1
|
Jiang G, Ameer K, Ramachandraiah K, Feng X, Jin X, Tan Q, Huang X. Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods 2025; 14:1196. [PMID: 40238366 PMCID: PMC11989129 DOI: 10.3390/foods14071196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluated the structural, physicochemical, and functional characteristics of blueberry residue dietary fiber (DF) extracted by wet ball milling (WB) and cross-linking (C) treatments. The particle size of WB-DF showed a significant decreasing trend (p ≤ 0.05) compared to that of C-DF and blueberry residue. Scanning electron microscopy (SEM) demonstrated that WB treatment unfolded the flaky structure of DF and caused more pores to occur. The results showed that the modifications of WB increased the release of active groups and enhanced the hydration and adsorption capacities. X-ray diffraction (XRD) analysis showed the highest crystallinity observed for C-DF, resulting in the increased thermal stability of C-DF. The molar ratios of monosaccharides were also influenced by different modification techniques. In addition, WB-DF showed the lowest ζ-potential and highest viscosity among all samples. Conclusively, DF extracted by WB treatment exhibited remarkable application potential in the functional food industry.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Karna Ramachandraiah
- Department of Biological Sciences, College of Arts & Sciences, University of North Florida, Jacksonville, FL 32224, USA;
| | - Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Xiaolu Jin
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Qiaolin Tan
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Xianfeng Huang
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| |
Collapse
|
2
|
Jiang C, Wei X, Liu X, Wang J, Zheng X. Multivariate analysis of structural and functional properties of soluble dietary fiber from corn bran using different modification methods. Food Chem 2025; 462:140989. [PMID: 39226641 DOI: 10.1016/j.foodchem.2024.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.
Collapse
Affiliation(s)
- Caixia Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyao Wei
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaolan Liu
- Heilongjiang Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Juntong Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products and Utilization of Ministry of Education, Daqing 163319, China.
| |
Collapse
|
3
|
Yildiz G, Gao Y, Ding J, Zhu S, Chen G, Feng H. Enhancing physicochemical, bioactive, and nutritional properties of sweet potatoes: Ultrasonic contact drying with slot jet nozzles compared to hot-air drying and freeze drying. ULTRASONICS SONOCHEMISTRY 2025; 112:107216. [PMID: 39740337 PMCID: PMC11750582 DOI: 10.1016/j.ultsonch.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition. Notably, SJR + US at 50 °C produced the highest total starch (36.84 g/100 g), total dietary fiber (8.48 g/100 g), total phenolic content (158.19 mg GAE/100 g), total flavonoid content (119.08 mg QE/g), DPPH antioxidant activity (6.44 μmol TE/g), β-carotene (31.98 mg/100 g), and vitamin C (5.27 mg/100 g). It also exhibited higher glass transition temperatures (Tg: 14.49 °C), indicating better stability at room temperature. The hardness values for SJR + US samples were similar to FD, while HAD samples had the highest hardness. SJR + US at 50 °C resulted in the lowest total color changes (ΔE), indicating minimal impact on appearance. Additionally, FTIR analysis revealed that peaks in specific spectral regions indicated superior preservation of bioactive compounds in SJR + US samples compared to other methods, which was also confirmed by principal component analysis (PCA) and heatmap visualization. Overall, these findings suggest that SJR + US is an effective alternative to conventional drying techniques, significantly improving the quality of dried sweet potatoes.
Collapse
Affiliation(s)
- Gulcin Yildiz
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA; Department of Food Engineering, Igdir University, Iğdır 76000, Turkey
| | - Yuan Gao
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Junzhou Ding
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Si Zhu
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Guibing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Hao Feng
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
4
|
Wei X, Jiang C, Liu X, Liu H, Wang J, Zheng X, Zhang Z, Hu H. Effect of γ-irradiation combined with enzymatic modification on the physicochemical properties of defatted rice bran dietary fiber. Food Chem X 2024; 24:101975. [PMID: 39629286 PMCID: PMC11612810 DOI: 10.1016/j.fochx.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
This study comprehensively examines how combining γ-irradiation and enzymatic modification influences the microstructure and physicochemical properties of dietary fiber (DF) obtained from defatted rice bran. The resulting yields of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were measured at 13.38 ± 0.40 g/100 g and 52.19 ± 0.97 g/100 g, respectively. The modifications led to a diminish in particle size, an increase in specific surface area, and an improvement in water-holding capacity, oil-holding capacity, swelling capacity, glucose adsorption capacity, and cholesterol adsorption capacity. Furthermore, the modified DF exhibited enhanced anti-digestive properties and probiotic activity. Cluster and principal component analysis results revealed that the modified SDF exhibited superior functional properties. Correlation analysis indicated a noticeable relationship between the monosaccharide composition of DF and its functional characteristics. These findings suggest that γ-irradiation combined with enzymatic modification represents a viable approach for enhancing the quality of rice bran DF.
