1
|
Peng L, You J, Liu R, Long Y, Song G, Benjakul S, Xiong S, Rahman Z, Huang Q, Chen S, Yin T. Fasting influences the muscle quality of fish during transportation by regulating the balance between energy metabolism and ammonia nitrogen stress. J Adv Res 2025:S2090-1232(25)00207-3. [PMID: 40154734 DOI: 10.1016/j.jare.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
INTRODUCTION Fasting has been widely applied in aquaculture to improve the welfare of fish. However, fasting regulate the interplay of energy metabolism and ammonia nitrogen stress on the muscle quality unclear. OBJECTIVES To clarify the impact of fasting on the energy metabolism, ammonia nitrogen stress, and muscle quality. METHODS Blunt snout bream (Megalobrama amblycephala) were fasted for different days before transportation. Then changes in energy metabolism, stress response, cell apoptosis, and muscle quality were assessed using UPLC-QTOF-MS untargeted metabolomics along with classical molecular biology techniques. RESULTS Our findings revealed that short-term fasting (2-3 d) effectively alleviated ammonia nitrogen stress. The cortisol and superoxide dismutase decreased gradually as the fasting time was extended from 0 to 3 d, with decreased of 28.60 % and 55.39 %. Regarding the energy reserves, a reduction in muscle glycogen, protein, and lipid content was observed after fasting. These changes were attributed to the intensified tricarboxylic acid cycle, amino acid metabolism, and lipid metabolism. Furthermore, fasting enhanced the glycolysis of glycogen, and the gluconeogenesis of glutamic acid and aspartic acid to generate adenosine triphosphate. Notably, short-term fasting alleviated muscle cell apoptosis via down-regulating expression of Caspase 9 and Bax. Moreover, the water holding capacity, shear force, and springiness were better improved after fasting 2 d, reaching 79.88 %, 407.11 g, and 0.78 g, respectively. However, when fasting was extended to 4 d, there was a decrease in energy substances in the fish muscle and an increase in oxidative stress and apoptosis, thereby inducing a decrease in the muscle quality. CONCLUSION Our data concluded that fasting affects cell apoptosis by regulating the balance between energy metabolism and stress, ultimately impacting muscle quality. For long-distance transportation, a fasting period of 2-3 d is optimal.
Collapse
Affiliation(s)
- Ling Peng
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-industry, Prince of Songkla University, 15 Kanchanawanich Road, Hat Yai 90112, Thailand
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ziaur Rahman
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Huang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Chen
- Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zheng Y, Ma Y, Lin N, Yang X, Wu J, Guo Q. Comparison of Volatile and Non-Volatile Compounds of Ice-Stored Large Yellow Croaker ( Larimichthys crocea) Affected by Different Post-Harvest Handling Methods. Foods 2025; 14:431. [PMID: 39942024 PMCID: PMC11816640 DOI: 10.3390/foods14030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
To compare the impact of different post-harvest handling methods on volatile and non-volatile compounds, a total of 54 live large yellow croakers were subjected to commercial slaughter (CS), spinal cord cutting (SCC), or spinal cord cutting and bleeding (SCCB). The fish samples were ice-stored for 72 h, followed by the analysis of volatile compounds using gas chromatography-ion mobility spectrometry and non-volatile compounds using LC-MS-based untargeted metabolomics. The results revealed the detection of a total of 28 volatile organic compounds, with 23 being successfully identified, predominantly including alcohols, aldehydes, esters, ketones, and heterocyclic compounds. Substances such as (E)-2-nonenal and 2-butanone are highly sensitive to post-harvest handling methods during ice storage. Furthermore, 943 non-volatile metabolites were identified, showing significant differences in 180, 100, 117, and 186 metabolites across comparisons of SCC 0 h/CS 0 h, SCCB 0 h/CS 0 h, SCC 72 h/CS 72 h, and SCCB 72 h/CS 72 h, respectively. Notably, the altered metabolic pathways mainly involved fatty acid and amino acid metabolism, including pathways like glycerophospholipid metabolism and arginine biosynthesis. This study revealed the potential mechanisms underlying the enhancement of fish quality through spinal cord cutting and bleeding.
Collapse
Affiliation(s)
- Yao Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
| | - Yuan Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
| | - Xu Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
| | - Junjie Wu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.Z.); (Y.M.); (N.L.); (X.Y.); (J.W.)
| |
Collapse
|
3
|
Zhao X, Xu Z, Liu Y, Mei J, Xie J. Effects of different slaughtering methods on the energy metabolism, apoptosis process and quality of grouper (Epinephelus fuscoguttatus) during cold storage at 4 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:661-670. [PMID: 39258832 DOI: 10.1002/jsfa.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The aquatic processing industry is increasingly aware of the need to ensure that slaughtering is carried out under high welfare standards, so there is a need to explore the impact of slaughter methods on fish fillets. This study aimed to investigate the effects of different slaughtering methods (M1, lethality by hammering; M2, gas mixture causing death; M3, lethality by clove oil anesthesia + ice slurry; M4, lethality by ice slurry; M5, lethality by gradient cooling) on the energy metabolism, apoptosis and flesh mass in grouper (Epinephelus fuscoguttatus). RESULTS Therefore, 120 fish (24 per treatment) were slaughtered by the five methods. The results showed that the succinate dehydrogenase (SDH) enzyme activity of M5 sample was higher. The serum glucose level of M2 samples and DAPI staining fluorescence of M2 samples were the highest, indicating that the stress response of M2 was strong. In addition, the texture, pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and K value results showed M5 samples had better flesh quality. CONCLUSION Gradient cooling lethality had the least effect on oxidative damage and apoptosis in grouper during cold storage as the gradient cooling lethality had the least effect on antioxidant enzyme activities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhilong Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yu Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
4
|
Ibrahim MM, Mahmoud MA. Pathological studies on skeletal muscle atrophy in common fish products from El-Jubail Province, Saudi Arabia. Sci Rep 2024; 14:30594. [PMID: 39715828 DOI: 10.1038/s41598-024-76880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/17/2024] [Indexed: 12/25/2024] Open
Abstract
In this study, 10 fish species, Jayan flounder (Pseudorhombus javanicus); Oriental sole (Eurgglossa arientalis); Oange-spotted grouper (Epinephelus coioides); Blacktip trevally (Caranx heberi); Towbar seabream (Acanthopagrus bifascia); Smalltooth emperor (Lethrinus microdon); Spangled emperio (Lethrinus nebulous); Sharptooth hammer croaker (Johnius vogleri); Bigeye croaker (Pennahia anea) and Redspine thread bream (Nemipterus nemurus), were examined in El-Jubail province, Saudi Arabia, Arabian Gulf region over three years from 2017 to 2020. The examined fish species showed muscular atrophy in a total percent of 1.1%, but with variable percentages of affections in each species. The highest incidence (2.06%) was oberved in Spangled emperior (Lethrinus nebulous) while the lowest incidence (0.40%) was in Orange spotted grouper (Epinephelus coioides) and Smalltooth emperor (Lethrinus microdon). The affected fishes appeared with sunken eyes, severe emaciation, and prominent loss of skeletal muscle mass. During dissection, the muscular tissue in some examined species was rough while in others, it was edematous and gelatinous, and the internal organs of all fishes were atrophied. For routine histopathological examination, the tissue samples were fixed in 10% buffered neutral formalin. The examined tissue sections of the affected muscles showed variable degrees of histopathological changes depending on the species. Vacuolation of muscle fibers, Zenker's necrosis and myophagia were common in some species, while melanophores aggregation, edema, and hemorrhages were the most commonly observed changes in others. This study focused on the impact of this myodegenerative disease on the marketability of these edible fish species. Further investigation is needed to understand the impact of genetic predisposition, environmental pollution and other etiological agents on the occurrence of this phenomenon in this location.
