1
|
Zhang H, Xu S, Zhang X, Ma M, Sui Z, Corke H. Acetic anhydride and vinyl acetate differentially modify the supramolecular structure of starch. Int J Biol Macromol 2025; 310:143279. [PMID: 40253038 DOI: 10.1016/j.ijbiomac.2025.143279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The multi-scale structure changes of five underutilized starches, including waxy proso millet (PMS) and amaranth (AS) starches, non-waxy foxtail millet (FMS), buckwheat (BS) and oat (OS) starches, were investigated after modification with acetic anhydride (0.0165 mol) and vinyl acetate (0.0165 mol). Five starches exhibited a higher proportion of short chains compared to waxy and normal maize starches. Degree of substitution (DS) of acetylated starches ranged 0.03 to 0.08. Vinyl acetate modified non-waxy starches showed higher DS values than waxy starches, while acetic anhydride modified waxy starches exhibited higher DS values than non-waxy starches. Vinyl acetate reduced relative crystallinity (RC) by 1.3 % in PMS, 5.7 % in FMS, and 12.5 % in OS, whereas acetic anhydride did not significantly decrease RC for AS, FMS, BS and OS. For the non-waxy starches, gelatinization enthalpies after vinyl acetate modification were 4-22 % lower than after acetic anhydride modification. Additionally, the increase in amorphous lamellae thickness (da) of PMS, AS, BS and OS was greater with vinyl acetate than acetic anhydride, indicating that vinyl acetate more effectively disrupted crystalline lamellae. Overall, the presence of amylose influenced DS of modified starches. However, change of supramolecular structure was independent of DS but dependent on the acetylation reagent.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan 250022, China
| | - Song Xu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan 250022, China; School of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhongquan Sui
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Karmakar M, Kheto A, Sehrawat R, Kumar Y, Gul K, Routray W, Kumar L. Exposure of Proso millet starch to superheated steam: Effect on physicochemical, techno-functional, rheological behavior, digestibility, and related mechanism. Food Chem 2025; 468:142383. [PMID: 39667240 DOI: 10.1016/j.foodchem.2024.142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
In the present study, proso millet starch (PMS) was treated with SHS (120-160 °C for 1-5 min) to investigate the molecular interactions and techno-functional, rheological, and digestible properties. Exposure to SHS induced the degradation of helical structure, and longer chains, reducing amylose, blue value, optical density, and relative crystallinity. Meanwhile, SHS treatment might have introduced hydro‑carbonyl groups, eventually increasing water absorption capacity, swelling power, and transparency. As per SEM images, SHS-treated PMS had rough and irregular polygon surfaces with small pinholes. Compared to control, SHS treatment slightly improved the elastic nature of PMS samples. Furthermore, SHS treatment at 140 and 160 °C for 3 and 5 min increased the slowly digestible and resistant starch content. Multivariate analysis suggests that SHS treatment could be performed at 140 °C for 3 min to modify the PMS.
Collapse
Affiliation(s)
- Moumita Karmakar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
3
|
Sidhu RK, Riar CS, Singh S. In vitro starch digestibility and physicochemical properties of chemical and enzymatic modified Indian Teff (Eragrostis Tef) starch for industrial applications. Int J Biol Macromol 2025; 307:141910. [PMID: 40074107 DOI: 10.1016/j.ijbiomac.2025.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The long-term stability, mechanical properties, and interactions of modified teff starch with food components remain unclear. The effects of dual or multiple modifications on physicochemical properties and digestibility are also unexplored. This study investigates the modification of Teff starch through oxidation (sodium hypochlorite), cross-linking (citric acid), and enzymatic treatments (α-amylase, amyloglucosidase) to enhance its structural, physicochemical, and thermal properties. Oxidation reduced swelling power and pasting viscosity, while cross-linking improved mechanical resistance with a cross-linking degree of 44.2 %-70.4 %. Enzymatic modification lowered amylose content and enhanced gelation. In vitro digestibility analysis revealed increased slowly digestible starch (SDS) and resistant starch (RS) contents for all modified starches. O2 showed SDS and RS levels of 44.64 % and 31.42 %, respectively, compared to 41.51 % and 21.28 % in NS. C2 demonstrated RS levels of 24.11 %, while AA exhibited an RS of 29.03 %. O1, O2, C1 and C2 reduced starch digestibility by introducing steric hindrance and cross-linking bridges, while AA increased branching density, slowing digestion. Structural analyses (FTIR, DSC, XRD, SEM, and 1H NMR) confirmed functional group stabilization, enhanced thermal stability, partial amorphization, and surface integrity improvements. The X-ray diffractograms showed no notable alterations, confirming that the crystalline region remained unaffected by the reaction. 1H NMR spectra revealed changes in glycosidic linkages, with oxidation reducing branching and cross-linking increasing structural complexity. PCA revealed the distinct properties of modified starches. The study highlights the synergistic effects of oxidation and cross-linking, offering insights into starch modification mechanisms and future industrial applications.
Collapse
Affiliation(s)
- Ramandeep Kaur Sidhu
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - C S Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India.
| |
Collapse
|
4
|
Shuprajhaa T, Paramasivam SK, Subramaniyan P, Ramakrishnan P, Ramasamy S, Wakchaure GC. Ultrasonic assisted enzymolysis based modification of native banana starch - A comprehensive analyses of the structural, morphological, rheological and textural properties. Int J Biol Macromol 2025; 297:139748. [PMID: 39798749 DOI: 10.1016/j.ijbiomac.2025.139748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.23 %), resistant starch (28.22 %), higher rapidly digestible starch (48.92 %). Whereas pullulanase modification resulted in higher amylose (38.14 %), resistant starch (52.72 %) and therefore the better swelling power and water holding capacity. The retrogradation negatively associated with the solubility of these modified starches is outlined through the static viscosity measurements. Ultrasound enhanced the efficiency of enzymes by altering the structure of starch granules, confirmed through SEM analysis and provided differentiated thermal stability as observed through viscosity and enthalpy values from DSC. The dual sequential enzymatic treatment with ultrasound also significantly improved the starch solubility by altering the molecular structure as evidenced through XRD and FTIR analysis. NMR 1H spectra revealed distinct variations in the anomeric peaks and hydroxyl regions of modified starches. Cluster analysis highlighted the unique characteristics of ultrasound-assisted starches.
