1
|
Cheng M, Xu Y, Xu X, Yan B, Zhang X, Borijihan G, Wang Y, Li Y. Quick separation and enrichment of chlorogenic acid and its analogues by a high-efficient molecularly imprinted nanoparticles and evaluation of antioxidant and hypoglycemic activities. Food Chem 2025; 480:143902. [PMID: 40120308 DOI: 10.1016/j.foodchem.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Multiple interaction strategy to target was tried to use in the design of surface imprinting polymer. To validate this, active chlorogenic acid, a representative phenolic acid compound existing in many natural products, was selected as the template molecule and a magnetic molecularly imprinted nanoparticles (CGA-MMIPs) was synthesized. The characterizations indicated CGA-MMIPs was 20-50 nm, stable below 229.56 °C and had a saturation magnetic intensity of 17.90 emu/g. The prepared CGA-MMIPs exhibited high adsorption capacity (441.81 mg/g) and fast adsorption equilibrium for chlorogenic acid. It also was easy separation, high selectivity and good reusability, which was successfully used in quick separation of chlorogenic acid from Orthosiphon aristatus and Taraxacum mongolicum and Salvia miltiorrhiza. Moreover, the isolated substances possessed great antioxidant and hypoglycemic activities. These verified the strategy was useful and had huge prospects in the quick separation of chlorogenic acid or other phenolic acid compounds from natural products.
Collapse
Affiliation(s)
- Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Hebei Institute for Drug and Medical Device Control, Hebei 050033, China
| | - Xinyu Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bangqi Yan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guirong Borijihan
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China..
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Neurocritical Care Medicine Innovation Center, Ministry of Education, Tianjin University, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, China.
| |
Collapse
|
2
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers in the analysis of chlorogenic acid: A review. Anal Biochem 2024; 694:115616. [PMID: 38996900 DOI: 10.1016/j.ab.2024.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib-140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala-147002, Punjab, India.
| |
Collapse
|
3
|
Zhang L, Song X, Dong Y, Zhao X. Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice. Foods 2024; 13:2955. [PMID: 39335883 PMCID: PMC11431359 DOI: 10.3390/foods13182955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
A novel and environmentally friendly molecularly imprinted polymer (PCA-MIP) was successfully synthesized in an aqueous solution for the selective extraction of protocatechuic acid (PCA). In this study, a deep eutectic solvent (DES, choline chloride/methacrylic acid, 1:2, mol/mol) and chitosan were employed as the eco-friendly functional monomers. These two components interacted with PCA through hydrogen bonding, integrating a multitude of recognition sites within the PCA-MIP. Thus, the resulting PCA-MIP exhibited outstanding adsorption performance, rapid adsorption rate, and better selectivity, with a maximum binding capacity of 30.56 mg/g and an equilibrium time of 30 min. The scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analyses revealed that the synthesized polymers possessed a uniform morphology and substantial surface areas, which were conducive to their adsorption properties. Moreover, the PCA-MIP integrated with HPLC demonstrated its efficacy as an adsorbent for the selective extraction of PCA from mango juice. The PCA-MIP presented itself as an exemplary adsorbent, offering a highly effective and eco-friendly method for the enrichment of PCA from complex matrices.
Collapse
Affiliation(s)
- Liping Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xin Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuxiao Dong
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiyan Zhao
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
4
|
Shao Y, Zhao Z, An J, Hao C, Kang M, Rong X, Zhao H, Feng H. Preparation of surface molecular imprinting fluorescent sensor based on magnetic porous silica for sensitive and selective determination of catechol. Mikrochim Acta 2024; 191:156. [PMID: 38407632 DOI: 10.1007/s00604-024-06244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
A magnetic fluorescent molecularly imprinted sensor was successfully prepared and implemented to determine catechol (CT). Fe3O4 nanoparticles were synthesized by the solvothermal technique and mesoporous Fe3O4@SiO2@mSiO2 imprinted carriers were prepared by coating nonporous and mesoporous SiO2 shells on the surface of the Fe3O4 subsequently. The magnetic surface molecularly imprinted fluorescent sensor was created after the magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane to introduce double bonds on the surface of the carries and the polymerization was carried out in the presence of CT and fluorescent monomers. The magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane and double bonds were introduced on the surface of the carriers. After CT binding with the molecularly imprinted polymers (MIPs), the fluorescent intensity of the molecularly imprinted polymers (Ex = 400 nm, Em = 523 nm) increased significantly. The fluorescent intensity ratio (F/F0) of the sensor demonstrated a favorable linear correlation with the concentration of CT between 5 and 50 μM with a detection limit of 0.025 μM. Furthermore, the sensor was successfully applied to determine CT in actual samples with recoveries of 96.4-105% and relative standard deviations were lower than 3.5%. The results indicated that the research of our present work provided an efficient approach for swiftly and accurately determining organic pollutant in water.