Collapse
Affiliation(s)
- Mustafa M Ibrahim
- Animal Health Research Institute, Dokki, Giza, 12618, Egypt
- Ministry of Environment, Water and Agriculture., Fish Welfare Branch, El-Jubail Province, El-Jubail , Saudi Arabia
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
5
|
Li J, Liu Y, Yang H, Cai L, Nong W, Guan W. The Activation of Endogenous Proteases in Shrimp Muscle Under Water-Free Live Transport. Foods 2024; 13:3472. [PMID: 39517256 PMCID: PMC11545398 DOI: 10.3390/foods13213472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Water-free transportation (WFT) causes shrimp (Penaeus vannamei) flesh quality deterioration. However, the roles of endogenous protease-induced protein hydrolysis have been neglected in the research. In the present study, calpain zymography, gelatinase zymography, the hematoxylin-eosin staining method, and other methods were applied to investigate the response of various endogenous proteases (cathepsin, calpain, and gelatinase), the myofibril fragmentation index (MFI), and the microscopic morphology of shrimp muscle during WFT in comparison with the shrimp under the conventional water transportation strategy (WT). The results showed that the total activity of proteases in shrimp muscle increased significantly (p ≤ 0.05) after simulated transportation. Cathepsins and gelatinases were activated during WFT. No significant (p > 0.05) changes of the activity of caspase-3 and the muscle cell apoptosis rate were detected in shrimp muscle cells after WFT. In addition, the MFI increased and the gap among muscle fiber bundles enlarged after WFT. Compared with WFT, no significant (p > 0.05) effect on the activities of calpain, gelatinase, and caspase-3 in the muscle of shrimp was found after WT, and only the activity of cathepsin L significantly increased (p ≤ 0.05). Based on the findings, we concluded that the activation of various endogenous proteases was induced during WFT.
Collapse
Affiliation(s)
- Jia Li
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Yuxin Liu
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Huanhuan Yang
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China;
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Weiliang Guan
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| |
Collapse
|
6
|
Prestes Dos Santos S, da Silva MI, Godoy AC, De Almeida Banhara DG, Goes MD, Souza Dos Reis Goes E, Honorato CA. Respiratory and muscular effort during pre-slaughter stress affect Nile tilapia fillet quality. PLoS One 2024; 19:e0306880. [PMID: 38995936 PMCID: PMC11244840 DOI: 10.1371/journal.pone.0306880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Nile Tilapia (Oreochromis niloticus) management procedures are directly linked to the final quality of the product. The aim of this study was to evaluate the effect of pre-slaughter density and different stunning methods on biochemical, respiratory and muscle injury parameters associated with quality and sensory characteristics of Nile tilapia fillets. Fish with an average weight of 762±105 g were used, first collected called the control group. The experiment was conducted in a 2 × 2 factorial scheme, with two densities (50 and 300 kg of live weight m-3) and two stunning methods thus totaling four treatments, with 15 repetitions per treatment totaling 75 fish sampled. Blood gas analysis, evaluation of biochemical parameters, analysis of meat quality and sensory analysis were carried out. For blood gas, biochemical and enzymatic parameters, the highest values were obtained for the density of 300 kg m-3 and asphyxia method: partial pressures of CO2; glucose and lactate, the highest values presented were 268.98 and 11.33 mg dL-1 respectively. As well as enzymatic activities, Creatinine kinase (CPK); Creatinine kinase isoenzyme (CKMB) showed higher values (768.93 and 1078.98 mg dL-1 respectively) in the higher density and asphyxia method. Conversely, when evaluating the quality parameters, the highest values were observed for lower density and thermonarcosis. High depuration density (300 kg m-3), combined with the asphyxiation stunning method, promotes changes in respiratory dynamics and provides greater stress, less firm fillet texture and greater weight loss due to cooking, as well as changes in creatine kinase (CK) and its CK-MB isoenzyme, demonstrating greater muscle damage. On the other hand, the density of 50 kg m-3 during pre-slaughter, combined with the method of stunning by thermonarcosis, provide a longer period of permanence in pre rigor mortis, which will result in fillets with a better sensory profile.