Collapse
Affiliation(s)
| | | | | | - Paranthaman Ramakrishnan
- National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) - Thanjavur, Tamil Nadu, India
| | - Selvarajan Ramasamy
- ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India
| | - Goraksha C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, M.S., India
| |
Collapse
|
5
|
Pawle P, Pandey S, Kumar A, Agarwal A, Tripathi AD, Saeed M, Rab SO, Mahato DK, Kumar P, Kamle M. Valorization of raw papaya ( Carica papaya) and citrus peels for development of antimicrobial and biodegradable edible film. Food Chem X 2025; 25:102129. [PMID: 39867219 PMCID: PMC11761308 DOI: 10.1016/j.fochx.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films. In this regard, Raw papaya and Citrus Peel were chosen to make biodegradable plastic film blended with corn starch. Raw papaya powder was combined with citrus peel powder for the development of film in treatments of T1, T2, T3, T4 and T5. RPP and CPP blend with Corn starch (CS) to maximize the film-forming properties and characteristics. The films were subjected to various parameter analysis like thickness, optical properties and barrier properties. As per the results, T3 was an optimized film, as it had minimum thickness (0.26 ± 0.01), high tensile strength (5.79 ± 0.12), elongation at break of 11.92 ± 0.03, High transparency (1.42 ± 0.06), and high degradation temperature. From the results, it is inferred that the prepared films are ideally suitable for food packaging and their production on a larger scale can considerably cut down the plastic wastage.
Collapse
Affiliation(s)
- Prathamesh Pawle
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, 208002, India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Aparna Agarwal
- Department of Food Technology, Lady Irwin College, University of Delhi, New Delhi, 110001, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura 'a, Abha, P.O. Box 960,Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Madhu Kamle
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| |
Collapse
|
6
|
Wang Q, Yang S, Huang L, Liu S, Liu C, Xu J. Research Progress of Application and Interaction Mechanism of Polymers in Mineral Flotation: A Review. Polymers (Basel) 2024; 16:3335. [PMID: 39684080 DOI: 10.3390/polym16233335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers are composed of many smaller units connected by covalent bonds, with higher molecular weight and larger molecular structure. Due to their economical efficiency and easy modification, researchers have discovered the potential of polymers as the flotation reagent in mineral processing, including the roles of depressant, flocculant, and frother. This paper provides a comprehensive review of the utilization of polymers in mineral flotation, emphasizing their current applications and mechanistic investigations. The study categorizes polymers into three types: natural polymers, modified polymers, and synthesized polymers. Detailed discussions include the polymers structures, functional properties, adsorption mechanisms and specific application examples of each reagent are shown in the main text, which will provide a vital reference for the development of highly efficient and environmentally friendly reagents in mineral flotation.
Collapse
Affiliation(s)
- Qianqian Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Siyuan Yang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lingyun Huang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuo Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyue Xu
- SLon Magnetic Separator Ltd., Shahe Industrial Park, Ganzhou 341000, China
| |
Collapse
|
7
|
Zhu YH, Zhou CY, Peng X, Wang W, Liu Z, Xie R, Pan DW, Ju XJ, Chu LY. Dialdehyde starch cross-linked aminated gelatin sponges with excellent hemostatic performance and biocompatibility. Carbohydr Polym 2024; 342:122326. [PMID: 39048186 DOI: 10.1016/j.carbpol.2024.122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Developing a hemostatic material suitable for rapid hemostasis remains a challenge. This study presents a novel aminated gelatin sponge cross-linked with dialdehyde starch, exhibiting excellent biocompatibility and hemostatic ability. This aminated gelatin sponge features hydrophilic surface and rich porous structure with a porosity of up to 80 %. The results show that the aminated gelatin sponges exhibit superior liquid absorption capacity and can absorb up to 30-50 times their own mass of simulated body fluid within 5 min. Compared with the commercial gelatin hemostatic sponge and non-aminated gelatin hemostatic sponge, the aminated gelatin hemostatic sponge can accelerate the hemostatic process through electrostatic interactions, demonstrating superior hemostatic performance in both in vitro and in vivo hemostasis tests. The aminated gelatin sponge can effectively control the hemostatic time within 80 s in the in vivo rat femoral artery injury model, significantly outperforming both commercial and non-aminated gelatin sponges. In addition, the aminated gelatin sponge also exhibits good biocompatibility and certain antibacterial properties. The proposed aminated gelatin sponge has very good application prospects for the management of massive hemorrhage.
Collapse
Affiliation(s)
- Yu-He Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Yu Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Alonso-Gomez LA, Gonzalez-Hernandez AJ, Fragua-Cruz AF, Barrón-García OY, Rodriguez-Garcia ME. Effect of non-thermal acidic and alkaline modifications on the structural, pasting, rheological, and functional properties of cassava (Manihot esculenta) starch. J Food Sci 2024; 89:6601-6615. [PMID: 39289790 DOI: 10.1111/1750-3841.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to investigate the effects of acid or alkali modification of isolated cassava starch (ICS) on its physicochemical properties. Acetic acid concentrations of 5%, 10%, and 20% v/v (0.87, 1.73, and 3.46 M, respectively) and calcium hydroxide concentrations of 0.15%, 0.20%, and 0.30% w/w (0.02, 0.025, and 0.04 M, respectively) were tested independently and compared with untreated isolated starch. The scanning electron microscope (SEM) shows starches with polyhedral and semispherical shapes; these modifications do not change the surface of the starch granules. Nanocrystals with orthorhombic crystal structure were extracted from ICS. Transmission electron microscopy (TEM) shows crystallites with a size (two-dimensional) of 20 ± 5 nm in length and 10 ± 2 nm in width and reveals that this starch contains nanocrystals with orthorhombic crystal structure. The X-ray patterns show that these nanocrystals are unaffected by acidic or alkaline treatments. The Ca+2 and CH3COO- ions do not interact with these nanocrystals. The alkaline treatment only affects the gelatinization temperature at a Ca(OH)2 concentration of 0.30%. Low concentrations of acidic and alkaline treatments affect the ability of cassava starch to absorb water and reduce the peak and final viscosity. The infrared spectra show that the modifications lead to C-H and C═C bond formations. ICS-B 0.30 can modify the amorphous regions of the starch, and the acid treatment leads to acetylation, which was confirmed by the presence of an IR band at 1740 cm-1.