Collapse
Affiliation(s)
- Xuyao Wei
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Caixia Jiang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaolan Liu
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Handong Liu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juntong Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Engineering Research Centre of the Ministry of Education for the Processing and Utilisation of Grain By-products, Daqing 163319, China
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Engineering Research Centre of the Ministry of Education for the Processing and Utilisation of Grain By-products, Daqing 163319, China
| | - Zhi Zhang
- Heilongjiang Beidahuang Rice Industry Group Co., Ltd, Harbin 150090, China
| | - Hao Hu
- Heilongjiang Beidahuang Rice Industry Group Co., Ltd, Harbin 150090, China
| |
Collapse
|
5
|
Li S, Tan Y, Liu S, Li C. Preventive potential of chitosan self-assembled coconut residue dietary fiber in hyperlipidemia: Mechanistic insights into gut microbiota and short-chain fatty acids. J Food Sci 2024; 89:9968-9984. [PMID: 39503303 DOI: 10.1111/1750-3841.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Hyperlipidemia is a metabolic disorder resulted from unhealthy dietary and lifestyle habits. Its pathogenesis is possibly linked to gut microbiota dysbiosis. This study investigates the preventive effects of chitosan self-assembled coconut residue dietary fiber (CRFSC) on hyperlipidemia induced by a high-fat diet (HFD) and gut microbiota. CRFSC resulted in a significant weight loss of 7.9% in HFD rats and had a preventive effect on all four lipid parameter abnormalities. HFD supplemented with oat group resulted in a weight loss of 3.8% in HFD rats and had no preventive effect on low-density lipoprotein cholesterol (LDL-C) abnormalities. Prevention was achieved not only through the modulation of gut microbiota composition and the increase of short-chain fatty acids (SCFAs) levels, but also through the activation of superoxide dismutase enzyme and the inhibition of malondialdehyde accumulation, all of which are the factors leading to the controlling of lipid abnormalities and oxidative damage. The prevention of lipid parameters by chitosan self-assembled coconut residue dietary fiber (CRFSC) may be attributed to its richness in chitosan and insoluble dietary fiber, as well as its ability to enrich beneficial bacteria such as Akkermansia, Roseburia, and Ruminococcus. Correlation analysis demonstrated that key bacterial species producing SCFAs, which are rich in the CRFSC diet, had a positive impact on controlling hyperlipidemia. Hence, consumption of a CRFSC diet could serve as an effective strategy for preventing and controlling the development of hyperlipidemia due to its potential ability to regulate gut microbiota and SCFAs. PRACTICAL APPLICATION: This study showed that dietary fiber from coconut residue after chitosan self-assembly had preventive effects on overweight, dyslipidemia, and oxidative damage in rats. In addition, CRFSC also increased the content of short-chain fatty acids in the gut. And improve gut health by affecting gut microbiota. This finding suggests that CRFSC can be used as a dietary strategy to prevent hyperlipidemia and has practical significance in developing new healthy foods.