Collapse
Affiliation(s)
| | - Maria Ildilene da Silva
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Antonio Cesar Godoy
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | | | - Marcio Douglas Goes
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | | | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
7
|
Peng L, Zhang L, Xiong S, You J, Liu R, Xu D, Huang Q, Ma H, Yin T. A comprehensive review of the mechanisms on fish stress affecting muscle qualities: Nutrition, physical properties, and flavor. Compr Rev Food Sci Food Saf 2024; 23:e13336. [PMID: 38558497 DOI: 10.1111/1541-4337.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Fish inevitably face numerous stressors in growth, processing, and circulation. In recent years, stress-related change in fish muscle quality has gradually become a research hotspot. Thus, the understanding of the mechanism regarding the change is constantly deepening. This review introduces the physiological regulation of fish under stress, with particular attention devoted to signal transduction, gene expression, and metabolism, and changes in the physiological characteristics of muscular cells. Then, the influences of various stressors on the nutrition, physical properties, and flavor of the fish muscle are sequentially described. This review emphasizes recent advances in the mechanisms underlying changes in muscle quality, which are believed to be involved mainly in physiological regulation under stress. In addition, studies are also introduced on improving muscle quality by mitigating fish stress.
Collapse
Affiliation(s)
- Ling Peng
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qilin Huang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Liu S, Du M, Sun J, Tu Y, Gu X, Cai P, Lu Z, Wang Y, Shan T. Bacillus subtilis and Enterococcus faecium co-fermented feed alters antioxidant capacity, muscle fibre characteristics and lipid profiles of finishing pigs. Br J Nutr 2024; 131:1298-1307. [PMID: 38098370 DOI: 10.1017/s000711452300291x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Zhang Y, Li C, Zhou X, Jiang W, Wu P, Liu Y, Ren H, Zhang L, Mi H, Tang J, Zhang R, Feng L. Implications of vitamin D for flesh quality of grass carp (Ctenopharyngodon idella): antioxidant ability, nutritional value, sensory quality, and myofiber characteristics. J Anim Sci Biotechnol 2023; 14:134. [PMID: 37759314 PMCID: PMC10523690 DOI: 10.1186/s40104-023-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/02/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Muscle represents a unique and complex system with many components and comprises the major edible part of animals. Vitamin D is a critical nutrient for animals and is known to enhance calcium absorption and immune response. In recent years, dietary vitamin D supplementation in livestock has received increased attention due to biological responses including improving shear force in mammalian meat. However, the vitamin D acquisition and myofiber development processes in fish differ from those in mammals, and the effect of vitamin D on fish flesh quality is poorly understood. Here, the influence of dietary vitamin D on fillet quality, antioxidant ability, and myofiber development was examined in grass carp (Ctenopharyngodon idella). METHODS A total of 540 healthy grass carp, with an initial average body weight of 257.24 ± 0.63 g, were allotted in 6 experimental groups with 3 replicates each, and respectively fed corresponding diets with 15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg vitamin D for 70 d. RESULTS Supplementation with 1,167.9 IU/kg vitamin D significantly improved nutritional value and sensory quality of fillets, enhancing crude protein, free amino acid, lipid, and collagen contents; maintaining an ideal pH; and reducing lactate content, shear force, and cooking loss relative to respective values in the control (15.2 IU/kg) group. Average myofiber diameter and the frequency of myofibers > 50 μm in diameter increased under supplementation with 782.5-1,167.9 IU/kg vitamin D. Levels of oxidative damage biomarkers decreased, and the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 signaling molecules was upregulated in the 1,167.9 IU/kg vitamin D treatment compared to respective values in the control group. Furthermore, vitamin D supplementation activated cell differentiation by enhancing the expression of myogenic regulatory factors and myocyte enhancer factors compared to that in the control group. In addition, supplementation with 1,167.9 IU/kg vitamin D improved protein deposition associated with protein synthesis molecule (target of rapamycin) signaling and vitamin D receptor paralogs, along with inhibition of protein degradation (forkhead box protein 1) signaling. CONCLUSIONS Overall, the results demonstrated that vitamin D strengthened antioxidant ability and myofiber development, thereby enhancing nutritional value and sensory quality of fish flesh. These findings suggest that dietary vitamin D supplementation is conducive to the production of nutrient-rich, high quality aquaculture products.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chaonan Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Anders N, Breen M, Skåra T, Roth B, Sone I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem 2023; 405:134819. [PMID: 36403466 DOI: 10.1016/j.foodchem.2022.134819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Crowded (stressed) and unstressed Atlantic mackerel with or without pre-freezing holding in refrigerated sea water (RSW) were stored at -19 °C for ∼12 months and analysed for nucleotide degradation (K value), muscle pH, water holding capacity (WHC), fillet firmness, cathepsin B/L like activity, lipid oxidation and fillet colour. The frozen storage showed the largest and most consistent direct effects on the quality metrics leading to increased lipid oxidation, discolouration (yellowing) and reduction on WHC and cathepsin activity. RSW treatment promoted nucleotide degradation and reduced WHC and fillet firmness in interaction with frozen storage and affected fillet colour lightness and saturation. Although showing only marginal main effects, crowding stress modified WHC, cathepsin activity and fillet firmness and colour through significant interactions with the frozen storage and RSW treatment. Further studies with larger sample sizes would be needed to elucidate their complex effects and interactions on the quality and storage stability of mackerel.
Collapse
Affiliation(s)
- Neil Anders
- Institute of Marine Research, Bergen. P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway.
| | - Michael Breen
- Institute of Marine Research, Bergen. P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway.