Collapse
Affiliation(s)
- Leonardo A Alonso-Gomez
- Universidad de los Llanos, Grupo de investigación Ciencia, Tecnología e Innovación Agroindustrial (CITIA), Villavicencio, Colombia
| | - Angie J Gonzalez-Hernandez
- Universidad de los Llanos, Grupo de investigación Ciencia, Tecnología e Innovación Agroindustrial (CITIA), Villavicencio, Colombia
| | - Andrés F Fragua-Cruz
- Universidad de los Llanos, Grupo de investigación Ciencia, Tecnología e Innovación Agroindustrial (CITIA), Villavicencio, Colombia
| | - Oscar Y Barrón-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
- División Industrial, Universidad Tecnológica de Querétaro, Santiago de Querétaro, Mexico
| | - Mario E Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| |
Collapse
|
9
|
Kaur A, Purewal SS, Phimolsiripol Y, Punia Bangar S. Unraveling the Hidden Potential of Barley ( Hordeum vulgare): An Important Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2421. [PMID: 39273905 PMCID: PMC11397514 DOI: 10.3390/plants13172421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Barley (Hordeum vulgare) is a winter crop well known for its small-seeded grains and self-pollinating characteristics. The flour derived from barley grains plays a crucial role in numerous processed food items, contributing to their taste and nutritional value. Barley consists of complex carbohydrates (80%), proteins (11.5-14.2%), lipids (4.7-6.8%), β-glucans (3.7-7.7%), and ash (1.8-2.4%). Beyond its other nutrients, barley boasts a good reservoir of phenolic compounds (1.2-2.9 mg/g GAE). This abundance of beneficial compounds positions barley as an attractive industrial substrate. In this review, the nutritional composition and bioactive profile of barley are discussed in a systemic manner, emphasizing its potential in the development of innovative barley-based products that promote health and well-being. By incorporating barley into various food formulations, industries can not only boost nutritional content but also offer consumers a wide range of health benefits. In conclusion, barley's diverse applications in food and health highlight its essential role in promoting healthier living.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali 140413, Punjab, India
| | - Sukhvinder Singh Purewal
- University Centre for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India
| | | | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Yong H, Liu J. Recent advances on the preparation conditions, structural characteristics, physicochemical properties, functional properties and potential applications of dialdehyde starch: A review. Int J Biol Macromol 2024; 259:129261. [PMID: 38199541 DOI: 10.1016/j.ijbiomac.2024.129261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Starch, a natural storage polysaccharide of plant kingdom, has many industrial applications. However, native starch has some inherent shortages, which can be overcome by structural modification. Dialdehyde starch, one kind of oxidized starch produced by periodate oxidation, has good physical properties and bioactivities with wide applications in different fields. Dialdehyde starch is typically achieved by oxidizing native starch slurry through periodate oxidation under controlled reaction conditions. Several factors including the source of starch, the type of oxidant, the molar ratio of oxidant to starch, reaction temperature, reaction time and solution pH value can influence the synthesis of dialdehyde starch. Dialdehyde starch shows different spectroscopic/chromatographic characters and physicochemical properties from native starch. Moreover, dialdehyde starch exhibits good antioxidant activity, antimicrobial activity and cross-linking property. Based on these functional properties, dialdehyde starch has shown application potentials in food packaging, thermoplastic production, enzyme immobilization, heavy metal ion adsorption, drug delivery, wood adhesion and leather tanning. In this review, the preparation conditions, structural characteristics, physicochemical properties, functional properties and potential applications of dialdehyde starch are summarized for the first time. The future research and development prospects of dialdehyde starch are also discussed.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
11
|
Abedi E, Roohi R, Hashemi SMB, Kaveh S. Investigation of ultrasound-assisted starch acetylation by single- and dual- frequency ultrasound based on rheology modelling, non-isothermal reaction kinetics, and flow/acoustic simulation. ULTRASONICS SONOCHEMISTRY 2024; 102:106737. [PMID: 38145613 PMCID: PMC10788491 DOI: 10.1016/j.ultsonch.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
To achieve wheat starch acetylation (AC) with a high degree of substitution (DS), the acetylation process was carried out using various ultrasonication frequencies, including 25 kHz, 40 kHz, and 25 + 40 kHz. In the second step, wheat starch's ultrasound-assisted acetylation (UAA) is simulated using various approaches including the rheology models, non-isothermal reaction kinetics, and flow/acoustic modelling. The computational fluid dynamics (CFD) simulation solves the non-linear acoustic governing equation to determine the flow field and the amount of delivered ultrasound energy. The acetylated starch increased peak and final viscosity, with the highest values observed for the 25 + 40 kHz frequency than other single frequencies (25 kHz and 40 kHz). The viscosity of the starch is specified based on the experimental data using Herschel-Bulkley, power law, and Casson rheology models. According to differential scanning calorimetry (DSC) analysis, the gelatinization parameters and enthalpy of gelatinization (ΔHgel), were found to be lower in acetylated starches at the frequency of 25 + 40 kHz compared to those at frequencies of 25 kHz and 40 kHz, as well as native starches (NS). Moreover, the gelatinization process is examined by implementing the non-isothermal reaction kinetics to obtain the activation energy and reaction order. Based on the results obtained, implementing sonication at 25 kHz reduces the activation energy by 70.3 % compared to native starch. However, the same parameter is obtained to be 69.9 % and 67.1 % for the application of 40 and 25 + 40 kHz transducers, respectively. Additionally, during the sonication treatment, the yield shear stress increases between 24.1 and 31.8 %, based on the applied frequency. Morphology analysis determined by scanning electron microscopy (SEM) revealed that the surfaces and small granules underwent more damage in acetylated starches at frequencies of 25 kHz and 40 kHz. However, in acetylated starches at 25 + 40 kHz, the larger granules were more affected than the smaller ones.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Reza Roohi
- Department of Mechanical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | | | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| |
Collapse
|
12
|
Chang R, Xu K, Zhang R, Jin Z, Aiguo M. A combined recrystallization and acetylation strategy for resistant starch with enhanced thermal stability and excellent short-chain fatty acid production. Food Chem 2024; 430:136970. [PMID: 37549628 DOI: 10.1016/j.foodchem.2023.136970] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
In this study, resistant starch (RS) with enhanced thermal stability and excellent short-chain fatty acid production was obtained using recrystallization at 50 °C of debranched waxy maize starch followed by an acetylation strategy. RS sample obtained by debranching with a 25% high concentration of native starch combined with recrystallization at 50 °C (25DBS-50 °CP) and acetylated RS (25DBS-50 °CPA) exhibited high relative crystallinity of 69.4% and 64.2%, respectively. And the peak gelatinization temperature values of them reached 116.8 °C and 111.4 °C, and the RS contents of them after cooking for 30 min remained at 35.1% and 40.0%, respectively. The acetic acid yield of 25DBS-50 °CPA was higher than that of the control group. These results indicated that recrystallization at 50 °C combined with acetylation for debranched starch could be used as a new method for regulating the digestibility and fermentation properties while developing food with a low glycemic response and specific nutritional benefits.