Collapse
Affiliation(s)
- Yanming Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China.
| | - Zhizhen Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Jun An
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Caifeng Hao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Mengyi Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Xuan Rong
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Huanhuan Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Huanran Feng
- Interdisciplinary Research Center of Smart Sensors, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi, 710126, People's Republic of China
| |
Collapse
|
5
|
Li Y, Zhang J, Zhang C, Dang W, Xue L, Liu H, Cheng H, Yan X. Facile and selective separation of anthraquinones by alizarin-modified iron oxide magnetic nanoparticles. J Chromatogr A 2023; 1702:464088. [PMID: 37230053 DOI: 10.1016/j.chroma.2023.464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Anthraquinones are widely distributed in higher plants and possess broad biological activities. The conventional separation procedures for isolating anthraquinones from the plant crude extracts require multiple extraction, concentration, and column chromatography steps. In this study, we synthesized three alizarin (AZ)-modified Fe3O4 nanoparticles (Fe3O4@AZ, Fe3O4@SiO2-AZ, and Fe3O4@SiO2-PEI-AZ) by thermal solubilization method. Fe3O4@SiO2-PEI-AZ showed strong magnetic responsiveness, high methanol/water dispersion, good recyclability, and high loading capacity for anthraquinones. To evaluate the feasibility of using Fe3O4@SiO2-PEI-AZ for separating various aromatic compounds, we employed molecular dynamics simulations to predict the adsorption/desorption effects of PEI-AZ for various aromatic compounds in different methanol concentrations. The results showed that the anthraquinones could be efficiently separated from the monocyclic and bicyclic aromatic compounds by adjusting the methanol/water ratio. The Fe3O4@SiO2-PEI-AZ nanoparticles were then used to separate the anthraquinones from the rhubarb extract. At 5% methanol, all the anthraquinones were adsorbed by the nanoparticles, thus allowing their separation from other components in the crude extract. Compared with the conventional separation methods, this adsorption method has the advantages of high adsorption specificity, simple operation, and solvent saving. This method sheds light on the future application of functionalized Fe3O4 magnetic nanoparticles to selectively separate desired components from complex plant and microbial crude extracts.
Collapse
Affiliation(s)
- Yuexuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Izcara S, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Application of a hybrid large pore mesoporous silica functionalized with β-cyclodextrin as sorbent in dispersive solid-phase extraction. Toward sustainable sample preparation protocols to determine polyphenolic compounds in Arbutus unedo L. fruits by UHPLC-IT-MS/MS. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Zhang L, Yu H, Chen H, Huang Y, Bakunina I, de Sousa DP, Sun M, Zhang J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023; 164:105383. [PMID: 36481366 DOI: 10.1016/j.fitote.2022.105383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.
Collapse
Affiliation(s)
- Luxuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Pharmacy 2019, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
8
|
Vahabi M, Ebrahimzadeh H, Zendehdel R, Jalilian N, Khodakarim S. Selective Determination of n-Hexane and Methyl Ethyl Ketone (MEK) in Urine by Magnetic-Silica Aerogel-Based Molecularly Imprinted Polymers (MIPs) with Gas Chromatography – Flame Ionization Detection (GC-FID). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2128364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Soheila Khodakarim
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Ariani MD, Zuhrotun A, Manesiotis P, Hasanah AN. Magnetic Molecularly Imprinted Polymers: An Update on Their Use in the Separation of Active Compounds from Natural Products. Polymers (Basel) 2022; 14:1389. [PMID: 35406265 PMCID: PMC9003505 DOI: 10.3390/polym14071389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
During the last few years, separation techniques using molecularly imprinted polymers (MIPs) have been developed, making breakthroughs using magnetic properties. Compared to conventional MIPs, magnetic molecularly imprinted polymers (MMIPs) have advantages in sample pretreatment due to their high specificity and selectivity towards analytes as a result of their larger specific surface areas and highly accessible specific binding sites. The techniques of isolation of active compounds from natural products usually require very long process times and low compound yields. When MMIPs are used in sample separation as Solid Phase Extraction (SPE) sorbents, the MMIPs are introduced into the dissolved sample and spread evenly, and they form bonds between the analyte and the MMIPs, which are then separated from the sample matrix using an external magnetic field. This process of separating analytes from the sample matrix makes the separation technique with MMIPs very simple and easy. This review discusses how to synthesize MMIPs, which factors must be considered in their synthesis, and their application in the separation of active compounds from natural products. MMIPs with magnetic core-shells made by co-precipitation can be a good choice for further development due to the high synthesis yield. Further optimization of the factors affecting the size and distribution of magnetic core-shell particles can obtain higher synthesis yields of MMIPs with higher adsorption capacity and selectivity. Thus, they can isolate target compounds from natural plants in high yields and purity.