| | - Torstein Skåra
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| | - Bjørn Roth
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| | - Izumi Sone
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| |
Collapse
|
11
|
Lu ZY, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Kuang SY, Li SW, Tang L, Zhang L, Mi HF, Zhou XQ, Feng L. Cellular antioxidant mechanism of mannan-oligosaccharides involving in enhancing flesh quality in grass carp (Ctenopharyngodon idella). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1172-1182. [PMID: 36085562 DOI: 10.1002/jsfa.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Lu Zhang
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
12
|
Protein phosphorylation profile of Atlantic cod (Gadus morhua) in response to pre-slaughter pumping stress and postmortem time. Food Chem 2023; 402:134234. [DOI: 10.1016/j.foodchem.2022.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022]
|
13
|
Influence of Fish Handling Practices Onboard Purse Seiners on Quality Parameters of Sardines ( Sardina pilchardus) during Cold Storage. Biomolecules 2023; 13:biom13020192. [PMID: 36830560 PMCID: PMC9953280 DOI: 10.3390/biom13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Small pelagic fish are a rich source of high-quality proteins and omega-3 fatty acids, but they are highly perishable due to the activity of microorganisms, endogenous enzymes, and oxidation processes that affect their muscle tissues during storage. This study focused on analyzing the influence of fish handling practices onboard vessels on sensory quality attributes, pH, water holding capacity, TVB-N, proteolytic changes, and lipid oxidation in sardine muscle tissue during cold storage. Experiments were conducted onboard fishing vessels during regular work hours, with added consistency, accounting for similar sardine sizes (physiological and reproductive stages) under similar environmental conditions. Traditional handling practices, e.g., boarding the catch with brail nets and transporting the fish in plastic crates with flake ice, were compared with the use of modified aquaculture pumps for boarding the catch and transporting it in isothermic boxes submerged in ice slurry. Results confirmed significant differences in the parameters among the different fishing vessels, although no significant differences were found between the two methods of fish handling on board the vessels. The study also confirmed a higher rate of lipid oxidation in fish muscle due to physical damage and an increased degree of proteolysis in samples with lower muscle pH values.
Collapse
|
14
|
Tie H, Yu D, Jiang Q, Yang F, Xu Y, Xia W. Research on apoptotic mechanism and related pathways involved in postmortem grass carp (Ctenopharyngodon idellus) muscle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:298-307. [PMID: 35861049 DOI: 10.1002/jsfa.12141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Apoptosis activation is an essential research to reveal the triggering mechanism of flesh quality deterioration. This study was aimed at explaining apoptotic mechanism of postmortem fish in terms of caspases activation, cytochrome c (cyt-c) release, B-cell lymphoma 2 (Bcl-2) and Bcl2-associated X (Bax) protein levels, transcriptional levels of its molecules, and apoptosis-inducing factor (AIF) translocation at 4 °C for 5 days. RESULTS Activation of caspase-9, caspase-8, caspase-3 and the release of mitochondrial cyt-c were observed during storage. The decreased Bcl-2 protein levels, increased Bax protein expressions and Bax/Bcl-2 ratio were major steps for inducing apoptosis. Collectively, transcriptional regulation of Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), inhibitors of apoptosis proteins (IAPs), myeloid cell leukemia-1 (Mcl-1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) indicated that extrinsic apoptotic pathways (FasL/caspase-8/caspase-3) and intrinsic pathway [(JNK and p38 MAPK)/(Bcl-2, Bax and Mcl-1)/cyt-c/Apaf-1/caspase-9/caspase-3] were involved in apoptotic process. Mitochondrial AIF translocation to nuclear indicated that AIF mediated caspase-independent pathway. CONCLUSION Therefore, transcriptional and translational alterations of multiple signaling molecules acted important roles in regulating apoptosis activation in postmortem process. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Li M, Li X, Yao W, Wang Y, Zhang X, Leng X. An Evaluation of Replacing Fishmeal with Chlorella Sorokiniana in the Diet of Pacific White Shrimp ( Litopenaeus Vannamei): Growth, Body Color, and Flesh Quality. AQUACULTURE NUTRITION 2022; 2022:8617265. [PMID: 36860470 PMCID: PMC9973205 DOI: 10.1155/2022/8617265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/18/2023]
Abstract
This study was conducted to investigate the effects of replacing fishmeal (FM) with Chlorella sorokiniana on growth and flesh quality of Pacific white shrimp, Litopenaeus vannamei. A control diet was formulated to contain 560 g/kg FM, and then chlorella meal was used to replace 0% (C-0), 20% (C-20), 40% (C-40), 60% (C-60), 80% (C-80), and 100% (C-100) of dietary FM, respectively. The six isoproteic and isolipidic diets were fed to shrimp (1.37 ± 0.02 g) for 8 weeks. The results showed that weight gain (WG) and protein retention (PR) of C-20 group were significantly higher than those of C-0 group (P < 0.05), while no significant differences were observed in WG and PR between C-0 and C-40 groups (P > 0.05). When the replaced level of FM by chlorella meal reached 60%, the WG of shrimp decreased and feed conversion ratio (FCR) increased significantly (P < 0.05). The quadratic regression analysis indicated that substituted fishmeal levels with chlorella meal were 20.50% and 28.25%, respectively, to obtain the highest WG and lowest FCR. In C-40 and C-60 groups, the body surface presented higher redness than the control (P < 0.05). No significant differences in the whole body and muscle composition, SOD, T-AOC, GSH-PX activities, MDA contents, total collagen content, steaming loss, texture property, free delicious amino acids contents, PUFAs, and n-3/n-6 PUFAs in flesh were observed among the three groups of C-0, C-20, and C-40 (P > 0.05). Compared to the control group, C-60, C-80, and C-100 groups showed lower flesh hardness, chewiness, shear force, and higher steaming loss and resilience (P < 0.05). There were no significant differences in serum TP, TG, GLU, and ALB contents, boiling loss, freezing loss, total free amino acids, SAFs and MUFAs among all the groups (P >0.05). Conclusively, in a diet containing 560 g/kg FM, chlorella meal could replace 40% dietary FM without negative effects on the growth and flesh quality, while increase the body redness of white shrimp.