Collapse
Affiliation(s)
- Ranran Chang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - KunJie Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Rao Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ma Aiguo
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
13
|
Du M, Chen L, Din ZU, Zhan F, Chen X, Wang Y, Zhuang K, Wang G, Cai J, Ding W. Structure and surface properties of ozone-conjugated octenyl succinic anhydride modified waxy rice starch: Towards high-stable Pickering emulsion. Int J Biol Macromol 2023; 253:126895. [PMID: 37709233 DOI: 10.1016/j.ijbiomac.2023.126895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In the present work, a dual-modified waxy rice starch (OOWRS) fabricated with OSA and ozone was successfully used to stabilize the O/W Pickering emulsion. The molecular structure, surface properties, and underlying stabilizing mechanism were systematically investigated. The results showed that oxidation occurring on the surface of OSA-modified waxy rice starch (OSAWRS) resulted in the presence of indentations and cracks. The relative crystallinity of starch was generally decreased with increasing degree of oxidation. Due to the introduction of carbonyl and the variation in surface structure, the hydrophobicity and acidity of OSAWRS were significantly enhanced after the ozone treatment. Remarkably, OOWRS stabilized Pickering emulsion exhibited a feature of typical O/W emulsion, and the 0.5 h and 1 h OOWRS emulsion exhibited a more uniform droplet size as well as a higher surface potential. We also noted that a weak-gel network was formed within the OOWRS emulsion system as the hydrophilic starch chains played a bridging role. Two reasons for the improved stability of the emulsion were the special gel structure and the enhanced electrical repulsion among the droplets. This research provides that ozone-conjugated OSA modification is a promising strategy for improving the emulsion ability of starch-based Pickering emulsions.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, PR China
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
14
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
15
|
Sindhu R, Khatkar BS. Influence of oxidation, acetylation and hydrothermal treatment on structure and functionality of common buckwheat starch. Int J Biol Macromol 2023; 253:127211. [PMID: 37797848 DOI: 10.1016/j.ijbiomac.2023.127211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The set aim of present work was to investigate the effects of acetylation, oxidation and heat moisture treatment on physicochemical, pasting, gel texture, structural, thermal and morphological properties of common buckwheat starch. Swelling power and solubility of starches reduced after modification except acetylation. Color of buckwheat starch improved after oxidation and acetylation. Paste clarity increased while syneresis reduced following modification with the exception of oxidation. Pasting properties of buckwheat starch revealed increased peak viscosity and breakdown viscosity following modification treatments. Gel texture analysis depicted increased hardness and reduced springiness, chewiness and cohesiveness for modified starches of buckwheat. Diffractograms of starches showed variation in intensity of some bands. Heat moisture treatment increased agglomeration and oxidation caused slight depression on surface of some granules. Relative crystallinity reduced following oxidation and hydrothermal treatment of starch. The gelatinization temperatures were increased in hydrothermal treated starch samples while oxidation and acetylation reduced the gelatinization temperature. The findings of this work would favor the new applications of modified starch from common buckwheat.
Collapse
Affiliation(s)
- Ritu Sindhu
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; Centre of Food Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125001, Haryana, India.
| | - B S Khatkar
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| |
Collapse
|
16
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
17
|
Song J, Chen S, Zhang Q, Xi X, Lei H, Du G, Pizzi A. Preparation and characterization of the bonding performance of a starch-based water resistance adhesive by Schiff base reaction. Int J Biol Macromol 2023; 251:126254. [PMID: 37567545 DOI: 10.1016/j.ijbiomac.2023.126254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Starch is one of the important raw materials for the preparation of biomass adhesives for its good viscosity and low-cost properties. However, the drawbacks of poor water resistance and bonding performance seriously restrict its application in the wood industry. To resolve those problems, an environment-friendly renewable, and high water resistance starch-based adhesive (OSTH) was prepared with oxidized starch and hexanediamine by Schiff base reaction. In order to optimize the adhesive preparation process, the effect of different oxidation times and oxidant addition on the mechanical performance of plywood were investigated. In addition, the curing behavior characteristics, thermomechanical properties, and thermal stability of the OSTH adhesives were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TG). Fourier-transform infrared (FTIR) spectrometry and Liquid Chromatography-Mass Spectrometry (LC-MS) were used to explain the reaction mechanisms involved. The results show this adhesive has an excellent bonding performance at the oxidation time of 12 h with 11 % (w/w, dry starch basis) NaIO4 as an oxidant. The dry shear strength, 24-hour cold water, and 3-hour hot water (63 °C) soaking shear strength of the plywood bonded with this resin were respectively 1.87 MPa, 0.96 MPa, and 0.91 MPa, which satisfied the standard requirement of GB/T 9846-2015 (≥0.7 MPa). Thus, this study provided a potential strategy to prepare starch-based wood adhesives with good bonding performance and water resistance.
Collapse
Affiliation(s)
- Jiaxuan Song
- College of Chemistry and Material Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material Science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Shi Chen
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material Science and Engineering, Southwest Forestry University, 650224 Kunming, China; International Joint Research Center for Biomass Materials, Southwest Forestry University, 650224 Kunming, China
| | - Qianyu Zhang
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material Science and Engineering, Southwest Forestry University, 650224 Kunming, China; International Joint Research Center for Biomass Materials, Southwest Forestry University, 650224 Kunming, China
| | - Xuedong Xi
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material Science and Engineering, Southwest Forestry University, 650224 Kunming, China; International Joint Research Center for Biomass Materials, Southwest Forestry University, 650224 Kunming, China.