Collapse
Affiliation(s)
- Marisa Dwi Ariani
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Bandung 45463, West Java, Indonesia;
| | - Ade Zuhrotun
- Pharmacy Biology Department, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Bandung 45463, West Java, Indonesia;
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, Queens University of Belfast, Belfast BT9 5AG, UK;
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Bandung 45463, West Java, Indonesia;
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Bandung 45463, West Java, Indonesia
| |
Collapse
|
10
|
Lie KR, Samuel AO, Hasanah AN. Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Li J, Zhou X, Yan Y, Shen D, Lu D, Guo Y, Xie L, Deng B. Selective Recognition of Gallic Acid Using Hollow Magnetic Molecularly Imprinted Polymers with Double Imprinting Surfaces. Polymers (Basel) 2022; 14:175. [PMID: 35012196 PMCID: PMC8747617 DOI: 10.3390/polym14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Gallic acid is widely used in the field of food and medicine due to its diversified bioactivities. The extraction method with higher specificity and efficiency is the key to separate and purify gallic acid from complex biological matrix. Herein, using self-made core-shell magnetic molecularly imprinted polymers (MMIP) with gallic acid as template, a hollow magnetic molecularly imprinted polymer (HMMIP) with double imprinting/adsorption surfaces was prepared by etching the mesoporous silica intermediate layer of MMIP. The characterization and adsorption research showed that the HMMIP had larger specific surface area, higher magnetic response strength and a more stable structure, and the selectivity and saturated adsorption capacity (2.815 mmol/g at 318 K) of gallic acid on HMMIP were better than those of MMIP. Thus, in addition to MMIP, the improved HMMIP had excellent separation and purification ability to selectively extract gallic acid from complex matrix with higher specificity and efficiency.
Collapse
Affiliation(s)
- Jiawei Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Xinji Zhou
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yu Yan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Danqing Lu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Bin Deng
- College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, China
| |
Collapse
|
13
|
Effting L, Prete MC, Urbano A, Effting L, González MEC, Bail A, Tarley CRT. Preparation of magnetic nanoparticle-cholesterol imprinted polymer using semi-covalent imprinting approach for ultra-effective and highly selective cholesterol adsorption. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lyu H, Wu X, Yang Y, Chen H, Dang X, Liu X. Preparation, characterization and application of double yolk–shell structure magnetic molecularly imprinted polymers for extraction of 17β-estradiol. NEW J CHEM 2022. [DOI: 10.1039/d2nj00237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel double yolk–shell structure molecularly imprinted polymers were synthesized by surface polymerization with 17β-estradiol as the template, followed by chemical etching.
Collapse
Affiliation(s)
- Hui Lyu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xinze Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Yinpeng Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xiaolan Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| |
Collapse
|
15
|
Susanti I, Mutakin M, Hasanah AN. Factors affecting the analytical performance of molecularly imprinted mesoporous silica. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ike Susanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| | - Aliya N. Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
- Drug Development Study Center, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| |
Collapse
|
16
|
Fan W, Yang D, Ding N, Chen P, Wang L, Tao G, Zheng F, Ji S. Application of core-satellite polydopamine-coated Fe 3O 4 nanoparticles-hollow porous molecularly imprinted polymer combined with HPLC-MS/MS for the quantification of macrolide antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1412-1421. [PMID: 33683249 DOI: 10.1039/d0ay02025g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Core-satellite-structured magnetic nanosorbents (MNs) used for the selective extraction of macrolide antibiotics (MACs) were prepared in this study. The MNs (core-satellite polydopamine-coated Fe3O4 nanoparticles-hollow porous molecularly imprinted polymer) consisted of polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA) "core" linked to numerous hollow porous molecularly imprinted polymer (HPMIP) "satellites" with bridging amine functional groups. It is worth mentioning that HPMIPs act as "anchors" for selectively capturing target molecules. Polymers were characterized using TEM, SEM, FT-IR, VSM, and TGA and applied as magnetic dispersive solid-phase extraction (MDSPE) sorbents for the enrichment of trace MACs from a complex food matrix prior to quantification by HPLC-MS/MS. Nanocomposites revealed outstanding magnetic properties (36.1 emu g-1), a high adsorption capacity (103.6 μmol g-1), selectivity (IF = 3.2), and fast kinetic binding (20 min) for MACs. The multiple advantages of the novel core-satellite-structured magnetic molecularly imprinted nanosorbents were confirmed, which makes us believe that the preparation method of the core-satellite MNs can be applied to other fields involving molecular imprinting technology.
Collapse
Affiliation(s)
- Wenjia Fan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Susanti I, Hasanah AN. How to develop molecularly imprinted mesoporous silica for selective recognition of analytes in pharmaceutical, environmental, and food samples. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ike Susanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| | - Aliya N. Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
- Pharmaceutical Dosage Development Study Center, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| |
Collapse
|
18
|
Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ma X, Zhang X, Lin H, Abd El-Aty AM, Rabah T, Liu X, Yu Z, Yong Y, Ju X, She Y. Magnetic molecularly imprinted specific solid-phase extraction for determination of dihydroquercetin from Larix griffithiana using HPLC. J Sep Sci 2020; 43:2301-2310. [PMID: 32191398 DOI: 10.1002/jssc.201901086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 11/07/2022]
Abstract
The naturally occurring quercetin flavonoid, dihydroquercetin, is widely distributed in plant tissues and has a variety of biological activities. Herein, a magnetic molecularly imprinted solid-phase extraction was tailor made for selective determination of dihydroquercetin in Larix griffithiana using high-performance liquid chromatography. Amino-functionalized core-shell magnetic nanoparticles were prepared and characterized using scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and infrared spectroscopy. The polymer had an average diameter of 250 ± 2.56 nm and exhibited good stability and adsorption for template molecule, which is enriched by hydrogen bonding interaction. Multiple factors for extraction, including loading, washing, elution solvents, and extraction time, were optimized. The limit of detection was 1.23 μg/g. The precision determined at various concentration of dihydroquercetin was less than 4% and the mean recovery was between 74.64 and 101.80%. It has therefore been shown that this protocol can be used as an alternative extraction to quantify dihydroquercetin in L. griffithiana and purify quercetin flavonoid from other complex matrices.
