepatepec-San Juan Tepa km. 2, 42660 Francisco I. Madero, Hgo., Mexico
| | - Deyanira Ojeda-Ramirez
- Universidad Autonoma del Estado de Hidalgo, Veterinary Medicine Department, Rancho Universitario Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, 43600 Tulancingo, Hgo., Mexico
| | - Javier Añorve-Morga
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Luis Guillermo González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Araceli Castañeda-Ovando
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico.
| |
Collapse
|
50
|
Zhang X, Zhang L, Chen Z, Li S, Che B, Wang N, Chen J, Xu C, Wei C. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway. Int J Mol Med 2021; 47:27. [PMID: 33537831 PMCID: PMC7895520 DOI: 10.3892/ijmm.2021.4860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the primary cause of end‑stage renal disease, which is closely associated with dysfunction of the podocytes, the main component of the glomerular filtration membrane; however, the exact underlying mechanism is unknown. Polyamines, including spermine, spermidine and putrescine, have antioxidant and anti‑aging properties that are involved in the progression of numerous diseases, but their role in DN has not yet been reported. The present study aimed to explore the role of polyamines in DN, particularly in podocyte injury, and to reveal the molecular mechanism underlying the protective effect of exogenous spermine. Streptozotocin intraperitoneal injection‑induced type 1 diabetic (T1D) rat models and high glucose (HG)‑stimulated podocyte injury models were established. It was found that in T1D rat kidneys and HG‑induced podocytes, ornithine decarboxylase (a key enzyme for polyamine synthesis) was downregulated, while spermidine/spermine N1‑acetyltransferase (a key enzyme for polyamines degradation) was upregulated, which suggested that reduction of the polyamine metabolic pool particularly decreased spermine content, is a major factor in DN progression. In addition, hyperglycemia can induce an increased rat kidney weight ratio, serum creatinine, urea, urinary albumin excretion and glomerular cell matrix levels, and promote mesangial thickening and loss or fusion of podocytes. The expression levels of podocyte marker proteins (nephrin, CD2‑associated protein and podocin) and autophagy‑related proteins [autophagy protein 5, microtube‑associated proteins 1A/1B light chain 3 (LC3)II/LC3I, Beclin 1 and phosphorylated (p)‑AMPK] were downregulated, while cleaved caspase‑3, P62 and p‑mTOR were increased. These changes could be improved by pretreatment with exogenous spermine or rapamycin (autophagic agonist). In conclusion, spermine may have the potential to prevent diabetic kidney injury in rats by promoting autophagy via regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Li Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Chen
- Department of Infectious Diseases, General Hospital for The Head Office of Agricultural Cultivation of Heilongjiang, Harbin, Heilongjiang 150088, P.R. China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bingbing Che
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ningning Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junting Chen
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|