| | - Hong Lei
- College of Chemistry and Material Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material Science and Engineering, Southwest Forestry University, 650224 Kunming, China; International Joint Research Center for Biomass Materials, Southwest Forestry University, 650224 Kunming, China
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 88051 Epinal, France
| |
Collapse
|
18
|
Liang W, Zheng J, Liu X, Zhao W, Lin Q, Khamiddolov T, Zeng J, Gao H, Li W. Insight into how E-beam pretreatment promotes sodium hypochlorite oxidation for structure-property improvement of cassava starch: A molecular-level modulation mechanism. Food Res Int 2023; 173:113246. [PMID: 37803559 DOI: 10.1016/j.foodres.2023.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
To investigate the role of E-beam treatment on the structure-properties of oxidized starch, this study investigated the influence of E-beam (1, 3, 6 kGy) pretreatment combined with NaClO oxidation (1% and 3%) on the multi-scale structural, physicochemical, and digestive properties of cassava starch. Results showed that E-beam treatment did not affect the starch surface, but the oxidative modification increased granule surface roughness. Also, the synergistic modification preserved starch growth rings, FT-IR patterns and crystal types. Further investigations revealed that E-beam induced starch molecular degradation, leading to decreased molecular weight, depolymerization of long chains, and a loss of short-range order. Moreover, oxidation treatment exacerbated the disruption in starch molecular structure, as evidenced by crystallinity loss, viscosity, and enthalpy reduction. Notably, E-beam induces starch yellowing; however, oxidative modification increases starch whiteness. Additionally, the synergistic modification improved native starch's lower solubility and enhanced the resistant starch content. Results suggest that E-beam pretreatment can enhance oxidative modification by promoting the exposure of active sites of starch molecules without destroying starch structure and can be considered an advanced, green, and efficient pretreatment for modified starch in the future.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Temirlan Khamiddolov
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Paramasivam SK, Subramaniyan P, Thayumanavan S, Shiva KN, Narayanan S, Raman P, Subbaraya U. Influence of chemical modifications on dynamic rheological behaviour, thermal techno-functionalities, morpho-structural characteristics and prebiotic activity of banana starches. Int J Biol Macromol 2023; 249:126125. [PMID: 37541477 DOI: 10.1016/j.ijbiomac.2023.126125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Banana starch is explored for its use in food and pharmaceutical applications. In this study, in order to improve the techno-functional properties of native banana starch (NS), different chemical modifications namely acid thinning (AT), oxidation (OX), sodium-trimetaphosphate method (STMP), cross linking phosphorylation (CLP), hydroxypropylation (HYP) were employed. Among the modified starches, amylose content was higher in CLP starch and the least was observed in AT. Resistant starch (RS) of HYP (65.38 %) and CLP starches (62.76 %) were significantly higher than other modified starches. Lesser amylose, higher water solubility and lower swelling of AT starch resulted in inferior paste clarity and inability to make a firm gel. Non-Newtonian behaviour of starch gels were observed from static viscosity observations. The dynamic rheological behaviour of the starch gels affirmed the higher gel strength of STMP (0.46) and CLP (0.56) starches. Imperfection and exo-corrosion in starch morphology was observed through SEM and influence of chemicals on the starch structure was elucidated through FTIR and XRD analyses. Except AT starch, modified starches with higher RS resulted in lowering glycemic index (57-69 %). STMP starches recorded highest prebiotic activity score of 0.88. Chemical modifications enable to enhance the functionalities of banana starch and offers potential industrial uses.
Collapse
Affiliation(s)
| | | | | | | | - Sheeba Narayanan
- National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Pushpa Raman
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai 612101, Tamil Nadu, India
| | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India
| |
Collapse
|
20
|
Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 2023; 316:120975. [PMID: 37321705 DOI: 10.1016/j.carbpol.2023.120975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Blends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets. The dual modified starch showed a synergistic effect to process TS by melt-blowing. Regarding non-woven fabrics, values in diameter (2.5-82.1 μm), thickness (0.4-0.6 mm), and grammage (49.9-103.8 g/m2) were explained due to differences in viscosity of the components, and to the fact that during melt the hot air preferentially stretches and thins the areas without large droplets of TS. Moreover, plasticized starch acts as a flow modifier. The porosity of the fibers increased with the addition of TS. Further studies and optimization of blends with low contents of TS and type starch modification will be necessary to completely understand these systems with very complex behavior to obtain non-woven fabrics with improved properties and application.
Collapse
Affiliation(s)
- Carlos Alberto Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| | | | - Heidi Andrea Fonseca-Florido
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico.
| | - Leticia Melo-López
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico
| | - Rodolfo Radillo-Ruíz
- Consultoría e Ingeniería en Servicios Especializados (CISE), Leona Vicario 1686, Ciudad de México C.P 09500, Mexico
| | - Edith Gutiérrez-Montiel
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| |
Collapse
|
21
|
Subroto E, Cahyana Y, Indiarto R, Rahmah TA. Modification of Starches and Flours by Acetylation and Its Dual Modifications: A Review of Impact on Physicochemical Properties and Their Applications. Polymers (Basel) 2023; 15:2990. [PMID: 37514380 PMCID: PMC10385776 DOI: 10.3390/polym15142990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Various modification treatments have been carried out to improve the physicochemical and functional properties of various types of starch and flour. Modification by acetylation has been widely used to improve the quality and stability of starch. This review describes the effects of acetylation modification and its dual modifications on the physicochemical properties of starch/flour and their applications. Acetylation can increase swelling power, swelling volume, water/oil absorption capacity, and retrogradation stability. The dual modification of acetylation with cross-linking or hydrothermal treatment can improve the thermal stability of starch/flour. However, the results of the modifications may vary depending on the type of starch, reagents, and processing methods. Acetylated starch can be used as an encapsulant for nanoparticles, biofilms, adhesives, fat replacers, and other products with better paste stability and clarity. A comparison of various characteristics of acetylated starches and their dual modifications is expected to be a reference for developing and applying acetylated starches/flours in various fields and products.
Collapse
Affiliation(s)
- Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Tiara Aray Rahmah
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
22
|
Li Y, Wang JH, Han Y, Yue FH, Zeng XA, Chen BR, Zeng MQ, Woo MW, Han Z. The effects of pulsed electric fields treatment on the structure and physicochemical properties of dialdehyde starch. Food Chem 2023; 408:135231. [PMID: 36563620 DOI: 10.1016/j.foodchem.2022.135231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The structural and physicochemical properties changes of corn starch oxidized by sodium periodate under the assistance of pulsed electric fields (PEF) were studied. It was found that dialdehyde starch (DAS) particles produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control without PEF. The solubility of the DAS (12 kV/cm PEF- assisted oxidation) improved by 70.2% when compared to the native starch. Increment in the strength of the PEF, led to a decrease in the viscosity of the DAS. In addition, the aldehyde group content of the DAS produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control increased by 11.6% when compared with the traditional oxidation method. PEF is an effective method to promote oxidation reaction of starch.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Bo-Ru Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Man-Qin Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
23
|
Gagneten M, Cáceres SG, Rodríguez Osuna IA, Olaiz NM, Schebor C, Leiva GE. Modification of cassava starch by acetylation and pulsed electric field technology: Analysis of physical and functional properties. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
24
|
Karić N, Vukčević M, Maletić M, Dimitrijević S, Ristić M, Grujić AP, Trivunac K. Physico-chemical, structural, and adsorption properties of amino-modified starch derivatives for the removal of (in)organic pollutants from aqueous solutions. Int J Biol Macromol 2023; 241:124527. [PMID: 37086770 DOI: 10.1016/j.ijbiomac.2023.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
In this study, an environmentally sustainable process of crystal violet, congo red, methylene blue, brilliant green, Pb2+, Cd2+, and Zn2+ ions adsorption from aqueous solutions onto amino-modified starch derivatives was investigated. The degree of substitution, elemental analysis, swelling capacity, solubility, and FTIR, XRD, and SEM techniques were used to characterize the adsorbents. The influence of pH, contact time, temperature, and initial concentration has been studied to optimize the adsorption conditions. The amino-modified starch was the most effective in removing crystal violet (CV) (65.31-80.46 %) and Pb2+ (67.44-80.33 %) within the optimal adsorption conditions (pH 5, 10 mg dm-3, 25 °C, 180 min). The adsorption of CV could be described by both Langmuir and Freundlich adsorption isotherms, while the adsorption of Pb2+ ions was better described by the Langmuir isotherm. The pseudo-second order model can be used to describe the adsorption kinetics of CV and Pb2+ on all tested samples. The thermodynamic study indicated that the adsorption of CV was exothermic, while the Pb2+ adsorption was endothermic. The simultaneous removal of CV and Pb2+ from the binary mixture has shown their competitive behavior. Thus, the amino-modified starch is a promising eco-friendly adsorbent for the removal of dyes and heavy metals from polluted water.