Collapse
Affiliation(s)
- Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Xukun Zhang
- College of Pharmacy, Queen's University, Belfast, Northern Ireland, UK
| | - Hongling Lin
- Zhanjiang Experimental Station, Southern-Subtropical Crop Research Institute, Chinese Academy of Tropical Sciences, Zhanjiang, P. R. China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, P. R. China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Tsdan Rabah
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
20
|
Casado N, Morante-Zarcero S, Pérez-Quintanilla D, Câmara JS, Sierra I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ji K, Luo X, He L, Liao S, Hu L, Han J, Chen C, Liu Y, Tan N. Preparation of hollow magnetic molecularly imprinted polymer and its application in silybin recognition and controlled release. J Pharm Biomed Anal 2020; 180:113036. [DOI: 10.1016/j.jpba.2019.113036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023]
|
22
|
Farajzadeh MA, Safi R, Yadeghari A. Magnetic solid-phase extraction method for extraction of some pesticides in vegetable and fruit juices. J Sep Sci 2020; 43:1523-1530. [PMID: 31989753 DOI: 10.1002/jssc.201900790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
A new version of magnetic solid-phase extraction performed in a narrow-bore tube has been proposed for the extraction and preconcentration of different pesticides from various vegetable and fruit juices followed by gas chromatography. A few milligrams of C8 @SiO2 @Fe3 O4 nanoparticles are added into an aqueous sample solution placed in a narrow-bore tube. The sorbent particles move down through the tube under gravity and are collected at the end of the tube by applying an external magnetic field. The end of the tube is narrower and it is connected to a stopcock. After a predetermined time, the stopcock is opened and the solution is passed through the bed of the sorbent maintained by the magnet. Then the adsorbed analytes are desorbed using an elution solvent. To achieve high enrichment factors, a dispersive liquid-liquid microextraction method is carried out. The nanoparticles were characterized by scanning electron microscopy, X-ray diffraction, and FTIR spectroscopy. Under the optimum extraction conditions, limits of detection and quantification were in the ranges of 0.1-0.3 and 0.3-0.9 μg/L, respectively. High enrichment factors (1166-1605) and good extraction recoveries (58-80%) were obtained.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Razieh Safi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Adeleh Yadeghari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Wu M, Fan Y, Li J, Lu D, Guo Y, Xie L, Wu Y. Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres' Enrichment and Carbon Dots' Fluorescence-Detection of Organophosphorus Pesticide Residues. Polymers (Basel) 2019; 11:polym11111770. [PMID: 31717892 PMCID: PMC6918286 DOI: 10.3390/polym11111770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
The rapid detection of organophosphorus pesticide residues in food is crucial to food safety. One type of novel, magnetic, molecularly-imprinted polymeric microsphere (MMIP) was prepared with vinyl phosphate and 1-octadecene as a collection of dual functional monomers, which were screened by Gaussian09W molecular simulation. MMIPs were used to enrich organic phosphorus, which then detected by fluorescence quenching in vinyl phosphate-modified carbon dots (CDs@VPA) originated from anhydrous citric acid. MMIPs and CDs@VPA were characterized by TEM, particle size analysis, FT-IR, VSM, XPS, adsorption experiments, and fluorescence spectrophotometry in turn. Through the fitting data from experiment and Gaussian quantum chemical calculations, the molecular recognition properties and the mechanism of fluorescence detection between organophosphorus pesticides and CDs@VPA were also investigated. The results indicated that the MMIPs could specifically recognize and enrich triazophos with the saturated adsorption capacity 0.226 mmol g-1, the imprinting factor 4.59, and the limit of recognition as low as 0.0006 mmol L-1. Under optimal conditions, the CDs@VPA sensor has shown an extensive fluorescence property with a LOD of 0.0015 mmol L-1 and the linear range from 0.0035 mmol L-1 to 0.20 mmol L-1 (R2 = 0.9988) at 390 nm. The mechanism of fluorescence detection of organic phosphorus with CDs@VPA sensor might be attributable to hydrogen bonds formed between heteroatom O, N, S, or P, and the O-H group, which led to fluorescent quenching. Meanwhile, HN-C=O and Si-O groups in CDs@VPA system might contribute to cause excellent blue photoluminescence. The fluorescence sensor was thorough successfully employed to the detection of triazophos in cucumber samples, illustrating its tremendous value towards food sample analysis in complex matrix.
Collapse
Affiliation(s)
- Mao Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
| | - Yajun Fan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
| | - Jiawei Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
| | - Danqing Lu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (M.W.); (Y.F.); (D.L.); (Y.G.)
