1
|
Cao J, Li D, Feng S, Liu X, Guo X, Wen Y, Yang H. Highly Specific and Sensitive SERS Detection of Putrescine Using Au Nanobowls@Cu-MOF Embedded in a Hydrogel Nanoreactor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408030. [PMID: 39901481 DOI: 10.1002/smll.202408030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Putrescine is of concern due to its toxicity and applications in monitoring food spoilage and water quality. However, it is difficult to realize highly selective and sensitive detection of putrescine with interferences from other biogenetic amines with similar molecular structures. In this work, Au nanobowls modified by Cu-MOF (core-shell Au bowl@Cu MOF) together with o-phthalaldehyde (OPA) are embedded into sodium alginate hydrogel to construct a unique SERS substrate (OPA-Au bowl@Cu MOF/hydrogel) for sensing of putrescine. In the confined space of porous hydrogel, the Schiff base reaction between OPA and putrescine resulted in the product of N, N-dibenzylidene-n-butylenediamine (OPA-Putrescine), which is easily captured by Cu-MOF via copper-nitrogen coordination and then detected thanks to the high SERS activity of Au nanobowls and the large Raman scattering cross-section of OPA-Putrescine. The above reaction contributed to a high selectivity to greatly suppress the interferences from many amino group-containing molecules. The limit of detection (LOD) of gaseous and liquid putrescine is 1.2 × 10-9 and 6.3 × 10-10 mol L-1, respectively. Further, the application potential of this SERS-sensor in food and environmental fields are demonstrated by the successful detection of putrescine in salmon and seawater samples.
Collapse
Affiliation(s)
- Jiaying Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Duoduo Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| |
Collapse
|
2
|
Que M, Chen X, Xie Y, Wang L, Chen Q. A novel electrochemical sensor for rapid detection of sulfathiazole by integrating [(4,4'-bipy/P 2Mo 17Co) n] modified electrode. Food Chem 2025; 462:140959. [PMID: 39208733 DOI: 10.1016/j.foodchem.2024.140959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
In this study, we focused on the successful construction of [(4,4'-bipy/P2Mo17Co)6] modified electrodes using the layer-by-layer assembly method for the sensitive detection of sulfathiazole (ST). The redox reaction between ST and the metal ions in the modified layer leads to the transfer of electrons, resulting in the generation of the electrical signal. The introduction of 4,4'-bipyridine (4,4'-bipy) enhanced the molecular recognition of ST by the modified electrode. Under the combined effect of P2Mo17Co and 4,4'-bipy, the sensor exhibited good performance for ST detection (LOD: 0.5616 μM, linear ST concentration range: 0-50 μM). The spiked recoveries of the two groups were 84.4%-103.2% and 90.9%-109.4% for the determination of ST residues in large yellow croaker and South American white shrimp, respectively. In addition, the electrode showed excellent performance in terms of stability, reproducibility, and anti-interference ability.
Collapse
Affiliation(s)
- Maomei Que
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaowen Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yuanhong Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Joseph S, Ashok Kumar SK. Trace level detection of putrescine and cadaverine in food samples using a novel rhodanine-imidazole dyad and evaluation of its biological properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136445. [PMID: 39541883 DOI: 10.1016/j.jhazmat.2024.136445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Biogenic amines are important indicators of food spoilage and quality. Food safety is significantly influenced by biogenic amines such as Putrescine and Cadaverine, produced by microbes during food spoilage. Herein, a colorimetric probe for detecting Putrescine and Cadaverine based on a chemo-dosimeter strategy has been proposed. The probe L1 irreversibly binds with Putrescine and Cadaverine through an aza-Michael addition reaction in which the dicyanomethyl group of the probe is substituted by the primary amine group from the biogenic amines. This chemical reaction rapidly changes color from colorless to pale green. The probe could detect Putrescine and Cadaverine in trace levels of 52 nM and 18 nM, without much interference from other common biogenic amines. The binding mechanism of probe L1 with biogenic amines was confirmed using 1H NMR, IR, and DFT studies. The detection procedure is made portable and affordable by using a smartphone camera to capture colorimetric changes and convert them into RGB coordinates. Test paper strips coated with the probe were developed to illustrate its real-world analytical application. The potential application of probe L1 in real samples was demonstrated using in-vivo models of Prawn and Beef using test paper strips. Probe L1 showed satisfactory performance for detecting Putrescine and Cadaverine in the vapor phase.
Collapse
Affiliation(s)
- Suman Joseph
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
5
|
Wu J, Wu Y, Bian H, Peng Z, Liu Y, Yin Y, Du J, Lu X. Fabrication of a ratiometric electrochemiluminescence biosensor using single self-enhanced nanoluminophores for the detection of spermine. Talanta 2023; 253:123880. [PMID: 36095937 DOI: 10.1016/j.talanta.2022.123880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
A ratiometric electrochemiluminescence strategy using a single luminophore for accurate and sensitive biomolecule detection could be immensely valuable in bioanalysis. Herein, an ultrasensitive ratiometric electrochemiluminescence sensing system was fabricated using a self-enhanced luminophore with dual-signal emission for the detection of spermine. A nanocomposite was synthesized by the covalent attachment of N, N-diisopropylethylenediamine onto glutathione-protected Au-Ag bimetallic nanoclusters (DPEA-GSH@Au/Ag BNCs). The nanocomposite exhibited efficient intra-cluster charge transfer to produce strong anodic self-enhanced electrochemiluminescence emission at 0.8 V without external co-reactants. Interestingly, the DPEA@GSH@Au-Ag BNCs exhibited cathodic electrochemiluminescence emission upon the addition of the co-reactant potassium persulfate at -1.6 V, exhibiting stable and efficient dual-signal electrochemiluminescence emission features at a continuous potential window of -1.75 to 1.2 V. Thus, they were used to fabricate a single-luminophore electrochemiluminescence sensor with dual emission. The cathodic emission of the biosensor gradually increased with increasing concentrations of spermine, whereas the anodic electrochemiluminescence intensity remained almost constant, enabling the ratiometric detection of spermine. The fabricated biosensor, with an internal standard, significantly improved the accuracy and reliability of spermine detection in a wide concentration range of 0.85 pM-100 μM, with a low limit of detection of 0.12 pM (S/N = 3) under optimum conditions. This single-luminophore electrochemiluminescence sensing system could be used for the detection of spermine and could guide the construction of ratiometric electrochemiluminescence sensors in the future.