Collapse
Affiliation(s)
- Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yaoyao Tan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, China
| |
Collapse
|
6
|
Zheng H, Xu Y, Wu Y, Huangfu X, Chen W, He K, Yang Y. Effects of Three Modification Methods on the In Vitro Gastrointestinal Digestion and Colonic Fermentation of Dietary Fiber from Lotus Leaves. Foods 2024; 13:3768. [PMID: 39682840 DOI: 10.3390/foods13233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) were utilized for the modification of lotus leaves, and the effects on in vitro gastrointestinal digestion and colonic fermentation of insoluble dietary fiber (IDF) from lotus leaves were compared. Compared with SEIDF and ATIDF, BMIDF released more polyphenols and exhibited better antioxidant capacity during in vitro gastrointestinal digestion. The IDF of lotus leaves changed the gut microbiota composition during in vitro colonic fermentation. SEIDF was beneficial to the diversity of gut microbiota compared with BMIDF and ATIDF. Among the three IDF groups of lotus leaves, six significant differences of OTUs were all in ATIDF; however there was the highest relative abundance of Escherichia-Shigella in ATIDF. In addition, the concentrations of butyric acid and valeric acid produced by SEIDF were significantly higher than that of BMIDF and ATIDF. Overall, SE modification improved the colonic fermentation characteristics of IDFs in lotus leaves more effectively; while BM modification helped to promote the release of polyphenols from IDFs in lotus leaves during in vitro gastrointestinal digestion. The research lays the foundation for the application of the dietary fiber of lotus leaves as a premium fiber additive in functional food.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhang Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuantong Huangfu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxiu Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
7
|
Kaur B, Panesar PS, Thakur A. Biovalorization of mango byproduct through enzymatic extraction of dietary fiber. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57455-57465. [PMID: 38102433 DOI: 10.1007/s11356-023-31450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Mango is considered one of the most important tropical fruits worldwide in terms of its consumption and consumer acceptability. Its processing generates huge quantities of mango byproducts, which is often discarded unscrupulously into the environment and, therefore, needs effective waste management practices. The extraction of mango peels' dietary fiber using enzymatic method can be a useful valorization strategy for management of mango by-products. In the present investigation, dietary fiber (soluble and insoluble fraction) was extracted by enzymatic hydrolysis using α-amylase, protease, and amyloglucosidase. Highest yield of dietary fiber (67.5%, w/w) was obtained at 60 °C temperature using recommended enzyme concentrations including α-amylase (40 µL), protease (110 µL), and amyloglucosidase (200 µL) after a treatment time of 60 min. SEM analysis indicated the increased porosity of dietary fiber samples caused due to the hydrolytic effect of enzymes on its surface structure, whereas FTIR analysis confirmed the functional groups present in dietary fiber. The coexistence of crystalline and amorphous nature of polymers present in soluble and insoluble fractions of dietary fiber was assessed by XRD analysis. Further, the analysis of functional properties including WHC, OHC, and SC revealed the suitability of using extracted mango peel's dietary fiber in the food systems.
Collapse
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India.
| | - Avinash Thakur
- Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| |
Collapse
|
8
|
Yang R, Ye Y, Liu W, Liang B, He H, Li X, Ji C, Sun C. Modification of pea dietary fibre by superfine grinding assisted enzymatic modification: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 267:131408. [PMID: 38604426 DOI: 10.1016/j.ijbiomac.2024.131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Using the optimal extraction conditions determined by response surface optimisation, the yield of soluble dietary fibre (SDF) modified by superfine grinding combined with enzymatic modification (SE-SDF) was significantly increased from 4.45 % ± 0.21 % (natural pea dietary fibre) to 16.24 % ± 0.09 %. To further analyse the modification mechanism, the effects of three modification methods-superfine grinding (S), enzymatic modification (E), and superfine grinding combined with enzymatic modification (SE)-on the structural, physicochemical, and functional properties of pea SDF were studied. Nuclear magnetic resonance spectroscopy results showed that all four SDFs had α- and β-glycosidic bonds. Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy results showed that the crystal structure of SE-SDF was most severely damaged. The Congo red experimental results showed that none of the four SDFs had a triple-helical structure. Scanning electron microscopy showed that SE-SDF had a looser structure and an obvious honeycomb structure than other SDFs. Thermogravimetric analysis, particle size, and zeta potential results showed that SE-SDF had the highest thermal stability, smallest particle size, and excellent solution stability compared with the other samples. The hydration properties showed that SE-SDF had the best water solubility capacity and water-holding capacity. All three modification methods (S, E, and SE) enhanced the sodium cholate adsorption capacity, cholesterol adsorption capacity, cation exchange capacity, and nitrite ion adsorption capacity of pea SDF. Among them, the SE modification had the greatest effect. This study showed that superfine grinding combined with enzymatic modification can effectively improve the SDF content and the physicochemical and functional properties of pea dietary fibre, which gives pea dietary fibre great application potential in functional foods.