- Correspondence: (L.X.); (Y.W.); Tel.: +86-731-85623648 (L.X.)
| | - Yiqiang Wu
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (Y.W.); Tel.: +86-731-85623648 (L.X.)
| |
Collapse
|
24
|
Tian X, She C, Qi Z, Xu X. Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Fu N, Li L, Liu K, Kim CK, Li J, Zhu T, Li J, Tang B. A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Talanta 2019; 197:567-577. [DOI: 10.1016/j.talanta.2019.01.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
26
|
Zhou T, Ding L, Che G, Jiang W, Sang L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Hu L, Zhou T, Luo D, Feng J, Tao Y, Zhou Y, Mei S. Bioaccumulation of tetrabromobisphenol A in a laboratory-based fish-water system based on selective magnetic molecularly imprinted solid-phase extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1356-1362. [PMID: 30308822 DOI: 10.1016/j.scitotenv.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Recently, magnetic solid-phase extraction (MSPE) using magnetic molecularly imprinted polymers (MMIPs), which is a simple process with excellent selectivity, has attracted much attention for the determination of environmental pollutants. In this study, MMIPs were used as an adsorbent to establish a selective MSPE method coupled with high-performance liquid chromatography using ultraviolet detection (HPLC-UV) for the determination of tetrabromobisphenol A (TBBPA) levels in water and fish samples. The samples were collected from a laboratory-based fish-water system after 0, 2, 5, 8, 11, 20, 30, and 50 days. We found that the concentrations of TBBPA in the sample group spiked with TBBPA decreased in the water samples over time and increased in the fish samples from 2 to 30 days, then finally decreased. The calculated bioconcentration factor (BCF) increased over time, reaching 33.98 L/kg after 50 days exposure to TBBPA. Linear and exponential kinetic models were applied to fit the correlation between BCF and exposure time, and the constant of the time-dependent BCF (Ku) ranged from 0.0364 to 1.5250 L/kg per day with a corresponding R2 of 0.6786 to 0.9985. Simplified mathematical models to evaluate the transfer characteristics of TBBPA in a laboratory-based fish-water system have been developed.
Collapse
Affiliation(s)
- Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jingwen Feng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yusun Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
28
|
Simultaneous Voltammetric Determination of Gallic and Protocatechuic Acids in Mango Juice Using a Reduced Graphene Oxide-Based Electrochemical Sensor. BEVERAGES 2019. [DOI: 10.3390/beverages5010017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A simple and sensitive reduced graphene oxide-modified glassy carbon electrode-based electrochemical sensor was used for the concomitant determination of gallic acid (GA) and protocatechuic (PA) acid. The prepared sensor showed a significant enhancement in synergetic electro-catalytic performance towards GA and PA oxidation. A good resolution of the voltammetry peaks was obtained and a method of square wave voltammetry was developed for detection. The modified electrode was characterized by electrochemical techniques. The optimal experimental parameters were considered. GA and PA exhibited a linear increase in the peak currents with their concentrations in the range from 20 to 144 µmol·L−1 for GA and from 20 to 166 µmol·L−1 for PA, with limits of detection (S/N = 3) of 30.8 µmol·L−1 for GA and 10.2 µmol·L−1 for PA. The sensor applicability was simultaneously tested for the analytical determination of GA and PA in mango juice and exhibited a robust functionality.
Collapse
|
29
|
He Y, Xiao W, Li G, Yang F, Wu P, Yang T, Chen C, Ding P. A novel lead-ion-imprinted magnetic biosorbent: preparation, optimization and characterization. ENVIRONMENTAL TECHNOLOGY 2019; 40:499-507. [PMID: 29098947 DOI: 10.1080/09593330.2017.1397762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/15/2017] [Indexed: 05/28/2023]
Abstract
A novel biological material with high adsorption capacity and good selectivity for Pb2+ was synthesized. Response surface methodology was utilized for the optimization of the variables during the synthesis. The synthesized biosorbent was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The optimized preparation condition for lead-ion-imprinted magnetic biosorbent (Pb(II)-IMB) was obtained (0.19 g chitosan (CTS), 0.43 g magnetic Fe3O4 and 2.11 mL/gCTS of epichlorohydrin). The highest value for the removal of lead ion was estimated to be 86.85%, with an absorption capacity of 69.48 mg/g. The characterization results indicated that Pb(II)-IMB was rich in adsorbable groups to adsorb metal ions. Because of the magnetic property of the synthesized products, it can be separated from the water easily. The relative selectivity coefficients of Pb(II)-IMB for Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Ni(II) were 2.32, 2.20 and 2.05 times higher than the non-imprinted magnetic biosorbent, respectively. Pb(II)-IMB could be reused at least five times with only ∼13% loss. These results suggested that Pb(II)-IMB was a new, efficient and low-cost material for removing Pb(II) from wastewater.