Collapse
Affiliation(s)
- Jiangmin Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yang Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Huifang Bian
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Zhengdong Peng
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yongmei Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yongde Yin
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Jie Du
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
6
|
Sarkar S, Saika-Voivod I, Berry MD. Modelling of p-tyramine transport across human intestinal epithelial cells predicts the presence of additional transporters. Front Physiol 2022; 13:1009320. [PMID: 36505075 PMCID: PMC9733674 DOI: 10.3389/fphys.2022.1009320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
p-Tyramine (TYR) is an endogenous trace amine, which can also be synthesized by intestinal microbiota, and is present in commonly consumed diets. TYR is an agonist for the intracellular trace amine-associated receptor 1, which has been implicated in psychiatric, metabolic, and immune-related disorders. We have previously demonstrated TYR readily diffuses across lipid bilayers, while transport across Caco-2 cell membranes involves Organic Cation Transporter 2 (OCT2) and a Na+-dependent active transporter. Here we developed mathematical models to determine whether known kinetics for these processes are sufficient to explain observed transcellular TYR passage. Ordinary differential equations were developed for known TYR transport processes to predict concentration-time relationships. Michaelis-Menten kinetics were assumed for all transporter-mediated processes and a one phase exponential function used for simple diffusion. Modelled concentration-time plots were compared to published experimental results. Additional transporter functions were sequentially added to models to improve consistency, and a least squares error minimization approach utilized to determine added transporter kinetics. Finally, possible TYR compartmentalization was also modelled. Following apical loading, transport across the apical, but not the basolateral, membrane was modelled without additional transporters, suggesting a basolateral transporter was missing. Consistent with this, models of basolateral compartment loading did not match experimental observations, indicating missing basolateral transporters were bidirectional. Addition of a transporter with the kinetic characteristics of OCT2 did not improve models. Varying the kinetic parameters of the added transporter improved models of basolateral, but worsened apical, loading models, suggesting the need for either a directional preference in transporters, or intracellular TYR compartmentalization. Experimental parameters were recapitulated by introducing asymmetry into the apical OCT2 (Kt_OCT2_apicaltocell = 110.4 nM, Kt_OCT2_celltoapical = 1,227.9 nM), and a symmetric basolateral facilitated diffusion transporter (Vmax = 6.0 nM/s, Kt = 628.3 nM). The apparent directionality of OCT2 may reflect altered TYR ionization due to known pH differences between compartments. Models for asymmetry and compartmentalization were compared by root mean square deviation from experimental data, and it was found that TYR compartmentalization could only partially replace the need for asymmetry of OCT2. In conclusion, modelling indicates that known TYR transport processes are insufficient to explain experimental concentration-time profiles and that asymmetry of the apical membrane OCT2 combined with additional, low affinity, basolateral membrane facilitated diffusion transporters are required.
Collapse
Affiliation(s)
- Shreyasi Sarkar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Shreyasi Sarkar,
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mark D. Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
7
|
Heckenlaible N, Snyder S, Herchenbach P, Kava A, Henry CS, Gross EM. Comparison of Mobile Phone and CCD Cameras for Electrochemiluminescent Detection of Biogenic Amines. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22187008. [PMID: 36146357 PMCID: PMC9503902 DOI: 10.3390/s22187008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 05/26/2023]
Abstract
Biogenic amines are an important and widely studied class of molecules due to their link to the physiological processes of food-related illnesses and histamine poisoning. Electrochemiluminescent (ECL) detection offers an inexpensive and portable analytical method of detection for biogenic amines when coupled with recent advancements in low-cost carbon-based electrodes and a smartphone camera. In this work, a mobile phone camera was evaluated against a piece of conventional instrumentation, the charge-coupled device, for the detection of ECL from the reaction of biogenic amines with the luminescent compound tris(2,2'-bipyridyl)ruthenium(II). Assisted by a 3D-printed light-tight housing, the mobile phone achieved limits of detection of 127, 425 and 421 μM for spermidine, putrescine, and histamine, respectively. The mobile phone's analytical figures of merit were lesser than the CCD camera but were still within the range to detect contamination. In an exploration of real-world samples, the mobile phone was able to determine the contents of amines in skim milk on par with that of a CCD camera.