Collapse
Affiliation(s)
- Menglu Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenxiang Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuanyuan Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - XiangJun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Tie H, Yu D, Yang F, Jiang Q, Xu Y, Xia W. Postmortem grass carp (
Ctenopharyngodon idella
) muscle towards the disruption of integrity: A likely cause of abnormal regulation of tight junction and decreased antioxidant capacity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
17
|
Rotabakk BT, Stien LH, Skåra T. Thaw rigor in Atlantic salmon (Salmo salar) fillets, as affected by thawing rate and frozen storage time. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhou Y, Wu P, Feng L, Jiang WD, Liu Y, Peng Y, Kuang SY, Tang L, Li SW, Zhou XQ. Improvement of nutritional value and sensory quality by promoting protein deposition and muscle fiber growth in grass carp muscle (Ctenopharyngodon idella): the effect of cinnamaldehyde. Food Chem 2022; 399:133799. [DOI: 10.1016/j.foodchem.2022.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
|
19
|
Peng L, You J, Wang L, Shi L, Liao T, Huang Q, Xiong S, Yin T. Insight into the mechanism on texture change of Wuchang bream muscle during live transportation using a UPLC-QTOF-MS based metabolomics method. Food Chem 2022; 398:133796. [DOI: 10.1016/j.foodchem.2022.133796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 01/18/2023]
|
20
|
Wang X, Xie X, Zhang T, Zheng Y, Guo Q. Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at −18 °C: With emphasis on the correlation between water status and classical quality indices. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Jakobsen AN, Gabrielsen L, Johnsen EM, Rotabakk BT, Lerfall J. Application of soluble gas stabilization technology on ready-to-eat pre-rigor filleted Atlantic salmon (Salmo salar L.). J Food Sci 2022; 87:2377-2390. [PMID: 35546451 PMCID: PMC9322570 DOI: 10.1111/1750-3841.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract The demand for high‐quality, convenient, and sustainable salmon products represents a potential for value‐added product development and novel packaging solutions. Soluble gas stabilization (SGS) technology, which applies dissolved CO2 in the product before packaging, represents a novel approach to retain product quality and prevent microbiological deterioration during cold storage of pre‐rigor filleted salmon loins. The present study aimed to examine the solubility of CO2 in salmon loins as affected by rigor status. In addition, the effect of predissolved CO2 on the overall quality of pre‐rigor vacuum‐packed Atlantic salmon (Salmo salar L.) was investigated during storage at 4°C. The CO2 pretreatment was conducted, exposing loins to 100% CO2 for 18 h at 4°C (the control group was kept in air at 4°C) before repackaging and storage for 15 days. Dissolved CO2 in the muscle (equilibrium achieved four days post packaging) was slightly higher in pre‐rigor than post‐rigor salmon loins (pequilibrium = 0.006). Moreover, the overall spoilage (Hvalue) and microbiological stability of salmon fillets stored in SGS‐vacuum were significantly improved compared to vacuum‐packed loins (p < 0.05). The results demonstrate that SGS technology can maintain the overall quality of pre‐rigor vacuum‐packed salmon loins without introducing the high gas‐to‐product volume ratio recognized by modified atmosphere packaging. Thus, the application of SGS technology on pre‐rigor loins can lead to higher economic gain and environmental benefits due to the reduced amount of required packaging material and reduced food waste. Practical Application CO2 can be dissolved in pre‐rigor salmon loins before vacuum packaging to increase product shelf life during cold storage.
Collapse
Affiliation(s)
- Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa Gabrielsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Marie Johnsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
22
|
Novel active biopackaging incorporated with macerate of carob (Ceratonia siliqua L.) to extend shelf-life of stored Atlantic salmon fillets (Salmo salar L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Lerfall J, Shumilina E, Jakobsen AN. The significance of Shewanella sp. strain HSO12, Photobacterium phosphoreum strain HS254 and packaging gas composition in quality deterioration of fresh saithe fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Chan SS, Roth B, Jessen F, Jakobsen AN, Lerfall J. Water holding properties of Atlantic salmon. Compr Rev Food Sci Food Saf 2021; 21:477-498. [PMID: 34873820 DOI: 10.1111/1541-4337.12871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
With global seafood production increasing to feed the rising population, there is a need to produce fish and fishery products of high quality and freshness. Water holding properties, including drip loss (DL) and water holding capacity (WHC), are important parameters in determining fish quality as they affect functional properties of muscles such as juiciness and texture. This review focuses on the water holding properties of Atlantic salmon and evaluates the methods used to measure them. The pre- and postmortem factors and how processing and preservation methods influence water holding properties and their correlations to other quality parameters are reviewed. In addition, the possibility of using modelling is explained. Several methods are available to measure WHC. The most prevalent method is the centrifugation method, but other non-invasive and cost-effective approaches are increasingly preferred. The advantages and disadvantages of these methods and future trends are evaluated. Due to the diversity of methods, results from previous research are relative and cannot be directly compared unless the same method is used with the same conditions.
Collapse
Affiliation(s)
- Sherry Stephanie Chan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Roth
- Department of Processing Technology, Nofima AS, Stavanger, Norway
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
25
|
Evaluation of physical and instrumentally determined sensory attributes of Atlantic salmon portions packaged in modified atmosphere and vacuum skin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhang L, Li Q, Hong H, Luo Y, Lametsch R. Search for proteomic markers for stunning stress and stress-induced textural tenderization in silver carp (Hypophthalmichthys molitrix) fillets using label-free strategy. Food Res Int 2020; 137:109678. [DOI: 10.1016/j.foodres.2020.109678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
|
27
|
Chan SS, Roth B, Jessen F, Løvdal T, Jakobsen AN, Lerfall J. A comparative study of Atlantic salmon chilled in refrigerated seawater versus on ice: from whole fish to cold-smoked fillets. Sci Rep 2020; 10:17160. [PMID: 33051493 PMCID: PMC7555898 DOI: 10.1038/s41598-020-73302-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Water and salt uptake, and water holding capacity (WHC) of whole gutted Atlantic salmon superchilled at sub-zero temperatures in refrigerated seawater (RSW) were compared to traditional ice storage. Following the entire value chain, the whole salmon was further processed, and fillets were either chilled on ice or dry salted and cold-smoked. Changes in quality parameters including colour, texture, enzyme activity and microbial counts were also analyzed for 3 weeks. Our results showed that when fish were removed from the RSW tank after 4 days and further chilled for 3 days, an overall weight gain of 0.7%, salt uptake of 0.3% and higher WHC were observed. In contrast, ice-stored fish had a total weight loss of 1% and steady salt uptake of 0.1%. After filleting, raw fillets from whole fish initially immersed in RSW had better gaping occurrence, softer texture, lower cathepsin B + L activity but higher microbiological growth. Otherwise, there were no differences in drip loss nor colour (L*a*b*) on both raw and smoked fillets from RSW and iced fish. Storage duration significantly affected quality parameters including drip loss, colour, texture, enzyme activity and microbial counts in raw fillets and drip loss, WHC, redness and yellowness in smoked fillets.