Collapse
Affiliation(s)
- Yayuan He
- a Xiang Ya School of Public Health , Central South University , Changsha , Hunan , People's Republic of China
| | - Wen Xiao
- b Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, Hunan, People's Republic of China
| | - Guiyin Li
- c School of Life and Environmental Sciences , Guilin University of Electronic Technology , Guilin , Guangxi , People's Republic of China
| | - Fei Yang
- a Xiang Ya School of Public Health , Central South University , Changsha , Hunan , People's Republic of China
| | - Pian Wu
- a Xiang Ya School of Public Health , Central South University , Changsha , Hunan , People's Republic of China
| | - Tao Yang
- b Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, Hunan, People's Republic of China
| | - Cuimei Chen
- a Xiang Ya School of Public Health , Central South University , Changsha , Hunan , People's Republic of China
| | - Ping Ding
- a Xiang Ya School of Public Health , Central South University , Changsha , Hunan , People's Republic of China
| |
Collapse
|
30
|
Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Mikrochim Acta 2018; 185:515. [DOI: 10.1007/s00604-018-3051-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/07/2018] [Indexed: 12/18/2022]
|
31
|
Deng H, Wang B, Wu M, Deng B, Xie L, Guo Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Huiyun Deng
- College of Sciences; Central South University of Forestry and Technology; Changsha 410004 China
| | - Bin Wang
- College of Sciences; Central South University of Forestry and Technology; Changsha 410004 China
| | - Mao Wu
- College of Sciences; Central South University of Forestry and Technology; Changsha 410004 China
| | - Bin Deng
- College of Chemistry Biology and Environmental Engineering; Xiangnan University; Chenzhou 423043 China
| | - Lianwu Xie
- College of Sciences; Central South University of Forestry and Technology; Changsha 410004 China
- College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 China
| | - Yaping Guo
- College of Sciences; Central South University of Forestry and Technology; Changsha 410004 China
| |
Collapse
|
32
|
Vojoudi H, Badiei A, Amiri A, Banaei A, Ziarani GM, Schenk-Joß K. Pre-concentration of Zn(II) ions from aqueous solutions using meso-porous pyridine-enrobed magnetite nanostructures. Food Chem 2018; 257:189-195. [PMID: 29622197 DOI: 10.1016/j.foodchem.2018.02.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 11/20/2022]
Abstract
A simple, cheap and efficient method for pre-concentrating and separating Zn(II) ions from aqueous solutions and real samples has been designed. The method was implemented in a prototype featuring interchangeable chromatography-column-like cartridges, filled with meso-porous silica nanostructures, allowing easy exchange of the type and quantity of the sorbent. The adsorbents inside the column are held in place by means of porous polymer nano-fibre membranes. The effects of various parameters on the adsorption of Zn(II) ions from aqueous solutions were investigated. Maximal adsorption (∼99%) was found for Zn(II) ions amongst a mixture of Cu(II), Co(II), Ni(II), Ag(I), Au(III), Pd(II) and Pb(II) in aqueous solution. The procedure was tested for pre-concentrating and determining traces of zinc in real samples of meat, fish and hen marketed in Tehran. A desorption process using 0.5 mol L-1 HCl as eluent, showed ∼97% recovery of the Zn(II) ions adsorbed on the MSMPP sorbent.
Collapse
Affiliation(s)
- H Vojoudi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - A Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - A Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - A Banaei
- Department of Chemistry, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran
| | - G M Ziarani
- Department of Chemistry, Alzahra University, Vanak Square, Tehran, Iran
| | - K Schenk-Joß
- IPHYS, École Polytechnique Fédérale de Lausanne, Le Cubotron, Route de la Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Bulatova EV, Petrova YY. Use of Micro- and Nanodimensional Inorganic Materials in Surface Molecular Imprinting. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Peng M, Li H, Long R, Shi S, Zhou H, Yang S. Magnetic Porous Molecularly Imprinted Polymers Based on Surface Precipitation Polymerization and Mesoporous SiO₂ Layer as Sacrificial Support for Efficient and Selective Extraction and Determination of Chlorogenic Acid in Duzhong Brick Tea. Molecules 2018; 23:molecules23071554. [PMID: 29954112 PMCID: PMC6099399 DOI: 10.3390/molecules23071554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 01/26/2023] Open
Abstract
Magnetic porous molecularly imprinted polymers (MPMIPs) for rapid and efficient selective recognition of chlorogenic acid (CGA) were effectively prepared based on surface precipitation polymerization using CGA as template, 4-vinylpyridine (4-VP) as functional monomer, and mesoporous SiO2 (mSiO2) layer as sacrificial support. A computational simulation by evaluation of electronic binding energy is used to optimize the stoichiometric ratio between CGA and 4-VP (1:5), which reduced the duration of laboratory trials. The porous MIP shell and the rid of solid MIPs by magnet gave MPMIPs high binding capacity (42.22 mg/g) and fast kinetic binding (35 min). Adsorption behavior between CGA and MPMIPs followed Langmuir equation and pseudo-first-order reaction kinetics. Furthermore, the obtained MPMIPs as solid phase adsorbents coupled with high performance liquid chromatography (HPLC) were employed for selective extraction and determination of CGA (2.93 ± 0.11 mg/g) in Duzhong brick tea. The recoveries from 91.8% to 104.2%, and the limit of detection (LOD) at 0.8 μg/mL were obtained. The linear range (2.0–150.0 μg/mL) was wide with R2 > 0.999. Overall, this study provided an efficient approach for fabrication of well-constructed MPMIPs for fast and selective recognition and determination of CGA from complex samples.