Collapse
Affiliation(s)
- Nic Heckenlaible
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68178, USA
| | - Sarah Snyder
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68178, USA
| | - Patrick Herchenbach
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68178, USA
| | - Alyssa Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin M. Gross
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Wang R, Xu Z, Yang X. Study the key biogenic amines in luncheon meat by capillary electrophoresis with indirect UV detection. J Sep Sci 2022; 45:4107-4115. [PMID: 36086796 DOI: 10.1002/jssc.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
In this work, a simple, accurate and rapid capillary electrophoresis with indirect ultraviolet detection method was developed to simultaneous separate 10 biogenic amines. It was found that β-cyclodextrin and ethylene diamine tetraacetic acid facilitated the separation of tryptamine and tyramine, spermidine and spermine, respectively. The optimized background electrolytes were consisted of 20.0 mmol/L imidazole, 8.0 mmol/L β-cyclodextrin, 0.5 mmol/L ethylene diamine tetraacetic acid and 6.0% methanol (at pH 4.50 adjusted with acetic acid). The total analysis time of this method was less than 11 min with limits of detection in the range of 0.14-1.98 mg/L. The interday relative standard deviation of migration time and peak area were less than 1.36% and 4.44% (n = 6), respectively. To verify the applicability, this method was carried out to analyze biogenic amines in commercial luncheon meat samples. Due to the complex composition of luncheon meat, the real samples were rinsed with deionized water to reduce the influence of matrices. It was found that both storage temperature and protein content of the luncheon meat samples affected the biogenic amines content during storage. The results of this study are instructive for the storage of high-protein meat products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rong Wang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhongqi Xu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Duan QL, Shi HW, Tan L, Liu Z, Huang Q, Shen W, Cao L, Lee HK, Tang S. Ultrahigh-Performance Supercritical Fluid Chromatography and Detection of Multiple Biogenic Amines in Gentamicin Sulfate: Method Development Using Computer-Assisted Modeling. Anal Chem 2022; 94:7229-7237. [PMID: 35532756 DOI: 10.1021/acs.analchem.2c00325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to solve the problem of difficult separation of various biogenic amines (BAs), which have similar structures or very different polarities, in gentamicin, by conventional liquid chromatography, a new ultrahigh-performance supercritical fluid chromatography (UHPSFC) method was developed. In this method, 10 BAs were derivatized precolumn using dansyl chloride and separated using a UHPSFC system. By computational simulation, complete separation of 10 BAs was successfully achieved. Detection was performed using a photodiode array (PDA) and single-quadrupole mass spectrometry (MS) together with electrospray ionization (ESI). A wide linear range (10-2500 ng/mL) was achieved, with the limits of detection (LODs) between 1.2 and 10.0 ng/mL and the limits of quantification (LOQs) between 5.0 and 25.0 ng/mL. Apart from high sensitivity, this UHPSFC-PDA/ESI-MS detection method also displayed high accuracy, the matrix effect was reduced by an appreciable extent, and the recovery rates of the 10 BAs were between 84.1 and 117.1%. For comparison, high-performance liquid chromatography-tandem mass spectrometry (MS/MS) was also used for the detection of underivatized BAs in gentamicin, showing good linearity and high sensitivity (LODs from 0.05 to 1.00 ng/mL and LOQs from 1.00 to 12.50 ng/mL) for all BAs except for spermine and spermidine. Although single-quadrupole MS is inferior to MS/MS in terms of sensitivity, the UHPSFC method could detect more BAs. It also achieved the quantification limits required for impurity determination, demonstrating a potential strategy to offer a map overview of possible BA presence in fermentation antibiotics.
Collapse
Affiliation(s)
- Qiao-Lian Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, P. R. China.,Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Zhen Liu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu Province 211198, P. R. China
| | - Qing Huang
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Ling Cao
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| |
Collapse
|
10
|
Liu D, Wang K, Xue X, Wen Q, Qin S, Suo Y, Liang M. The Effects of Different Processing Methods on the Levels of Biogenic Amines in Zijuan Tea. Foods 2022; 11:foods11091260. [PMID: 35563983 PMCID: PMC9103763 DOI: 10.3390/foods11091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of processing methods on the content of biogenic amines in Zijuan tea by using derivatization and hot trichloroacetic acid extraction with HPLC-UV. The results showed that the most abundant biogenic amine in the original leaves was butylamine, followed by ethylamine, methylamine, 1,7-diaminoheptane, histamine, tyramine, and 2-phenethylamine. However, during the process of producing green tea, white tea, and black tea, the content of ethylamine increased sharply, which directly led to their total contents of biogenic amines increasing by 184.4%, 169.3%, and 178.7% compared with that of the original leaves, respectively. Unexpectedly, the contents of methylamine, ethylamine, butylamine, and tyramine in dark tea were significantly reduced compared with those of the original leaves. Accordingly, the total content of biogenic amines in dark tea was only 161.19 μg/g, a reduction of 47.2% compared with that of the original leaves, indicating that the pile-fermentation process could significantly degrade the biogenic amines present in dark tea.
Collapse
Affiliation(s)
- Dandan Liu
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Kang Wang
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Xiaoran Xue
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Qiang Wen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
| | - Shiwen Qin
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Yukai Suo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Mingzhi Liang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China;
| |
Collapse
|
11
|
Gross E, Lowry E, Schaffer L, Henry C. Electrogenerated Chemiluminescent Detection of Polyamines on a Microfluidic Device Using Micromolded Carbon Paste Microelectrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Determination of 6 biogenic amines in food using high-performance liquid chromatography-tandem mass spectrometry without derivatization. J Chromatogr A 2021; 1653:462415. [PMID: 34333170 DOI: 10.1016/j.chroma.2021.462415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
A rapid and simple method for the determination of 6 biogenic amines (BAs) in food was established on HPLC-MS /MS without derivatization. Samples were extracted with 5% perchloric acid and cleaned with n-hexane for lipid removal. The analytes were separated on Waters XBridge® HILIC (150 mm × 2.1 mm, 3.5 µm) and analyzed with multiple-reaction monitoring (MRM) mode after positive electrospray ionization on HPLC-MS/MS. Good linearity with high correlation coefficient was obtained between 10-1000 µg/L for cadaverine (CAD), putrescine (PUT), tyramine (TYR) and 2-phenylethylamine (2-PHE) and between 1-100 µg/L for histamine (HIS) and tryptamine (TRY), with the detection limits of the method ranging from 0.1 mg/kg for HIS and TRY, and 1.0 mg/kg for CAD, PUT, TYR and 2-PHE, which are under the residue limit of Chinese regulation. Spiking experiments demonstrated good recoveries between 70.2-114.6%, with relative standard deviations (RSDs) between 0.44-13.01%. This method was validated for BAs determination in liquor, fermented meat products, vegetable products, soybean products, dairy products, seafood and its derived products. These results promise high feasibility for BAs monitoring in various food with easy-to-operate and fast sample preparation process, stable analysis on HPLC-MS/MS without derivatization.