Collapse
Affiliation(s)
- Renhui Yang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Ying Ye
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Weiting Liu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
9
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
10
|
Liu X, Sun H, Mu T, Fauconnier ML, Li M. Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chem 2023; 413:135675. [PMID: 36796260 DOI: 10.1016/j.foodchem.2023.135675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
In this study, the preparation parameters of cellulose nanofibers from potato residues (PCNFs) by ultrasonication combined with high-pressure homogenization were optimized based on yield, zeta-potential and morphology. The optimal parameters were as follows: ultrasonic power of 125 W for 15 min and homogenization pressure of 40 MPa four times. The yield, zeta potential and diameter range of the obtained PCNFs were 19.81 %, -15.60 mV and 20-60 nm, respectively. Fourier transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance spectroscopy results showed that part of the crystalline region of cellulose was destroyed, resulting in a decrease in crystallinity index from 53.01 % to 35.44 %. The maximum thermal degradation temperature increased from 283 °C to 337 °C. PCNFs suspensions were non-Newtonian fluids and exhibited rigid colloidal particle properties. In conclusion, this study provided alternative uses for potato residues generated from starch processing and showed great potential for various industrial applications of PCNFs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Marie Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Mei Li
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
11
|
Xi H, Wang A, Qin W, Nie M, Chen Z, He Y, Wang L, Liu L, Huang Y, Wang F, Tong LT. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted treatments. Food Chem 2023; 406:135025. [PMID: 36446281 DOI: 10.1016/j.foodchem.2022.135025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The effects of steam explosion (SE)-assisted ultrasound (SEU), citric acid (SEC), sodium hydroxide (SEA), and cellulase (SEE) treatment on the properties of soluble dietary fibre (SDFP) extracted from highland barley bran were analysed. The results showed that SE pretreatment combined with other methods effectively improves the SDFP yield. The highest yield of SDF (20.01%) was obtained through SEA treatment. SEU-SDFP had a loose and porous structure, whereas the surface of SEC-SDFP and SEA-SDFP presented a complicated and dense texture. Although SE pretreatment reduced the thermal stability of SDFP, SEC and SEE treatment maintained its thermal stability. Furthermore, SEU-SDFP exhibited the highest water and oil holding capacities, and cholesterol and nitrite ion adsorption capacities. SEE-SDFP exhibited the best DPPH and ABTS radical scavenging abilities. In summary, four SE-assisted extraction methods had different advantages, and highland barley bran SDF can be considered as a potential functional additive in the food industry.
Collapse
Affiliation(s)
- Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Wanyu Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
12
|
Tan Y, Li S, Li C, Liu S. Glucose adsorption and α-amylase activity inhibition mechanism of insoluble dietary fiber: Comparison of structural and microrheological properties of three different modified coconut residue fibers. Food Chem 2023; 418:135970. [PMID: 36963135 DOI: 10.1016/j.foodchem.2023.135970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Affiliation(s)
- Yaoyao Tan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China; School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Zhu S, Sun H, Mu T, Li Q, Richel A. Preparation of cellulose nanocrystals from purple sweet potato peels by ultrasound-assisted maleic acid hydrolysis. Food Chem 2023; 403:134496. [DOI: 10.1016/j.foodchem.2022.134496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
14
|
Zhang S, Xu X, Cao X, Liu T. The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zheng H, Sun Y, Zheng T, Zeng Y, Fu L, Zhou T, Jia F, Xu Y, He K, Yang Y. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus ( Nelumbo) leaves dietary fiber. Front Nutr 2023; 10:1064662. [PMID: 36908912 PMCID: PMC9995909 DOI: 10.3389/fnut.2023.1064662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Lotus (Nelumbo) leaves are rich in polyphenols and dietary fiber, which have the potential as a high-quality fiber material in functional food. However, lotus leaves exhibit dense structure and poor taste, it is vital to develop appropriate modification methods to improve the properties of lotus leaves dietary fiber. In this study, the effects of three modification methods with shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus leave dietary fiber (LDF) were evaluated. SEM indicated that there were significant differences in the microstructure of modified LDFs. FT-IR spectra and X-ray diffraction pattern of modified LDFs revealed similar shapes, while the peak intensity and crystalline region changed by modification. SE showed the greatest effect on crystallization index. SE-LDF had the highest water holding capacity, water swelling capacity, and bound phenolic content in LDFs, which increased by 15.69, 12.02, and 31.81%, respectively, compared with the unmodified LDF. BM exhibited the most dramatic effect on particle size. BM-LDF had the highest free phenolic and total phenolic contents in LDFs, which increased by 32.20 and 29.05% respectively, compared with the unmodified LDF. Phenolic compounds in LDFs were mainly free phenolic, and modifications altered the concents of flavonoids. The BM-LDF and SE-LDF exhibited higher antioxidant capacity than that of AT-LDF. Overall, SE-LDF showed better physical properties, and BM-LDF showed better bioactive components. SE and BM were considered to be appropriate modification methods to enhance the properties of LDF with their own advantages.