Collapse
Affiliation(s)
- Mijun Peng
- Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China.
| | - Huan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shuyun Shi
- Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China.
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
- National & Local United Engineering laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Jishou 416000, China.
| | - Hanjun Zhou
- School of Mathematics and Statistics, Central South University, Changsha 410083, China.
| | - Shuping Yang
- School of Mathematics and Statistics, Central South University, Changsha 410083, China.
| |
Collapse
|
35
|
Wu M, Deng H, Fan Y, Hu Y, Guo Y, Xie L. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements. Molecules 2018; 23:molecules23061443. [PMID: 29899218 PMCID: PMC6099834 DOI: 10.3390/molecules23061443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP) sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs) as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles). The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.
Collapse
Affiliation(s)
- Mao Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiyun Deng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yajun Fan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yunchu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
36
|
Zhao WR, Kang TF, Lu LP, Cheng SY. Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Yao D, Zhang L, Huang J, Sun C, Zhang Y, Gu X, Wang CZ, Li F, Chen L, Yuan CS. A surface magnetic imprinted polymers as artificial receptors for selective and efficient capturing of new neuronal nitric oxide synthase-post synaptic density protein-95 uncouplers. J Pharm Biomed Anal 2018; 154:180-190. [PMID: 29550707 DOI: 10.1016/j.jpba.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023]
Abstract
In this work, surface magnetic molecularly imprinted polymers (SMMIPs) were synthesized and used as artificial receptors in the dispersive magnetic solid phase extraction (DMSPE) for capturing potential neuronal nitric oxide synthase-post synaptic density protein-95 (nNOS-PSD-95) uncouplers, which is known as neuroprotection against stroke. Factors that affected selective separation and adsorption of the artificial receptors, such as the amount of template, the types of functional monomer and porogen solvents, and the molar ratio of template/functional monomer/cross-linker were optimized. The artificial receptors were also characterized using fourier transformed infrared, scanning electron microscope, thermal gravimetric analysis and physical property measurement systems. Multiple interactions between template and SMMIPs led to larger binding capacities, faster binding kinetics, quicker separation abilities and more efficient selectivity than the surface magnetic nonimprinted polymers (SMNIPs). The SMMIPs were successfully applied to capture potential nNOS-PSD-95 uncouplers from complex samples, and eight compounds were seized and confirmed rapidly when combined with HPLC and MS. The detection of the new nNOS-PSD-95 uncouplers ranged from 0.001 to 1.500 mg/mL with correlation coefficients of 0.9990-0.9995. The LOD and LOQ were 0.10-0.68 μg/mL and 0.47-2.11 μg/mL, respectively. The neuroprotective effect and co-immunoprecipitation test in vitro revealed that Emodin-1-O-β-d-glucoside, Rhaponticin, Gnetol and 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside have neuroprotective and uncoupling activities, and that they may be the new uncouplers of nNOS-PSD-95.
Collapse
Affiliation(s)
- Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Gu
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Ji S, Li T, Yang W, Shu C, Li D, Wang Y, Ding L. A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS. Mikrochim Acta 2018; 185:203. [DOI: 10.1007/s00604-018-2728-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
|
39
|
Zhao WR, Kang TF, Lu LP, Cheng SY. Magnetic surface molecularly imprinted poly(3-aminophenylboronic acid) for selective capture and determination of diethylstilbestrol. RSC Adv 2018; 8:13129-13141. [PMID: 35542503 PMCID: PMC9079755 DOI: 10.1039/c8ra01250d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/24/2018] [Indexed: 01/19/2023] Open
Abstract
Imprinted poly(APBA) nanoshell on Fe3O4@SiO2 surface was first synthesized and used for MSPE of diethylstilbestrol followed by HPLC determination.