Collapse
|
13
|
Vasconcelos H, de Almeida JMM, Matias A, Saraiva C, Jorge PA, Coelho LC. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Unmodified cellulose filter paper, a sustainable and affordable sorbent for the isolation of biogenic amines from beer samples. J Chromatogr A 2021; 1651:462297. [PMID: 34111676 DOI: 10.1016/j.chroma.2021.462297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
While current trends in Green Analytical Chemistry aim at reducing or simplifying sample treatment, food usually comprises complex matrices where direct analysis is not possible in most cases. In this context, sample treatment plays a pivotal role. Biogenic amines are naturally formed in many foodstuffs due to the action of microorganisms, while their presence has been associated with adverse health effects. In this work, the extraction of seven biogenic amines (cadaverine, histamine, phenylethylamine, putrescine, spermidine, spermine, and tyramine) from beer samples has been simplified using laboratory filter paper as sorbent without any further modification. The analysis of the eluates by direct infusion mass spectrometry reduces the time of analysis, increasing the sample throughput. This simple but effective method enabled the determination of the analytes with limits of detection as low as 0.06 mg L-1 and relative standard deviations better than 11.9%. The suitability of the method has been assessed by analyzing eight different types of beers by the standard addition method.
Collapse
|
15
|
Sun S, Wei Y, Wang H, Tang L, Deng B. Determination of Verapamil Hydrochloride and Norverapamil Hydrochloride in Rat Plasma by Capillary Electrophoresis With End-Column Electrochemiluminescence Detection and Their Pharmacokinetics Study. J Chromatogr Sci 2021; 59:289-296. [PMID: 33333557 DOI: 10.1093/chromsci/bmaa098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022]
Abstract
In this study, we developed a new method for simultaneous determination of verapamil hydrochloride (VerHCl) and its metabolite norverapamil hydrochloride (NorHCl) by using the capillary electrophoresis-electrochemiluminescence. Under optimized experimental conditions, the linear ranges of the VerHCl and NorHCl concentrations were 0.015-10.0 and 0.060-10.0 μg/mL, respectively. The linearity relations were determined using the respective regression equations y = 581.2x + 19.94 and y = 339.4x + 29.16. The respective limits of detection (S/N = 3) were 0.006 and 0.024 μg/mL. The proposed method was used to study the pharmacokinetics of both agents in rat plasma. The maximum concentration (Cmax), half-life time (T1/2) and time to peak (Tmax) were 683.21 ± 74.81 ng/mL, 0.52 ± 0.21 h and 2.49 ± 0.32 h for VerHCl and 698.42 ± 71.45 ng/mL, 1.14 ± 0.26 h and 2.83 ± 0.23 h for NorHCl, respectively, following oral administration of 10 mg/kg VerHCl.
Collapse
Affiliation(s)
- Shuangjiao Sun
- School of pharmacy, Shaoyang University, Shaoyang 422000, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yanfen Wei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hao Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lifu Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Biyang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
16
|
Zhang X, Fang C, Huang D, Yang G, Tang Y, Shi Y, Kong C, Cao P, Cai Y. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization. Food Chem 2021; 361:130044. [PMID: 34049048 DOI: 10.1016/j.foodchem.2021.130044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
A method for the determination of 8 biogenic amines in aquatic products and their derived products was established by HPLC-MS/MS without derivatization. The samples were extracted by 5% perchloric acid solution. N-hexane was used to clean the extract. The analytes were separated by a column of ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.8 µm), and gradient eluted with a mixed solution of (0.5% formic acid) and acetonitrile. Good linearity was obtained with correlation coefficients (R2) >0.99. This method achieved higher sensitivity (from 0.1 mg/kg for tyramine, 2-phenylethylamine and tryptamine to 1.0 mg/kg for spermidine, spermine, cadaverin, histamine and putrescine). The average recoveries were demonstrated in the range of 70.9%-113.1%, with relative standard deviations (RSDs) from 0.33% to 10.81%. This method was suitable for the detection of BAs in aquatic products and their products.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Changling Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Dongmei Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunyu Tang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yongfu Shi
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pei Cao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Youqiong Cai
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
17
|
Dokuzparmak E, Brown K, Dennany L. Electrochemiluminescent screening for methamphetamine metabolites. Analyst 2021; 146:3336-3345. [PMID: 33999061 DOI: 10.1039/d1an00226k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The abuse of methamphetamine (MA) is to date detected and subsequently verified through the monitoring of MA and its metabolites within biological specimens. Current approaches require complex sample purification strategies alongside significant analysis time. Given the high prevalence of MA within the global drug market, there remains a need for rapid, portable and alternative screening approaches appropriate for direct detection within biological matrices for employment across the forensic and clinical environments. This contribution illustrates the use of an electrochemiluminescence (ECL) strategy for the screening of MA, amphetamine (AMP) and para hydroxy-methamphetamine (pOH-MA) for such applications. The sensing system showed ideal analytical performance with linear ranges at forensically relevant concentrations of 0.1 μM to 0.5 mM for MA, 10 μM to 1 mM AMP and 10 μM to 5 mM for pOH-MA, and superb detection limits of 74.6 nM, 6 μM and 82. μM for MA, AMP and pOH-MA respectively. Furthermore, the sensor was successful in the detection of MA, AMP and pOH-AMP within human pooled serum, artificial urine and saliva, without any prior purification strategies. Here a portable ECL sensor is detailed for the successful employment of the direct screening of these amphetamine type substances and their corresponding metabolites at clinically and forensically relevant concentrations within a range of biological matrices. This approach successfully represents a strong proof-of-concept, for a novel, simple and rapid screening method with significant potential for high-throughput screening of biological samples for drug metabolites, widening the avenues where ECL sensors could be employed.