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Liping Fu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tingting Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Feng X, Chen H, Liang Y, Geng M, He M, Huang Y, Li Y, Teng F. Effects of electron beam irradiation treatment on the structural and functional properties of okara insoluble dietary fiber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:195-204. [PMID: 35860991 DOI: 10.1002/jsfa.12131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insoluble dietary fiber (IDF) has beneficial physiological effects, such as the promoting of intestinal peristalsis, the improving of intestinal flora, and the absorbing of some harmful substances. Okara, a byproduct of soybean processing, is a potential source of IDF. But the larger particle size and poor water solubility of okara IDF have adverse effects on sensory properties and functional characteristics. Therefore, we used an emerging type of physical method is electron beam irradiation (EBI) to modify okara, and investigated that the effects of EBI doses on the structure and functional properties of okara IDF. RESULTS It was found that the electron beam treatment damaged the crystalline structure of IDF. Observation of the surface of EBI-treated IDF revealed a loose and porous morphology rather than the typical smooth structure. At a dose of 6 kGy, a smallest particle size and largest specific surface area of IDF was obtained, and these factors increased the apparent viscosity of an IDF dispersion. The water holding capacity, swelling capacity and the oil holding capacity upon irradiation at 6 kGy increased 74.13%, 84.76% and 41.62%, respectively. In addition, the capacity for adsorption of cholesterol, sodium cholate, glucose and nitrite ion were improved after electron beam treatment. CONCLUSION The modified okara IDF showed improved particle sizes and hydration properties, and these changes correlated with an improvement to the rough taste of IDF and improvements to the texture and storage period upon supplementation into food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xumei Feng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hua Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yaru Liang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Niu L, Guo Q, Xiao J, Li Y, Deng X, Sun T, Liu X, Xiao C. The effect of ball milling on the structure, physicochemical and functional properties of insoluble dietary fiber from three grain bran. Food Res Int 2023; 163:112263. [PMID: 36596174 DOI: 10.1016/j.foodres.2022.112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The effects of ball milling processing on the structure, physicochemical, and functional properties of insoluble dietary fiber (IDF) in bran from prosomillet, wheat and rice were investigated. Meanwhile, the effect of IDF on glucose tolerance and blood lipid levels in mice was evaluated as well. With findings, for all three grains, the particle sizes of IDF were significantly reduced after ball milling treatment (p < 0.05). Scanning electron microscopy revealed fragmented fiber with numerous pores and cracks. The reactive groups of three IDF samples were found to be similar by fourier transform infrared spectroscopy. And consistent with X-ray diffraction and thermal analysis, for all three grains, ball milling reduced the crystallinity of IDF and helped to increase the release of free phenol by 23.4 %, 8.9 %, and 12.2 %, respectively. Furthermore, the water holding capacity, glucose delay capacity, glucose, sodium cholate, and cholesterol adsorption capacity, and in vitro digestibility of starch and fat were all improved to varying degrees. Animal experiments showed that ball milling treatment effectively slowed the postprandial rise in blood sugar (especially IDF of rice bran) and blood lipids (especially IDF of prosomillet bran). As a result, ball milling treatment is a potential method for dietary fiber modification in the food industry.
Collapse
Affiliation(s)
- Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
Yu Y, Zhao J, Liu J, Wu J, Wang Z, Sun Z. Improving the function of pickle insoluble dietary fiber by coupling enzymatic hydrolysis with HHP treatment. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4634-4643. [PMID: 36276544 PMCID: PMC9579227 DOI: 10.1007/s13197-022-05542-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 06/16/2023]
Abstract
In order to improve the function of insoluble dietary fiber (IDF) extracted from pickle, the coupled enzymatic hydrolysis and high hydrostatic pressure treatment method (EHHP) was used to modify its structure. Compared with the unmodified IDF (U-IDF), analysis of the particle size dispersion, bulk density, surface structure monosaccharide composition, microstructure, thermodynamic properties showed that the modified IDF (EHHP-IDF) has a looser and more porous structure, reduced particle size, bulk density, crystal strength and thermal stability, and increased xylose and galactose content. Due to the special looser microstructure, EHHP-IDF has showed the notable capacity of absorption of oil, glucose, nitrite, cholesterol as well as Pb2+. Collectively, these results show that EHHP has good potential use as an ideal modification method to improve the function of IDF, and a novel functional ingredient of EHHP-IDF which could be used in future food processing was obtained in this study.