Collapse
Affiliation(s)
- Nataša Karić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Marija Vukčević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Marina Maletić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | | | - Mirjana Ristić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Katarina Trivunac
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
25
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Gautam G, Talukdar D, Mahanta CL. Sonochemical effect on the degree of substitution of octenyl-succinic anhydride into waxy rice starch nanoparticles and study of gastro-intestinal hydrolysis using INFOGEST in vitro digestion method. Food Res Int 2023; 165:112348. [PMID: 36869444 DOI: 10.1016/j.foodres.2022.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Octenyl succinylation of starch nanoparticles has been proven to be effective in a variety of food industry applications such as fat replacement, thickening agents, emulsion formation, and delivery of bioactive compounds. In this study, waxy rice starch was debranched with pullulanase to obtain short glucans, which were then modified with octenyl succinic anhydride (OSA) to obtain amphiphilic short glucans (ASG) using high (400 W) and low (200 W) ultrasonic power intensity at 30 and 60 cycles. Developed ASG were characterized by nanoparticle size (ca. < 50 nm), surface hydrophobicity and gastro-intestinal stability. Ultrasonic intervention progressively increased the degree of substitution (DS) of OSA into hydrolysed starch. A significant molecular exchange between starch and OSA was confirmed with shoulder peak at 1.07 ppm by 1H NMR, and 1560 and 1727 cm-1 peaks in FTIR spectral image, and broad band at 1260 cm-1 by Raman spectroscopy. The XRD analysis confirmed the change in crystalline structure, and the emergence of new peaks at 2θ angles of around 5.81° which represent the development of B-type structure following pullulanasehydrolysis, and minor peaks at 13.92° and 19.83°, which imply the production of Vh type structures in ASG. Gastro-intestinal hydrolysis of starch after modification was analyzed in a sequential digestion process using INFOGEST method. The gastro-kinetic studies unveiled the reduction in the digestibility constant in the oral-gastric phase, with significantly enhanced value of kinetic constants in the intestinal phase, proving a sustained gastro-intestinal stability. The OSA-modified starches with greater DS havemore rigid and compact surface structure, which provides superior protection against biochemical conditions in the stomach fluid.
Collapse
Affiliation(s)
- Gitanjali Gautam
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India
| | - Dhrubajyoti Talukdar
- Department of Chemical Sciences, School of Sciences, Tezpur University, 784028, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India.
| |
Collapse
|
27
|
Li Y, Wang JH, Wang EC, Tang ZS, Han Y, Luo XE, Zeng XA, Woo MW, Han Z. The microstructure and thermal properties of pulsed electric field pretreated oxidized starch. Int J Biol Macromol 2023; 235:123721. [PMID: 36801303 DOI: 10.1016/j.ijbiomac.2023.123721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The structure and thermal properties of pulsed electric field (PEF) assisted sodium hypochlorite oxidized starch were investigated. The carboxyl content of the oxidized starch was increased by 25 % when compared with the traditional oxidation method. Dents and cracks were evident on the surface of the PEF-pretreated starch. Compared with native starch, the peak gelatinization temperature (Tp) of PEF-assisted oxidized starch (POS) was reduced by 10.3 °C, while that of the oxidized starch without PEF treatment (NOS) was only reduced by 7.4 °C. In addition, PEF treatment further reduces the viscosity and improve the thermal stability of the starch slurry. Therefore, PEF treatment combined with hypochlorite oxidation is an effective method to prepare oxidized starch. PEF showed great potential in expanding starch modification, to promote a wider application of oxidized starch in the paper, the textile and the food industry.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. Co., Ltd, Foshan 528300, China
| | - Er-Chun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500,China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500,China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
28
|
Güllich LMD, Rosseto M, Rigueto CVT, Biduski B, Gutkoski LC, Dettmer A. Film properties of wheat starch modified by annealing and oxidation. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Xie J, Hong Y, Gu Z, Cheng L, Li Z, Li C, Ban X. Highland Barley Starch: Structures, Properties, and Applications. Foods 2023; 12:foods12020387. [PMID: 36673478 PMCID: PMC9857740 DOI: 10.3390/foods12020387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Highland barley (HB) is a nutritious crop with excellent health benefits, and shows promise as an economically important crop with diverse applications. Starch is the main component of HB and has great application potential owing to its unique structural and functional properties. This review details the latest status of research on the isolation, chemical composition, structure, properties, and applications of highland barley starch (HBS). Suggestions regarding how to better comprehend and utilize starches are proposed. The amylopectin content of HBS ranged from 74% to 78%, and can reach 100% in some varieties. Milling and air classification of barley, followed by wet extraction, can yield high-purity HBS. The surface of HBS granules is smooth, and most are oval and disc-shaped. Normal, waxy, and high-amylose HBS have an A-type crystalline. Due to its superb freeze-thaw stability, outstanding stability, and high solubility, HBS is widely used in the food and non-food industries. The digestibility of starch in different HB whole grain products varies widely. Therefore, the suitable HB variety can be selected to achieve the desired glycemic index. Further physicochemical modifications can be applied to expand the variability in starch structures and properties. The findings provide a thorough reference for future research on the utilization of HBS.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Correspondence: ; Tel.: +86-510-85329237
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Aldana Porras AE, Montoya Yepes DF, Murillo Arango W, Méndez Arteaga JJ, Jiménez Rodríguez ÁA. Physicochemical, functional, and digestibility properties of rice starches esterified with gulupa seed oil ( Passiflora edulis Sims. f. edulis). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2148167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Walter Murillo Arango
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | - John Jairo Méndez Arteaga
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | | |
Collapse
|
31
|
Improving the structural, functional, and rheological properties of nonconventional stem pith starch from Corypha umbraculifera, by different chemical methods: a characterization study. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Guleria P, Yadav BS. Effect of chemical treatments on the functional, morphological and rheological properties of starch isolated from pigeon pea ( Cajanus cajan). Curr Res Food Sci 2022; 5:1750-1759. [PMID: 36268135 PMCID: PMC9576809 DOI: 10.1016/j.crfs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Different chemical treatments (cross-linking, oxidation, and hydroxypropylation) were used to modify pigeon pea starch, and its effect on physiochemical, pasting and rheological properties were studied. Cross-linking and oxidation decreased while hydroxypropylation increased the swelling power of pigeon pea starch. All starch samples showed a decrease in their paste clarities. FTIR spectra of all starch samples displayed characteristic absorption bands of starch at wave numbers 1076, 1148, 1376, and 1632 cm-1. A significant reduction occurred in peak, cold paste, hot paste, and setback viscosity after chemical modification. Rheological determinations showed that starch pastes had viscoelastic behaviour. G' and G″ of all starch paste increased after chemical modification. Native and chemically treated starches revealed oval to elliptical-shaped granules and no change was observed after modification when examined in SEM. These results confirmed that the undesirable properties of native pigeon starch can be suitably altered via chemical treatments to make them suitable for several food applications.