Collapse
Affiliation(s)
- Emre Dokuzparmak
- WestChem Department of Pure and Applied Chemsitry, Univeristy of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| | | | | |
Collapse
|
18
|
Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res Int 2021; 144:110341. [PMID: 34053537 DOI: 10.1016/j.foodres.2021.110341] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Fermented and/or protein-rich foods, the most widely consumed worldwide, are the most susceptible to the presence of high levels of biogenic amines (BAs). Many reviews have focused on BAs toxicity and presence in foods; however, technological strategies such as evaluation of physical parameters, the addition of natural or synthetic compounds or the use of specific starter cultures of BAs reduction, and quick detection methods have been scarcely approached. In current research, there has been a focus on fast detection of BAs through colorimetric methods that allow these compounds to be quickly and easily identified by consumers. To reduce BAs presence in food, several alternatives have been developed and investigated with the aim of preventing negative effects caused by their intake, which can be applied before, during, or after processing. Food safety is one of the most important concerns of consumer and sanitary authorities. Therefore, detecting toxins such as BAs in food has become a priority for research. Recent reports that focus on the development of rapid detection methods of BAs are reviewed in this analysis. These methods have been successfully applied to food matrices with little to no sample pretreatment. Several alternatives for BAs reduction in food was also summarized. These findings will help the food industry to improve its processes for developing safe food.
Collapse
Affiliation(s)
- Yari Jaguey-Hernández
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Carr. Tepatepec-San Juan Tepa km. 2, 42660 Francisco I. Madero, Hgo., Mexico
| | - Deyanira Ojeda-Ramirez
- Universidad Autonoma del Estado de Hidalgo, Veterinary Medicine Department, Rancho Universitario Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, 43600 Tulancingo, Hgo., Mexico
| | - Javier Añorve-Morga
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Luis Guillermo González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Araceli Castañeda-Ovando
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico.
| |
Collapse
|
19
|
In-situ preparation of molecularly imprinted fluorescent sensing test strips for on-site detection of tyramine in vinegar. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Wang J, Liu Z, Qu Y. Ultrasound-assisted dispersive solid-phase extraction combined with reversed-phase high-performance liquid chromatography-photodiode array detection for the determination of nine biogenic amines in canned seafood. J Chromatogr A 2020; 1636:461768. [PMID: 33326928 DOI: 10.1016/j.chroma.2020.461768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
This work describes an ultrasound-assisted dispersive solid-phase extraction method combined with reversed-phase high-performance liquid chromatography-photodiode array detection (UADSPE-RPLC-PDA) for the determination of nine common biogenic amines (BAs) in canned seafood. The pretreatment extraction solvent, ultrasonic treatment duration, and derivatization conditions were optimized. The method was validated on the basis of the limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy and successfully applied to analyze four canned fish, two canned shrimp and four canned shellfish samples. LODs of 0.08-0.25 mg kg-1 were achieved, and the correlation coefficient of determination was 0.9994-0.9997. The method had high precision and accuracy, with relative standard deviations (RSDs) and recoveries of 0.44 to 6.83% and 72.57 to 99.74%, respectively, suggesting the effectiveness of ultrasound-assisted extraction at increasing the solubility of the target analytes in the solvent system and the feasibility of UADSPE-RPLC-PDA for determining trace BAs in canned seafood.
Collapse
Affiliation(s)
- Jingyu Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Zhidong Liu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affair, East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Yinghong Qu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China.
| |
Collapse
|
21
|
Qiao N, Tao Z, Xie S, Zhang H, Zhang T, Jiang Y. Investigation of Biogenic Amines in Dried Bonito Flakes from Different Countries Using High-Performance Liquid Chromatography. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Involvement of Organic Cation Transporter 2 and a Na +-dependent active transporter in p-tyramine transport across Caco-2 intestinal cells. Life Sci 2020; 253:117696. [PMID: 32334013 DOI: 10.1016/j.lfs.2020.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIMS We have previously demonstrated that p-tyramine (TYR), an endogenous trace amine-associated receptor 1 agonist, passage across neuronal membranes involves a transporter exhibiting the pharmacological profile of Organic Cation Transporter 2 (OCT2). Since TYR is also a constituent of foodstuffs and produced by the intestinal microbiota, here we have investigated whether similar processes are involved in the passage of 100 nM TYR across apical and basolateral membranes of the Caco-2 human intestinal epithelial cell line. MATERIALS AND METHODS [3H]TYR transport across apical and basolateral membranes of Caco-2 cell monolayers was measured in the presence of inhibitors of TYR metabolizing enzymes. Cellular, apical, and basolateral compartments were collected at various timepoints, TYR concentrations calculated, and transport properties pharmacologically characterized. KEY FINDINGS Apical transport resulted in equimolar accumulation of TYR within cells. Pentamidine (OCT1/OCT2 inhibitor) decreased apical transport (P = 0.001) while atropine (OCT1 inhibitor) had no effect, suggesting apical transport involved OCT2. In contrast, basolateral transport resulted in 500-1000 nM cellular concentrations (P < 0.0001) indicating the presence of an active transporter. Replacement of Na+ on an equimolar basis with choline resulted in loss of TYR transport (P = 0.017). Unexpectedly, this active transport was also atropine-sensitive (P = 0.020). Kinetic analysis of the active transporter revealed Vmax = 43.0 nM/s with a Kt = 33.1 nM. SIGNIFICANCE We have demonstrated for the first time that TYR is transported across Caco-2 apical membranes via facilitated diffusion by OCT2, whereas transport across basolateral membranes is by a Na+-dependent, atropine-sensitive, active transporter.