Collapse
Affiliation(s)
- Ying Yu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jingjing Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianhua Liu
- School of materials and chemical engineering, Yibin University, Yibin, 644000 Sichuan China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhidong Sun
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Science, Dehou Street #19, Yinzhou Destrict, Ningbo, 315040 China
| |
Collapse
|
19
|
Effects of Dietary Fiber Compounds on Characteristic Human Flora and Metabolites Mediated by the Longevity Dietary Pattern Analyzed by In Vitro Fermentation. Nutrients 2022; 14:nu14235037. [PMID: 36501069 PMCID: PMC9739654 DOI: 10.3390/nu14235037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of different dietary fiber compounds (DFCs) on characteristic human flora and their metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. The results show that DFC1 (cereal fiber) increased the level of Lactobacillus (p < 0.05), DFC2 (fruit and vegetable and cereal fiber) promoted the growth of Lactobacillus and Bifidobacterium more significantly than DFC3 (fruit and vegetable fiber) (p < 0.01), and all three DFCs decreased the level of Escherichia coli (p < 0.05). The metabolomic analysis showed that there was variability in the metabolites and the metabolic pathways of different DFCs. The redundancy analysis revealed that the fiber content was positively correlated with Lactobacillus, Bifidobacterium, Bacteroides, acetic acid, butyric acid, propionic acid, lactic acid, and betaine, and negatively correlated with Escherichia coli, succinic acid, alanine, choline, aspartic acid, and α-glucose. Overall, this study found that different DFCs have different positive correlations on characteristic human flora and metabolites, and DFC2 is more favorable to the proliferation of the intestinal beneficial genera Lactobacillus and Bifidobacterium after in vitro fermentation, having a probiotic role in glucose, amino acid, and lipid metabolisms. This study may provide a theoretical reference for the search of optimal dietary fiber combination strategies mediated by longevity dietary pattern.
Collapse
|
20
|
Dhar P, Deka SC. Effect of ultrasound‐assisted extraction of dietary fiber from the sweetest variety Queen pineapple waste of Tripura (India). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Payel Dhar
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| |
Collapse
|
21
|
Si J, Yang C, Ma W, Chen Y, Xie J, Qin X, Hu X, Yu Q. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities. Int J Biol Macromol 2022; 220:337-347. [PMID: 35985395 DOI: 10.1016/j.ijbiomac.2022.08.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
In our study, two high efficiency cellulose degrading strains were screened, isolated and identified as Cochliobolus kusanoi and Aspergillus puulaauensis by 18S rDNA gene sequencing. In addition, the composite microbial system was constructed to develop the synergistic effect among different strains. Under the optimum conditions, the yield of soluble dietary fiber from tea residues by mixed fermentation method (MF-SDF) dramatically increased compared to single strain fermentation. The structural analysis demonstrated that all samples possessed the representative infrared absorption peaks of polysaccharides, whereas MF-SDF revealed more loose structure, lower crystallinity and smaller molecular size. For the adsorption capacities indexes, MF-SDF also owned the highest adsorbing capacity for the water molecule, oil molecule, cholesterol molecule and nitrite ion. Overall, our data showed that mixed fermentation method could be better choices to improve the functional properties of dietary fiber, and screening of cellulose degrading strains could provide new thinkings for the study of dietary fiber modification and realize high-quality utilization of crop residues.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaoting Qin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
22
|
Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods 2022; 11:foods11101433. [PMID: 35627001 PMCID: PMC9141299 DOI: 10.3390/foods11101433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, pea residue reserve insoluble diet fiber (hereinafter referred to as pea fiber) was used as a raw material. The effects of γ-irradiation doses (0, 0.5, 1, 2, 3, and 5 kGy) on the structural properties (main composition, particle size and specific surface area, scanning electron microscope (SEM) microstructure, Fourier transform infrared spectroscopy, and X-ray diffraction) and functional properties (oil-holding capacity, swelling and water-holding capacity, and adsorption properties) of pea fiber were explored. The results show that, when the γ-irradiation dose was 2 kGy, compared with the untreated sample, the contents of cellulose, hemicellulose and lignin in pea fiber decreased by 1.34 ± 0.42%, 2.56 ± 0.03% and 2.02 ± 0.05%, respectively, and the volume particle size of pea fiber decreased by 17.43 ± 2.35 μm. The specific surface area increased by 23.70 ± 2.24 m2/kg and the crystallinity decreased by 7.65%. Pore and irregular particles appeared on the microstructure surface of the pea fiber treated with γ-irradiation. The results of the infrared spectrum showed that the hemicellulose and lignin in pea fiber were destroyed by γ-irradiation. These results indicate that γ-irradiation can significantly affect the structural properties of pea fiber. When the γ-irradiation dose was 2 kGy, the highest oil-holding capacity, swelling capacity and water-holding capacity of pea fiber were 8.12 ± 0.12 g/g, 19.75 ± 0.37 mL/g and 8.35 ± 0.18 g/g, respectively, and the adsorption capacities of sodium nitre, cholesterol and glucose were also the strongest. These results indicate that the functional properties of pea fiber are improved by γ-irradiation. In this study, γ-irradiation technology was used as pretreatment to provide a theoretical basis for the application of pea fiber in food processing.