Collapse
Affiliation(s)
- Prixit Guleria
- Department of Food Technology Maharshi Dayanand University Rohtak, Haryana, India
| | - Baljeet Singh Yadav
- Department of Food Technology Maharshi Dayanand University Rohtak, Haryana, India
| |
Collapse
|
33
|
Qiu Z, Zheng B, Xu J, Chen J, Chen L. 3D-printing of oxidized starch-based hydrogels with superior hydration properties. Carbohydr Polym 2022; 292:119686. [PMID: 35725213 DOI: 10.1016/j.carbpol.2022.119686] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
High-hydration hydrogels based on carbohydrate polymers and green preparation methods have attracted intensive research focus recently. Driven by the attractive functions of starch, oxidized maize starch (OMS) was chosen and the related hydrogel (3D-OMS) was constructed by hot-extrusion 3D printing (HE-3DP). Meanwhile, the effect of different OMS concentrations (11 %-19 %) on its printability, structure and hydration properties were systematically investigated. The results showed that the formation of porous structure during HE-3DP environment contributed to rapid water absorption and well water holding capacity of 3D-OMS. Interestingly, as the OMS concentration increased from 11 % to 19 %, the 3D-OMS presented great hydration properties, with its maximum water absorption capacity and water holding capacity reaching 3013.43 % (11-OMS) and 93.53 % (19-OMS), respectively. Among them, 13 % was the best concentration for HE-3DP. Besides, 3D-OMS also exhibited good biodegradability and cytocompatibility. These results demonstrated potential for developing new starch-based biomedical hydrogel with great hydration properties through HE-3DP technology.
Collapse
Affiliation(s)
- Zhipeng Qiu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Jinchuan Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Jin Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
34
|
Gangopadhyay A, Bose A, Rout SS, Mohapatra R. Application of dual modified corn starch as a polymer for the colon targeted direct compressible budesonide tablet. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Marta H, Cahyana Y, Djali M, Pramafisi G. The Properties, Modification, and Application of Banana Starch. Polymers (Basel) 2022; 14:3092. [PMID: 35956607 PMCID: PMC9370678 DOI: 10.3390/polym14153092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Banana is a tropical fruit crop that is consumed at large, not only because of the quantity produced but also because it serves the calorific needs of millions of people. Banana is a potential source of high starch content (more than 60%). The application of starch for various purposes is dependent upon its structural, physicochemical, and functional properties. A native starch does not possess all required properties for specific use in the food product. To improve its application, starch can be modified physically, chemically, and enzymatically. Each of these modification methods provides different characteristics to the modified starch. This review aims to examine the chemical composition, granule morphology, crystallinity, pasting, thermal properties, and digestibility of banana starch, and discusses the various modifications and potential applications of banana starch in the food industry.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (Y.C.); (M.D.)
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (Y.C.); (M.D.)
| | - Mohamad Djali
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (Y.C.); (M.D.)
| | - Giffary Pramafisi
- Department of Agroindustry Technology, Lampung State Polytechnic, Bandar Lampung 35141, Indonesia;
| |
Collapse
|
36
|
The adsorption characteristics of 2D fibril and 3D hydrogel aggregates at the O/W interface combining molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liu Y, Meng‐Yun L, An F, Tan L, Shan X, Fu Z. In vitro digestibility, pasting and thermal properties of
Arenga pinnata
(
Wurmb
.)
Merr
starch citrate. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan‐Sen Liu
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Li Meng‐Yun
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Feng‐Kun An
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Lin‐Bin Tan
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Xue Shan
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| |
Collapse
|
38
|
Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. Int J Biol Macromol 2022; 209:1943-1955. [PMID: 35500776 DOI: 10.1016/j.ijbiomac.2022.04.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022]
Abstract
In this study, the effect of chemical modifications such as oxidation, esterification and crosslinking was investigated alone and in combination with microwave irradiation on a non-conventional starch with 76% starch yield acquired from the trunk of matured talipot palm. The single- and dual-modifications imparted significant changes in the morphological, crystalline, pasting and rheological properties and digestibility of talipot starch. Characteristic peaks were observed in single- and dual-oxidized, esterified and crosslinked starches indicating their respective functional groups. All modifications significantly decreased (p ≤ 0.05) the relative crystallinity (RC) of talipot starches except for crosslinking, and the least RC (11.33%) was observed in microwave irradiated esterified starch. Microwave irradiation prior to chemical modifications showed a significant impact in the swelling and solubility of talipot starches. The decreased setback viscosity and increased light transmittance in single- and dual-microwave irradiated talipot starches showed their lowered retrogradation tendency, suitable for frozen foods. The resistant starch (RS) content was majorly improved in all heterogeneously dual modified talipot starches by incorporating more functional groups owed to structural and crystalline destruction in starch granules upon microwave irradiation. The highest RS content (45.02%) was observed in microwave irradiated esterified uncooked talipot starch.