Collapse
Affiliation(s)
- Wen-Rui Zhao
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Tian-Fang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Li-Ping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Shui-Yuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
40
|
Fu N, Li L, Liu X, Fu N, Zhang C, Hu L, Li D, Tang B, Zhu T. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. J Chromatogr A 2017; 1530:23-34. [DOI: 10.1016/j.chroma.2017.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023]
|
41
|
Xu X, Wang M, Wu Q, Xu Z, Tian X. Synthesis and Application of Novel Magnetic Ion-Imprinted Polymers for Selective Solid Phase Extraction of Cadmium (II). Polymers (Basel) 2017; 9:polym9080360. [PMID: 30971037 PMCID: PMC6418836 DOI: 10.3390/polym9080360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Ion-imprinted polymers (IIPs) have received much attention in the fields of separation and purification. Nevertheless, selectivity of IIPs for trace target ions in complicated matrix remains a challenge. In this work, a cadmium magnetic ion-imprinted polymer (MIIP) was synthesized via surface imprinting, using methacrylic acid and acrylamide as dual functional monomers, vinyltrimethoxysilane as ligand, Fe₃O₄@SiO₂ as support, azodiisobutyronitrile as initiator, and ethylene glycol dimethacrylate as crosslinker. The MIIP was characterized by transmission electron microscopy, infrared spectroscopy, thermal gravimetric analysis, and a vibrating sample magnetometer. The maximum adsorption capacities of the MIIP and magnetic non-imprinted polymer for Cd(II) were 46.8 and 14.7 mg·g-1, respectively. The selectivity factors of Pb(II), Cu(II), and Ni(II) were 3.17, 2.97, and 2.57, respectively, which were greater than 1. The adsorption behavior of Cd(II) followed the Freundlich isotherm and a pseudo second order model. The MIIP was successfully used for the selective extraction and determination of trace Cd(II) in representative rice samples. The limit of detection and recovery of the method was 0.05 µg·L-1 and 80⁻103%, respectively, with a relative standard deviation less than 4.8%. This study shows that MIIP provides an attractive strategy for heavy metal detection.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, Guangdong, China.
- College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Mei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, Guangdong, China.
- College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Qing Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, Guangdong, China.
- College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, Guangdong, China.
- College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, Guangdong, China.
- College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
42
|
Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Synthesis and characterization of hollow porous molecular imprinted polymers for the selective extraction and determination of caffeic acid in fruit samples. Food Chem 2017; 224:32-36. [DOI: 10.1016/j.foodchem.2016.12.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022]
|
44
|
Shi S, Fan D, Xiang H, Li H. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices. Food Chem 2017; 237:198-204. [PMID: 28763986 DOI: 10.1016/j.foodchem.2017.05.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
An effective strategy was proposed to prepare novel magnetic porous molecularly imprinted polymers (MPMIPs) for highly selective extraction of cinnamic acid (CMA) from complex matrices. Characterization and various parameters affecting adsorption and desorption behaviors were investigated. Results revealed adsorption behavior between CMA and MPMIPs followed Freundlich equation adsorption isotherm with a maximum adsorption capacity at 4.35mg/g and pseudo-second-order reaction kinetics with equilibrium time at 60min. Subsequently, MPMIPs were successfully used to selectively extract CMA from apple juice with a relatively satisfactory recovery (92.7-101.4%). Coupling with high-performance liquid chromatography and ultraviolet detection (HPLC-UV), the limit of detection (LOD) for CMA was 0.006µg/mL, and the linear range (0.02-10μg/mL) was wide with correlation coefficient at 0.9995. Finally, the contents of CMA in two kinds of apple juices were determined as 0.132 and 0.120μg/mL. Results indicated the superiority of MPMIPs in the selective extraction field.
Collapse
Affiliation(s)
- Shuyun Shi
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Dengxin Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haiyan Xiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Huan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
45
|
Xiang H, Fan D, Li H, Shi S. Hollow porous molecularly imprinted polymers for rapid and selective extraction of cinnamic acid from juices. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1049-1050:1-7. [DOI: 10.1016/j.jchromb.2017.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
|
46
|
Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem 2017; 221:1797-1804. [DOI: 10.1016/j.foodchem.2016.10.101] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 11/24/2022]
|
47
|
High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid. J Pharm Biomed Anal 2017; 133:75-81. [DOI: 10.1016/j.jpba.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
|
48
|
Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta 2017; 163:31-38. [DOI: 10.1016/j.talanta.2016.10.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
|
49
|
Peng M, Xiang H, Hu X, Shi S, Chen X. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides. J Chromatogr A 2016; 1474:8-13. [PMID: 27825700 DOI: 10.1016/j.chroma.2016.10.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022]
Abstract
Rapid and efficient extraction of bioactive glycosides from complex natural origins poses a difficult challenge, and then is often inherent bottleneck for their highly utilization. Herein, we propose a strategy to fabricate boronate affinity based surface molecularly imprinted polymers (MIPs) for excellent recognition of glucosides. d-glucose was used as fragment template. Boronic acid, dynamic covalent binding with d-glucose under different pH conditions, was selected as functional monomer to improve specificity. Fe3O4 solid core for surface imprinting using tetraethyl orthosilicate (TEOS) as crosslinker could control imprinted shell thickness for favorable adsorption capacity and satisfactory mass transfer rate, improve hydrophilicity, separate easily by a magnet. Model adsorption studies showed that the resulting MIPs show specific recognition of glucosides. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. Furthermore, the MIPs were successfully applied for selective extraction of three flavonoid glucosides (daidzin, glycitin, and genistin) from soybean. Results indicated that selective extraction of glucosides from complex aqueous media based on the prepared MIPs is simple, rapid, efficient and specific. Moreover, this method opens up a universal route for imprinting saccharide with cis-diol group for glycosides recognition.
Collapse
Affiliation(s)
- Mijun Peng
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haiyan Xiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xin Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
50
|
Wei S, Li J, Liu Y, Ma J. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples. J Chromatogr A 2016; 1473:19-27. [DOI: 10.1016/j.chroma.2016.10.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 01/19/2023]
|