Collapse
Affiliation(s)
- Sherry Stephanie Chan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Bjørn Roth
- Department of Process Technology, Nofima AS, P.O. Box 327, 4002, Stavanger, Norway
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Trond Løvdal
- Department of Process Technology, Nofima AS, P.O. Box 327, 4002, Stavanger, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| |
Collapse
|
28
|
Fantini LE, Rodrigues RA, Honorato CA, dos Reis Goes ES, Julien Ferraz AL, de Lara JAF, Hanson T, de Campos CM. Resting time before slaughter restores homeostasis, increases rigor mortis time and fillet quality of surubim Pseudoplatystoma spp. PLoS One 2020; 15:e0233636. [PMID: 32442227 PMCID: PMC7244141 DOI: 10.1371/journal.pone.0233636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 12/02/2022] Open
Abstract
This study assesses the respiratory dynamics related to stress parameters and resting time before slaughter, in the quality of surubim (Pseudopatystoma spp.) fillets. A completely randomized design was conducted using five treatments: resting time before slaughter of 0, 2, 4, 8 and 24 hours, with 15 fish sampled per treatment. Time 0 corresponded to the treatment without resting time, where the fish were slaughtered immediately after arriving at the processing plant. The resting time did not affect the electrolyte balance, hemoglobin, plasma, hepatic glycogen, myofibrillar fragmentation index (MFI) and water holding capacity (WHC) of surubins. However, with increased resting time, there was a significant decrease in muscle glycogen and an increase in blood pH and blood bicarbonate levels. Additionally, respiratory parameters showed an increase in pO2 and, consequently, in O2 saturation and a decrease in pCO2.The hematocrit and MCV values of the surubins after 24 hours of resting decreased significantly. In the first hours of resting, the highest values of erythrocytes and CHCM were observed. The lowest level of stress was observed for fish having 24 hours of resting. Fish having longer resting periods (8 and 24 hours) presented fillets with a higher pH (P <0.05) and the rigor mortis establishment time was shorter for the first 2 hours and 24 hours of resting time. There was a linear decrease in fillet lightness and an increase in the intensity of red (CIE a*) color up to 24 hours when resting was increased. In CIE b*, a linear decrease (P <0.05) of the yellow intensity of the fillets was observed as the surubim resting time increased. A resting time of 4 to 8 hours before slaughter is effective in reestablishing homeostasis after transporting surubim, providing fillets with higher quality and a greater length of the pre-rigor mortis period.
Collapse
Affiliation(s)
- Letícia Emiliani Fantini
- Animal Science Graduate Program, State University of Mato Grosso do Sul—UEMS, Aquidauana, Mato Grosso do Sul, Brazil
- * E-mail:
| | - Robson Andrade Rodrigues
- Animal Science Graduate Program, State University of Mato Grosso do Sul—UEMS, Aquidauana, Mato Grosso do Sul, Brazil
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis—UFSC, Florianopolis, Santa Catarina, Brazil
| | - Claucia Aparecida Honorato
- Animal Science Graduate Program, Federal University of Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Elenice Souza dos Reis Goes
- Animal Science Graduate Program, Federal University of Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - André Luiz Julien Ferraz
- Animal Science Graduate Program, State University of Mato Grosso do Sul—UEMS, Aquidauana, Mato Grosso do Sul, Brazil
| | | | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Science, Auburn University (SFAAS-AU), Auburn, AL, United States of America
| | - Cristiane Meldau de Campos
- Animal Science Graduate Program, State University of Mato Grosso do Sul—UEMS, Aquidauana, Mato Grosso do Sul, Brazil
- Animal Science Graduate Program, Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul—UFMS, Campo Grande, Brazil
| |
Collapse
|
29
|
Skjold V, Joensen JK, Esaiassen M, Olsen RL. Determination of pH in Pre rigor Fish Muscle – Method Matters. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1748781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vetle Skjold
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jóan Karl Joensen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Margrethe Esaiassen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar L. Olsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Determination and Comparison of Physical Meat Quality Parameters of PERCIDAE and Salmonidae in Aquaculture. Foods 2020; 9:foods9040388. [PMID: 32230897 PMCID: PMC7230805 DOI: 10.3390/foods9040388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Although aquaculture has been the fastest growing food sector for decades, there are no standardized parameters for most of the fish species regarding physical meat quality. Therefore, this study provides for the first time an overview of the physical meat characteristics of the most important fish species of the German Baltic Sea coast. Traditional farmed salmonids (rainbow trout (Oncorhynchus mykiss) and maraena whitefish (Coregonus maraena) as well as two percids (European perch, Perca fluviatilis and pikeperch, Sander lucioperca) were utilized for this comparison. The results demonstrate that the meat of the salmonids is very analogous. However, the post mortem degradation process starts faster in trout meat. In contrast, the meat quality characteristics of the percids are relatively different. The meat of pikeperch has comparatively low shear strength with a high water-holding capacity resulting in high meat tenderness. The opposite situation is present in European perch. The results indicate that it is not possible to establish the overall quality characteristics for fish or production form, as there is a high range of variability. Consequently, it is particularly important that meat quality characteristics are developed for important aquaculture species for further improvement through changes in husbandry conditions when necessary.
Collapse
|
31
|
Anders N, Eide I, Lerfall J, Roth B, Breen M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 2020; 15:e0228454. [PMID: 32053624 PMCID: PMC7018012 DOI: 10.1371/journal.pone.0228454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022] Open
Abstract
In commercial wild capture pelagic fisheries it is common practice to crowd catches to high densities to allow efficient pumping onboard. Crowding during the final stages of purse seine capture for small pelagic species often results in intense and sustained behavioural escape responses. Such a response may trigger a shift in energy production from aerobic to anaerobic pathways and result in metabolic acid accumulation and exhaustion of intracellular reserves of ATP. Where there is insufficient time or opportunity to recover to physiological equilibrium before death, pre-mortem stress may be an important determinant of fillet quality, as has been shown for a variety of farmed fish species. However, there is currently a lack of knowledge related to the flesh quality implications of capture stress for wild captured species in European waters. Here we show that crowding results in a physiological stress response that has consequences for flesh quality in the wild captured species Atlantic mackerel (Scomber scombrus). Using small schools in tanks and aquaculture net pens in three separate experiments, we found crowding results in physiological changes in mackerel consistent with an acute stress response and anaerobic metabolism. Consequently, we found crowded fish had more acidic pre- and post-mortem muscle pH as well as indications of faster onset and strength of rigor mortis and increased cathepsin B & L activity. We examined fillet flesh quality after two and seven days of ice storage and found reduced green colouration, increased gaping (separation of muscle myotomes) and reduced textural firmness associated with fish which had been crowded. However, the effects on quality were dependant on experiment and/or storage time. These results indicate the potential of crowding capture stress to influence the flesh quality of an economically important species and may have important implications for the wild capture pelagic fishing industry.