Collapse
|
23
|
Cairone F, Garzoli S, Menghini L, Simonetti G, Casadei MA, Di Muzio L, Cesa S. Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods 2022; 11:foods11040589. [PMID: 35206065 PMCID: PMC8871187 DOI: 10.3390/foods11040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Kiwi fruit samples (Actinidia deliciosa Planch, cv. Hayward) represent a suitable and good source for fibers obtainment as well as for polyphenolic and carotenoid extraction. With this aim, in this study they were submitted to a double phase extraction to separate insoluble fibers by an organic phase containing lipophilic substances and an hydroalcoholic phase containing polyphenols and soluble fibers. Insoluble fibers could be separated by filtration and sent to be micronized and reused. Hydroalcoholic fractions were then furtherly fractionated by solid-phase extraction. Data coming from the color CIEL*a*b* and the HPLC-DAD analyses of the extracts were compared and correlate with those coming from the SPME-GC/MS analysis of either the finely shredded peels or of the extracts. The obtained extracts were also submitted to anti-radical activity evaluation and anti-Candida activity. Results show that all of the obtained residues are value added products. Hypotheses were also made about the nature and the possible recycle of the obtained purified solid residue.
Collapse
Affiliation(s)
- Francesco Cairone
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Luigi Menghini
- Department of Pharmacy, University “G. d’Annunzio”, Botanic Garden “Giardino dei Semplici”, 66100 Chieti, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, “La Sapienza” University of Rome, 00185 Rome, Italy;
| | - Maria Antonietta Casadei
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Laura Di Muzio
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
- Correspondence: ; Tel.: +39-06-4991-3198
| |
Collapse
|
24
|
Zhang D, Tan B, Zhang Y, Ye Y, Gao K. Improved nutritional and antioxidant properties of hulless barley following solid‐state fermentation with
Saccharomyces cerevisiae
and
Lactobacillus plantarum. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration Beijing China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration Beijing China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa Tibet China
| | - Yanjun Ye
- Central South University of Forestry and Technology Changsha China
| | - Kun Gao
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration Beijing China
| |
Collapse
|
25
|
Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Li M, Li T, Hu X, Ren G, Zhang H, Wang Z, Teng Z, Wu R, Wu J. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. Int J Biol Macromol 2021; 183:1774-1783. [PMID: 34022314 DOI: 10.1016/j.ijbiomac.2021.05.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
The structural characteristics and biological activity of polysaccharides were influenced by different extraction methods. In this study, polysaccharides from mulberry fruits (Murus alba L., which were pre-treated with superfine grinding process) (MFP) were exacted using hot-water extraction (HWE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted hot water extraction (UAHE), and high-speed shear homogenization-assisted hot water extraction (HSEHE). The extraction yield, structure, rheological properties and antioxidant activities of MFPs were investigated. MFP extracted using the HSEHE method have the highest extraction yields than other extraction methods. The smaller particle size of mulberry powder was found to improve the extraction yields. The MFPs were obtained by the combination between different extraction methods and superfine grinding pretreatment (through 100 mesh sieve) (MFP-HWE100, MFP-EAHE100, MFP-UAHE100, MFP-HSEHE100) showed the same levels of monosaccharide compositions and glycosyl linkages, However, these methods can produce MFP with different monosaccharide proportions, branching degree, different molecular weight, particle size and microstructure. MFP-HSEHE100 achieved the lowest molecular weight and particle size, which exhibited better thixotropy and antioxidant activities than other MFPs. This study identified that HSEHE was the most suitable extraction method for MFP.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Guangyu Ren
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zhengrong Teng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| |
Collapse
|
27
|
Wang K, Li M, Wang Y, Liu Z, Ni Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106162] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Jia F, Liu X, Gong Z, Cui W, Wang Y, Wang W. Extraction, modification, and property characterization of dietary fiber from Agrocybe cylindracea. Food Sci Nutr 2020; 8:6131-6143. [PMID: 33282264 PMCID: PMC7684601 DOI: 10.1002/fsn3.1905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023] Open
Abstract