Collapse
|
39
|
Rao H, Sindhu R, Panwar S. Morphology and functionality of dry heat‐treated and oxidized quinoa starches. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Himanshi Rao
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| | - Ritu Sindhu
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| | - Shreya Panwar
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
40
|
Zhang K, Zhang Z, Zhao M, Milosavljević V, Cullen P, Scally L, Sun DW, Tiwari BK. Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Almeida RLJ, Santos NC, Silva GM, Feitoza JVF, Silva VM, Ribeiro VH, Eduardo R, Muniz CE. Effects of hydrothermal pretreatments on thermodynamic and technological properties of red bean starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Gabriel Monteiro Silva
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | - Virgínia Mirtes Silva
- Department of Engineering and Management of Natural Resources Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Victor Herbert Ribeiro
- Department of Engineering and Management of Natural Resources Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Raphael Eduardo
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Cecília Elisa Muniz
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| |
Collapse
|
42
|
Kwon UH, Chang YH. Rheological and Physicochemical Properties of Oleogel with Esterified Rice Flour and Its Suitability as a Fat Replacer. Foods 2022; 11:foods11020242. [PMID: 35053975 PMCID: PMC8774694 DOI: 10.3390/foods11020242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
The objectives of this study were to produce oleogel using esterified rice flour with citric acid (ERCA), to evaluate physicochemical and rheological properties of oleogels, and to investigate their suitability as a fat replacer. Rice flour was esterified with citric acid (30%, w/w) to produce ERCA. Emulsions and oleogels were prepared with different concentrations (0, 5, 10, and 15%, w/w) of ERCA. In the steady shear rheological analysis, it was found that the values of apparent viscosity (ηa, 100) and consistency index (K) of emulsions were significantly increased by increasing the concentrations of ERCA. Oleogels were prepared with different concentrations (0, 5, 10, and 15%, w/w) of ERCA. All oleogels showed a hydrophobic carbonyl bond in the Fourier transform infrared (FT-IR) spectra. The peaks on new hydrogen bonds and amorphous regions, which did not appear in oleogel prepared with 0% ERCA, were observed at 3300–3400 cm−1 and 1018 cm−1, respectively, in oleogels prepared with ERCA. With the increase in ERCA concentrations in oleogels, oil loss values were significantly decreased. In a time-dependent test, it was found that all oleogels exhibited thixotropic properties. The frequency sweep test revealed that storage modulus (G′), loss modulus (G″), and complex viscosity (η*) values of oleogels were elevated with an increase in the concentration of ERCA. Oleogels prepared with 15% ERCA exhibited the lowest peroxide, p-Anisidine, and Total Oxidation(TOTOX) values. The addition of oleogels to cookies did not considerably affect appearance. However, it increased the content of unsaturated fatty acid. These results indicate that oleogels prepared with ERCA can be used as a fat replacer in food industry.
Collapse
|
43
|
|
44
|
Chapagai MK, Fletcher B, Witt T, Dhital S, Flanagan BM, Gidley MJ. Multiple length scale structure-property relationships of wheat starch oxidized by sodium hypochlorite or hydrogen peroxide. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
46
|
Rheological behaviors, structural properties and freeze-thaw stability of normal and waxy genotypes of barley starch: a comparative study with mung bean, potato, and corn starches. Food Sci Biotechnol 2021; 30:1171-1181. [PMID: 34603817 DOI: 10.1007/s10068-021-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022] Open
Abstract
The rheological behaviors, structural properties and freeze-thaw stability of starch isolated from Tetonia barley (Normal genotype, Reg. No. CV-334, PI 646199) and Transit barley (Waxy genotype, Reg. No. CV-348, PI 660128) were investigated, along with other common starch sources for comparison. Transit barley starch showed the highest loss tangents (tan δ) during a frequency sweep test, which suggested a predominance of elastic properties over viscous properties. However, the tan δ of Tetonia barley starch was similar to that of potato starch, which indicated more solidity in comparison to Transit barley starch. Transit barley starch had the highest gelatinization temperature and the lowest gelatinization enthalpy (P < 0.05). Moreover, Tetonia and Transit barley starches displayed weak diffraction peak intensities by X-ray diffraction analysis. Additionally, Transit barley starch showed the lowest % syneresis even when freeze-thawed up to five cycles (P < 0.05). However, Tetonia barley starch had the worst freeze-thaw stability (P < 0.05), which was verified via scanning electron microscopy analysis of freeze-thawed starch gels. The results of present study indicate that barley starch can be practically applied as a functional ingredient in some specialty starchy foods.
Collapse
|
47
|
Khurshida S, Das MJ, Deka SC, Sit N. Effect of dual modification sequence on physicochemical, pasting, rheological and digestibility properties of cassava starch modified by acetic acid and ultrasound. Int J Biol Macromol 2021; 188:649-656. [PMID: 34400228 DOI: 10.1016/j.ijbiomac.2021.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Dual modification of cassava starch was carried out using ultrasonication and acetylation by acetic acid by altering the sequence. The results revealed that the type of modification and sequence of modification for dual modified starches significantly affected the properties of starch. The swelling decreased for all the modified starches whereas solubility decreased for ultrasonicated starches but increased for acetylated starch and dual modified starch where acetylation was done after ultrasonication. The paste viscosities of all the modified starches were found to be significantly lower compared to native starch and the lowest viscosities were observed for dual modified starch where ultrasonication was done after acetylation. The resistant starch and slowly digestible starch content of the modified starches were significantly higher than in native starch, and the type of modification and sequence of modification for dual modified starches seemed to affect the digestibility of starches.
Collapse
Affiliation(s)
- Singamayum Khurshida
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Manas Jyoti Das
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Sankar C Deka
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
48
|
Morphology, structure and functionality of acetylated, oxidized and heat moisture treated amaranth starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Martins PC, Martins VG. Effect of Rice Starch Hydrolysis and Esterification Processes on the Physicochemical Properties of Biodegradable Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paola Chaves Martins
- Laboratory of Food Technology School of Chemistry and Food Engineering Federal University of Rio Grande (FURG) Avenida Itália km 8, Carreiros Rio Grande RS 96203900 Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology School of Chemistry and Food Engineering Federal University of Rio Grande (FURG) Avenida Itália km 8, Carreiros Rio Grande RS 96203900 Brazil
| |
Collapse
|
50
|
Kumar A, Kumari P, Gupta K, Singh M, Tomer V. Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashwani Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Pooja Kumari
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Kritika Gupta
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, USA
| | - Manjot Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|