Collapse
Affiliation(s)
- Neil Anders
- Fish Capture Division, Institute of Marine Research (IMR), Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ida Eide
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Roth
- Department of Processing Technology, Nofima, Stavanger, Norway
| | - Michael Breen
- Fish Capture Division, Institute of Marine Research (IMR), Bergen, Norway
| |
Collapse
|
32
|
Isık A, Atamanalp M, Alak G. Evaluation of antioxidant level and protein oxidation of rainbow trout (Oncorhynchus mykiss) fillets during rigor and post‐rigor. J Food Saf 2019. [DOI: 10.1111/jfs.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdulcelil Isık
- Graduate School of Natural and Applied Sciences Erzurum Turkey
| | - Muhammed Atamanalp
- Department of Fisheries and Seafood Processing Technology, Faculty of FisheriesAtatürk University Erzurum Turkey
| | - Gonca Alak
- Department of Fisheries and Seafood Processing Technology, Faculty of FisheriesAtatürk University Erzurum Turkey
| |
Collapse
|
33
|
Merlo TC, Contreras-Castillo CJ, Saldaña E, Barancelli GV, Dargelio MDB, Yoshida CMP, Ribeiro Junior EE, Massarioli A, Venturini AC. Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets. Food Res Int 2019; 125:108633. [DOI: 10.1016/j.foodres.2019.108633] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
34
|
Zhang L, Zhang Y, Jia S, Li Y, Li Q, Li K, Hong H, Luo Y. Stunning stress-induced textural softening in silver carp (Hypophthalmichthys molitrix) fillets and underlying mechanisms. Food Chem 2019; 295:520-529. [DOI: 10.1016/j.foodchem.2019.05.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 11/15/2022]
|
35
|
Klakegg Ø, Abayneh T, Fauske AK, Fülberth M, Sørum H. An outbreak of acute disease and mortality in Atlantic salmon (Salmo salar) post-smolts in Norway caused by Tenacibaculum dicentrarchi. JOURNAL OF FISH DISEASES 2019; 42:789-807. [PMID: 30893484 DOI: 10.1111/jfd.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
An outbreak of disease characterized by skin ulcers, fin rot and mortality was observed a few days after the transfer of Atlantic salmon (Salmo salar) from a freshwater smolt production facility to a land-based seawater post-smolt site. Dead and moribund fish had severe skin and muscle ulcers, often 2-6 cm wide, particularly caudal to the pectoral fins. Microscopic examination of smears from ulcers and head kidney identified long, slender Gram-negative rods. Histopathological analysis revealed abundance of long, slender Tenacibaculum-like bacteria in ulcers and affected fins. Genetic characterization using multilocus sequence analysis (MLSA) of seven housekeeping genes, including atpA, dnaK, glyA, gyrB, infB, rlmN and tgt, revealed that the isolates obtained during the outbreak were all clustered with the Tenacibaculum dicentrarchi-type strain (USC39/09T ) from Spain. Two bath challenge experiments with Atlantic salmon and an isolate of T. dicentrarchi from the outbreak were performed. No disease or mortality was observed in the first trial. In the second trial with a higher challenge dose of T. dicentrarchi and longer challenge time, we got 100% mortality within 48 hr. This is the first reported outbreak of disease caused by T. dicentrarchi in Norwegian farmed Atlantic salmon.
Collapse
Affiliation(s)
- Øystein Klakegg
- Previwo AS, Oslo, Norway
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Takele Abayneh
- National Veterinary Institute, Bishoftu/Debre-zeit, Ethiopia
| | - Aud Kari Fauske
- Previwo AS, Oslo, Norway
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Henning Sørum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
36
|
Rotabakk BT, Melberg GL, Lerfall J. Effect of Season, Location, Filleting Regime and Storage on Water-Holding Properties of Farmed Atlantic Salmon ( Salmo salar L.). Food Technol Biotechnol 2018; 56:238-246. [PMID: 30228798 DOI: 10.17113/ftb.56.02.18.5346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of season, localization, filleting regime and storage on water-holding properties of Atlantic salmon (Salmo salar L.) was investigated. Salmon was sampled at two different slaughter facilities (in the north and south of Norway) in autumn and spring and divided in pre- and post-rigor groups, which were sampled before and after filleting. This gave a total of 16 groups that were analyzed for water-holding capacity (WHC), water content and pH. In addition, a storage trial was performed to assess the effect of all the design variables on drip loss and the composition of the drip loss during up to 18 days of storage. WHC was significantly affected by both rigor status and filleting, while water content was affected by localization and filleting. In addition, post-rigor filleting gave significantly decreased drip loss compared to pre-rigor filleting. However, storage time had the highest impact on the drip loss. Based on this, it is concluded that pre-rigor filleted salmon have excellent water-holding properties and a great potential for early processing (pre-rigor processing). It was however difficult to find a clear connection between the drip loss and the water-holding capacity of the muscle.