Collapse
|
23
|
Tong A, Tang X, Zhang F, Wang B. Study on the shift of ultraviolet spectra in aqueous solution with variations of the solution concentration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118259. [PMID: 32208356 DOI: 10.1016/j.saa.2020.118259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
In this study, we mainly focused on predictable regularities of the red shift of ultraviolet spectra for β-phenylethylamine (PEA), NaCl and NaOH in aqueous solution. The absorption peaks of the UV spectra near 191 nm of NaCl, NaOH and PEA in aqueous solution moved in the direction of a red shift while the molar absorption coefficient at the peak increased regularly with the increasing solution concentration. These shifts were obtained for solutions with concentrations ranging from 3.68 to 1000 mmol/L for NaCl, from 0.762 to 2000 mmol/L for NaOH, and from 0.0515 to 8.91 mmol/L for PEA. The plots of the logarithm of the solution concentration for NaCl and PEA versus the absorbance at 191 nm and at the peak were linear, and the plots of the logarithm of the solution concentration for NaCl and PEA versus the wavelength at the peak (shifted from 191 nm) were also linear. In addition, the plots of the logarithm of the solution concentration for NaOH that ranged from 0.762 to 1.96 mmol/L versus the absorbance at 191 nm and at the peak were linear as well as the plots of the logarithm of the solution concentration for NaOH that ranged from 1.96 to 2000 mmol/L versus the wavelength at the peak. The slopes of the absorbance at 191 nm of PEA, NaCl and NaOH were somewhat similar to the absorbance at the peak separately, whereas the slopes of the wavelengths at the peak were different from them. Finally, in order to obtain the predictable regularity of the red shift of the UV spectrum for the mixture, 22 ternary mixtures were prepared. The results indicate that the inhibiting effect of hydroxide ions (OH-) caused the wavelength near 206 nm to remain unchanged when the solution concentration of NaOH in the mixture was more than 0.762 mmol/L.
Collapse
Affiliation(s)
- Angxin Tong
- State Key Laboratory of Electrical Insulation & Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaojun Tang
- State Key Laboratory of Electrical Insulation & Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Feng Zhang
- State Key Laboratory of Electrical Insulation & Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Bin Wang
- State Key Laboratory of Electrical Insulation & Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
24
|
Plakidi ES, Maragou NC, Dasenaki ME, Megoulas NC, Koupparis MA, Thomaidis NS. Liquid Chromatographic Determination of Biogenic Amines in Fish Based on Pyrene Sulfonyl Chloride Pre-Column Derivatization. Foods 2020; 9:foods9050609. [PMID: 32397518 PMCID: PMC7278825 DOI: 10.3390/foods9050609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022] Open
Abstract
Monitoring of biogenic amines in food is important for quality control, in terms of freshness evaluation and even more for food safety. A novel and cost-effective method was developed and validated for the determination of the main biogenic amines: histamine, putrescine, cadaverine, spermidine and spermine in fish tissues. The method includes extraction of amines with perchloric acid, pre-column derivatization with Pyrene Sulfonyl Chloride (PSCl), extraction of derivatives with toluene, back-dissolution in ACN after evaporation and determination by reversed phase high performance liquid chromatography with UV and intramolecular excimer fluorescence detection. The structure of the pyrene-derivatives was confirmed by liquid chromatography-mass spectrometry with electrospray ionization. The standard addition technique was applied for the quantitation due to significant matrix effect, while the use of 1,7-diaminoheptane as internal standard offered an additional confirmation tool for the identification of the analytes. Method repeatability expressed as %RSD ranged between 7.4-14% for the different amines and recovery ranged from 67% for histamine up to 114% for spermine. The limits of detection ranged between 0.1-1.4 mg kg-1 and the limits of quantification between 0.3-4.2 mg kg-1. The method was applied to canned fish samples and the concentrations of the individual biogenic amines were below the detection limit up to 40.1 mg kg-1, while their sum was within the range 4.1-49.6 mg kg-1.
Collapse
|
25
|
Mantoanelli JOF, Gonçalves LM, Pereira EA. Dansyl Chloride as a Derivatizing Agent for the Analysis of Biogenic Amines by CZE-UV. Chromatographia 2020. [DOI: 10.1007/s10337-020-03896-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Brown K, Jacquet C, Biscay J, Allan P, Dennany L. Electrochemiluminescent sensors as a screening strategy for psychoactive substances within biological matrices. Analyst 2020; 145:4295-4304. [DOI: 10.1039/d0an00846j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrochemiluminescent sensors for point-of-care devices; a screening strategy for the direct detection of hallucinogens within a variety of biological matrices.
Collapse
Affiliation(s)
- Kelly Brown
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Charlotte Jacquet
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Julien Biscay
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Pamela Allan
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Lynn Dennany
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| |
Collapse
|
27
|
Brown K, Jacquet C, Biscay J, Allan P, Dennany L. Tale of Two Alkaloids: pH-Controlled Electrochemiluminescence for Differentiation of Structurally Similar Compounds. Anal Chem 2019; 92:2216-2223. [DOI: 10.1021/acs.analchem.9b04922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kelly Brown
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Charlotte Jacquet
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Julien Biscay
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Pamela Allan
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Lynn Dennany
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| |
Collapse
|
28
|
A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. J Chromatogr A 2019; 1605:360361. [DOI: 10.1016/j.chroma.2019.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
|
29
|
Shen J, Zhou T, Huang R. Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection. MICROMACHINES 2019; 10:mi10080532. [PMID: 31412540 PMCID: PMC6723614 DOI: 10.3390/mi10080532] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Pathogenic bacterial contamination greatly threats human health and safety. Rapidly biosensing pathogens in the early stage of infection would be helpful to choose the correct drug treatment, prevent transmission of pathogens, as well as decrease mortality and economic losses. Traditional techniques, such as polymerase chain reaction and enzyme-linked immunosorbent assay, are accurate and effective, but are greatly limited because they are complex and time-consuming. Electrochemiluminescence (ECL) biosensors combine the advantages of both electrochemical and photoluminescence analysis and are suitable for high sensitivity and simple pathogenic bacteria detection. In this review, we summarize recent advances in ECL sensors for pathogenic bacteria detection and highlight the development of paper-based ECL platforms in point of care diagnosis of pathogens.
Collapse
Affiliation(s)
- Jinjin Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ting Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
30
|
Analysis of Seven Biogenic Amines and Two Amino Acids in Wines Using Micellar Electrokinetic Chromatography. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A low-cost, simple, and fast method utilizing micellar electrokinetic chromatography for the simultaneous determination of seven biogenic amines and two amino acids was developed. A background electrolyte containing 5 mM phosphate buffer (pH 3.7) and 20 mM sodium dodecyl sulfate was used. The optimal separation of nine investigated analytes was achieved in 11 min, with limits of detection (S/N = 3) ranging from 0.11 to 0.61 µM. The linear ranges for all analytes were observed between 0.55 and 10.0 μM (R2 > 0.990). The developed approach was extended to the analysis of analytes in commercial wine and beer samples. The recoveries of the proposed method ranged from 98.8% to 115.6%.
Collapse
|
31
|
Ruiz-Capillas C, Herrero AM. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019; 8:E62. [PMID: 30744001 PMCID: PMC6406683 DOI: 10.3390/foods8020062] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/17/2023] Open
Abstract
Today, food safety and quality are some of the main concerns of consumer and health agencies around the world. Our current lifestyle and market globalization have led to an increase in the number of people affected by food poisoning. Foodborne illness and food poisoning have different origins (bacteria, virus, parasites, mold, contaminants, etc.), and some cases of food poisoning can be traced back to chemical and natural toxins. One of the toxins targeted by the Food and Drug Administration (FDA) and European Food Safety Authority (EFSA) is the biogenic amine histamine. Biogenic amines (BAs) in food constitute a potential public health concern due to their physiological and toxicological effects. The consumption of foods containing high concentrations of biogenic amines has been associated with health hazards. In recent years there has been an increase in the number of food poisoning cases associated with BAs in food, mainly in relation to histamines in fish. We need to gain a better understanding of the origin of foodborne disease and how to control it if we expect to keep people from getting ill. Biogenic amines are found in varying concentrations in a wide range of foods (fish, cheese, meat, wine, beer, vegetables, etc.), and BA formation is influenced by different factors associated with the raw material making up food products, microorganisms, processing, and conservation conditions. Moreover, BAs are thermostable. Biogenic amines also play an important role as indicators of food quality and/or acceptability. Hence, BAs need to be controlled in order to ensure high levels of food quality and safety. All of these aspects will be addressed in this review.
Collapse
Affiliation(s)
- Claudia Ruiz-Capillas
- Department of Products, Institute of Food Science, Technology and Nutrition, ICTAN-CSIC, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Ana M Herrero
- Department of Products, Institute of Food Science, Technology and Nutrition, ICTAN-CSIC, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Soares IP, da Silva AG, da Fonseca Alves R, de Souza Corrêa RAM, Ferreira LF, Franco DL. Electrochemical enzymatic biosensor for tyramine based on polymeric matrix derived from 4-mercaptophenylacetic acid. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04204-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
34
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
35
|
Gubartallah EA, Makahleh A, Quirino JP, Saad B. Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules 2018; 23:molecules23051112. [PMID: 29738463 PMCID: PMC6100306 DOI: 10.3390/molecules23051112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL−1 (R² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL−1. The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
Collapse
Affiliation(s)
- Elbaleeq A Gubartallah
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Chemistry Department, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan.
| | - Ahmad Makahleh
- Department of Chemistry, Faculty of Science, University of Jordan, Amman 11942, Jordan.
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Hobart 7001, Australia.
| | - Bahruddin Saad
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Fundamental & Applied Sciences Department and Institute for Sustainable Living, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia.
| |
Collapse
|
36
|
Betancourt L, Rada P, Hernandez L, Araujo H, Ceballos G, Hernandez L, Tucci P, Mari Z, De Pasquale M, Paredes D. Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson's disease patients. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:51-57. [DOI: 10.1016/j.jchromb.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/26/2017] [Accepted: 02/10/2018] [Indexed: 01/09/2023]
|
37
|
Sun S, Wei Y, Wang H, Cao Y, Deng B. A novel electrochemiluminescence sensor coupled with capillary electrophoresis for simultaneous determination of quinapril hydrochloride and its metabolite quinaprilat hydrochloride in human plasma. Talanta 2018; 179:213-220. [DOI: 10.1016/j.talanta.2017.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/29/2022]
|
38
|
Molognoni L, Daguer H, de Sá Ploêncio LA, De Dea Lindner J. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS. Talanta 2018; 178:1053-1066. [DOI: 10.1016/j.talanta.2017.08.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 01/13/2023]
|
39
|
Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhao L, Qi S, Liang X, Shan J, Cao W, Wu L, Xue X. Determination and distribution of biogenic amines in bee pollen. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingling Zhao
- Institute of Analytical Science Shaanxi Provincial Key Lab of Electroanalytical Chemistry Northwest University 229 North TaiBai Road Xi'an 710069 China
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Suzhen Qi
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture Beijing 100093 China
| | - Xinwen Liang
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Jihao Shan
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Wei Cao
- Institute of Analytical Science Shaanxi Provincial Key Lab of Electroanalytical Chemistry Northwest University 229 North TaiBai Road Xi'an 710069 China
| | - Liming Wu
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture Beijing 100093 China
| | - Xiaofeng Xue
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture Beijing 100093 China
| |
Collapse
|
41
|
Modified QuEChERS combined with ultra high performance liquid chromatography tandem mass spectrometry to determine seven biogenic amines in Chinese traditional condiment soy sauce. Food Chem 2017; 229:502-508. [DOI: 10.1016/j.foodchem.2017.02.120] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022]
|
42
|