Collapse
Affiliation(s)
- Bjørn Tore Rotabakk
- Nofima AS, Department of Processing Technology, P.O. Box 327, NO-4002 Stavanger, Norway
| | - Gaute Lunde Melberg
- Marine Harvest AS, Department of Quality and Environment Region South, P.O. Box 4102 Sandviken,
NO-5835 Bergen, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
37
|
Sun Y, Ma L, Ma M, Zheng H, Zhang X, Cai L, Li J, Zhang Y. Texture characteristics of chilled prepared Mandarin fish (Siniperca chuatsi) during storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1451343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Sun
- College of Food Science, Southwest University, Chongqing, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Mingsi Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Hong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojie Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Luyun Cai
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
38
|
A comparative study of diploid versus triploid Atlantic salmon (Salmo salar L.). The effects of rearing temperatures (5, 10 and 15°C) on raw material characteristics and storage quality. Food Chem 2017; 225:37-44. [DOI: 10.1016/j.foodchem.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 02/04/2023]
|
39
|
|
40
|
Ciaramella MA, Nair MN, Suman SP, Allen PJ, Schilling MW. Differential abundance of muscle proteome in cultured channel catfish (Ictalurus punctatus) subjected to ante-mortem stressors and its impact on fillet quality. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 20:10-18. [PMID: 27484844 DOI: 10.1016/j.cbd.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/10/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
The effects of environmental and handling stress during catfish (Ictalurus punctatus) aquaculture were evaluated to identify the biochemical alterations they induce in the muscle proteome and their impacts on fillet quality. Temperature (25°C and 33°C) and oxygen (~2.5mg/L [L] and >5mg/L [H]) were manipulated followed by sequential socking (S) and transport (T) stress to evaluate changes in quality when fish were subjected to handling (25-H-ST; temperature-oxygen-handling), oxygen stress (25-L-ST), temperature stress (33-H-ST) and severe stress (33-L-ST). Instrumental color and texture of fillets were evaluated, and muscle proteome profile was analyzed. Fillet redness, yellowness and chroma decreased, and hue angle increased in all treatments except temperature stress (33-H-ST). Alterations in texture compared to controls were observed when oxygen levels were held high. In general, changes in the abundance of structural proteins and those involved in protein regulation and energy metabolism were identified. Rearing under hypoxic conditions demonstrated a shift in metabolism to ketogenic pathways and a suppression of the stress-induced changes as the severity of the stress increased. Increased proteolytic activity observed through the down-regulation of various structural proteins could be responsible for the alterations in color and texture.
Collapse
Affiliation(s)
- Michael A Ciaramella
- Mississippi State University, Department of Food Science, Nutrition and Health Promotion, Herzer Building, 945 Stone Blvd, Box 9805, Mississippi State, MS 39762, United States; Mississippi State University, Department Wildlife, Fisheries and Aquaculture, Box 9690, Mississippi State, MS 39762, United States.
| | - Mahesh N Nair
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY 40546, United States
| | - Surendranath P Suman
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY 40546, United States.
| | - Peter J Allen
- Mississippi State University, Department Wildlife, Fisheries and Aquaculture, Box 9690, Mississippi State, MS 39762, United States.
| | - M Wes Schilling
- Mississippi State University, Department of Food Science, Nutrition and Health Promotion, Herzer Building, 945 Stone Blvd, Box 9805, Mississippi State, MS 39762, United States.
| |
Collapse
|
41
|
Zhang L, Li Q, Lyu J, Kong C, Song S, Luo Y. The impact of stunning methods on stress conditions and quality of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C during 72h postmortem. Food Chem 2016; 216:130-7. [PMID: 27596401 DOI: 10.1016/j.foodchem.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/16/2022]
Abstract
This study aimed to evaluate different stunning methods [percussion (T1), immersion in ice/water slurry (T2), and gill cut (T3)] on quality and stress conditions of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C in 72h postmortem. Rigor index (RI%), behavioral analysis, levels of lactic acid and muscle glycogen were measured for stress level evaluation. Meanwhile, sensory assessment, texture properties, cooking loss, adenosine triphosphate (ATP) related compounds, adenosine monophosphate deaminase (ADA) activity, and acid phosphatase (ACP) activity were analyzed. The least stress condition, significantly (P<0.05) higher initial glycogen content was observed in T1. Ice/water stunning reduced the rate of ATP degradation, reflected in the lowest K value during 72h. Aversive behaviors, significantly (P<0.05) higher cooking loss, hypoxanthine riboside (HxR) content, and lower sensory score were observed in T3. The results indicated that gill cut in aquatic processing industry should be avoided for inferior quality and aversive reactions during stunning.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jian Lyu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sijia Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Ciaramella MA, Kim T, Avery JL, Allen PJ, Schilling MW. The Effects of Sequential Environmental and Harvest Stressors on the Sensory Characteristics of Cultured Channel Catfish (
Ictalurus Punctatus
) Fillets. J Food Sci 2016; 81:S2031-8. [DOI: 10.1111/1750-3841.13374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Michael A. Ciaramella
- Mississippi State Univ, Dept. of Food Science Nutrition and Health Promotion Herzer Building, 945 Stone Blvd, Box 9805 Mississippi State MS 39762 U.S.A
- Mississippi State Univ, Dept. Wildlife Fisheries and Aquaculture Box 9690 Mississippi State MS 39762 U.S.A
| | - Taejo Kim
- Mississippi State Univ, Dept. of Food Science Nutrition and Health Promotion Herzer Building, 945 Stone Blvd, Box 9805 Mississippi State MS 39762 U.S.A
| | - Jimmy L. Avery
- Thad Cochran National Warmwater Aquaculture Center Delta Research and Extension Center P.O. Box 197 Stoneville MS 38776 U.S.A
| | - Peter J. Allen
- Mississippi State Univ, Dept. Wildlife Fisheries and Aquaculture Box 9690 Mississippi State MS 39762 U.S.A
| | - M. Wes Schilling
- Mississippi State Univ, Dept. of Food Science Nutrition and Health Promotion Herzer Building, 945 Stone Blvd, Box 9805 Mississippi State MS 39762 U.S.A
| |
Collapse
|
43
|
Jiang WD, Wen HL, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem 2016; 199:210-9. [DOI: 10.1016/j.foodchem.2015.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
44
|
Vera LM, Migaud H. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner. Chronobiol Int 2016; 33:530-42. [DOI: 10.3109/07420528.2015.1131164] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L. M. Vera
- Genetics and Reproduction Group, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - H. Migaud
- Genetics and Reproduction Group, Institute of Aquaculture, University of Stirling, Stirling, UK
| |
Collapse
|