Zhao M, Chen AY, Huang D, Chai YQ, Zhuo Y, Yuan R. MoS 2 Quantum Dots as New Electrochemiluminescence Emitters for Ultrasensitive Bioanalysis of Lipopolysaccharide. Anal Chem 2017; 89:8335-8342. [PMID: 28702989 DOI: 10.1021/acs.analchem.7b01558] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cd-based semiconductor quantum dots (QDs) with size-tunable luminescence and high quantum yield have become the most promising electrochemiluminescence (ECL) emitters. However, their unavoidable biotoxicity limited their applications in bioassays. Here, the nontoxic and economical MoS2 QDs prepared by chemical exfoliation from the bulk MoS2 were first investigated as new ECL emitters, and then the possible luminescence mechanism of MoS2 QDs was studied using ECL-potential curves and differential pulse voltammetry (DPV) methods in detail. With MoS2 QDs as the ECL emitters and triethylamine (TEA) as the efficient coreactant, a practical and label-free aptasensor for lipopolysaccharide (LPS) detection was constructed based on aptamer recognition-driven target-cycling synchronized rolling circle amplification. Comparing to conventional stepwise reactions, this target-cycling synchronized rolling circle amplification achieved more efficient signal amplification and simpler operation. The developed assay for LPS detection demonstrated a wide linear range of 0.1 fg/mL to 50 ng/mL with limit of detection down to 0.07 fg/mL. It is worth mentioning that MoS2 QDs with stable ECL emission exhibited a great application potential in ECL bioanalysis and imaging as a new type of excellent emitter candidates.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - An-Yi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Dan Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| |
Collapse
|
43
|
Sun S, Wei Y, Cao Y, Deng B. Simultaneous electrochemiluminescence determination of galanthamine, homolycorine, lycorenine, and tazettine in Lycoris radiata by capillary electrophoresis with ultrasonic-assisted extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:15-19. [DOI: 10.1016/j.jchromb.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
|
44
|
Zou X, Shang F, Wang S. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:843-848. [PMID: 27816883 DOI: 10.1016/j.saa.2016.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24μg/mL with a detection limit of 0.01μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
Collapse
Affiliation(s)
- Xiaojun Zou
- Shandong Shengli Bioengineering Co., LTD., Jining 272000, Shandong, China
| | - Fang Shang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Determination of Biogenic Amines in Pu-erh Tea with Precolumn Derivatization by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0724-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Sheng W, Sun C, Fang G, Wu X, Hu G, Zhang Y, Wang S. Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Tyramine as an Index of Freshness in Meat and Seafood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8944-8949. [PMID: 27934288 DOI: 10.1021/acs.jafc.6b04422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a polyclonal antibody was developed to detect tyramine in meat and seafood. This ciELISA had a 50% inhibition concentration (IC50) of 0.20 mg/L and a limit of detection (LOD) of 0.02 mg/L and showed no cross-reactivity with tyrosine or other biogenic amines. The average recoveries of tyramine from spiked samples for this ciELISA ranged from 85.6 to 102.6%, and the results exhibited good correlation with high-performance liquid chromatography (HPLC) results. The LOD of this assay for tyramine in meat and seafood samples was 1.20 mg/kg. The ciELISA was successfully applied to detect tyramine in positive fish samples, and the results were validated by HPLC to be reliable. The developed ciELISA allows for the rapid, specific, and accurate detection of tyramine in meat and seafood samples, and it could be a potentially useful tool for the evaluation of the freshness of protein-rich foods.
Collapse
Affiliation(s)
- Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Congcong Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Xuening Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Gaoshuang Hu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU) , Beijing 100048, China
| |
Collapse
|
47
|
He Y, Zhao XE, Wang R, Wei N, Sun J, Dang J, Chen G, Liu Z, Zhu S, You J. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8225-8234. [PMID: 27739304 DOI: 10.1021/acs.jafc.6b03536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).
Collapse
Affiliation(s)
- Yongrui He
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Xian-En Zhao
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Renjun Wang
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Na Wei
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources & Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science , Xining 810001, Qinghai, People's Republic of China
| | - Jun Dang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources & Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science , Xining 810001, Qinghai, People's Republic of China
| | - Guang Chen
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun & Key Laboratory for Traditional Chinese Medicine Chemistry and Mass Spectrometry of Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Shuyun Zhu
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
| | - Jinmao You
- Shandong Provincial Key Laboratory of Life-Organic Analysis & Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, Shandong, People's Republic of China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources & Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science , Xining 810001, Qinghai, People's Republic of China
| |
Collapse
|
48
|
Huang J, Gan N, Lv F, Cao Y, Ou C, Tang H. Environmentally friendly solid-phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples. J Sep Sci 2016; 39:4384-4390. [PMID: 27753266 DOI: 10.1002/jssc.201600893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
In this work, a facile and environmentally friendly solid-phase microextraction assay based on on-fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7-Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98-45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9-110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.
Collapse
Affiliation(s)
- Jie Huang
- Faculty of Marine Science, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fangying Lv
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yuting Cao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Changrong Ou
- Faculty of Marine Science, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
49
|
Ordóñez JL, Troncoso AM, García-Parrilla MDC, Callejón RM. Recent trends in the determination of biogenic amines in fermented beverages – A review. Anal Chim Acta 2016; 939:10-25. [DOI: 10.1016/j.aca.2016.07.045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
|
50
|
Fu Y, Zhou Z, Li Y, Lu X, Zhao C, Xu G. High-sensitivity detection of biogenic amines with multiple reaction monitoring in fish based on benzoyl chloride derivatization. J Chromatogr A 2016; 1465:30-7. [DOI: 10.1016/j.chroma.2016.08.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|