Dietary fiber (DF) has gained a great attention owing to its potential health benefits. Agrocybe cylindracea is an edible fungus with high protein and low fat contents, which is also an enriched source of DF. However, limited study has been conducted on optimizing the conditions of A. cylindracea-derived DF extraction and modification as well as characterizing its properties. In this study, ultrasound-assisted enzymatic method for DF extraction was optimized as the following conditions: liquid material ratio of 29 ml/g, α-amylase concentration of 1.50%, protamex concentration of 1.20%, and ultrasonic power of 150 W, which improved the DF extraction yield to 37.70%. Moreover, high temperature modification (HTM) and cellulase modification (CEM) were applied to modify A. cylindracea-derived DF. The results showed that HTM had more potential capacity in converting insoluble DF into soluble DF, and DF with HTM exhibited more advantages in its physicochemical properties than DF with CEM. The DF with both HTM and CEM showed antioxidant activities, reflected by the increased reducing power as well as DPPH radical, hydroxyl radical, and ABTS+ scavenging capabilities in vitro. These findings could offer a reference for the extraction, modification, and characterizing various properties of DF from A. cylindracea, which would establish the foundation for the comprehensive application of fungi-derived DF.
Collapse
Affiliation(s)
- Fengjuan Jia
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| | - Xuecheng Liu
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| | - Zhiqing Gong
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| | - Wenjia Cui
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| | - Yansheng Wang
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| | - Wenliang Wang
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJinanShandongPR China
- Key Laboratory of Agro‐Products Processing Technology of Shandong ProvinceJinanShandongPR China
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsJinanShandongPR China
| |
Collapse
|
29
|
Dong W, Wang D, Hu R, Long Y, Lv L. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res Int 2020; 136:109497. [DOI: 10.1016/j.foodres.2020.109497] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
|
30
|
Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 2020; 11:5965-5975. [PMID: 32662806 DOI: 10.1039/d0fo01102a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The present study is undertaken to assess the ability of insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) extracted from soy hulls to relieve colitis in dextran sulfate sodium (DSS) induced inflammatory bowel disease (IBD) in a BALB/C mouse model. We characterized dietary fiber (DF) structures by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Water retention capacity (WRC), water swelling capacity (WSC), oil adsorption capacity (OAC), glucose adsorption capacity (GAC), and the bile acid retardation index (BRI) were measured. The unique surface and chemical structural characteristics endowed DF with good absorption capacity and hydration ability, along with delayed glucose diffusion and absorption of bile acids. IBD was induced with a solution containing 5% DSS in male mice, which were administered a total oral dose of IDF (300 mg kg-1) and SDF (300 mg kg-1) three times per day after successful model establishment. All the mice were assessed weekly for weight change, diarrhea index, and fecal bleeding index. Levels of TLR-4 and NF-κB proteins were measured with western blotting analysis. Cytokine TNF-α in the serum was detected with an enzyme-linked immunosorbent assay (ELISA). Histological methods (H&E) were used to observe part of the mouse colon. The gut microbiota in the colonic contents was analyzed by 16S rRNA gene sequencing. DF decreased weight loss, diarrhea, and fecal bleeding, and also slowed serum TNF-α release. Increases in the levels of NF-κB proteins in inflamed colon tissue were also significantly suppressed by DF treatment. DF ameliorates the colitis induced decrease in gut microbiota species richness. The effect of SDF seemed clearer: the relative abundance of Barnesiella, Lactobacillus, Ruminococcus and Flavonifractor at the genus level was greater than that in the normal control group.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China. and China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Qian Lin
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Lin Han
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Ziyi Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Wanrong Kang
- Scientific Research Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
31
|
Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Xue Z, Ma Q, Guo Q, Santhanam RK, Gao X, Chen Z, Wang C, Chen H. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. Journal of Food Science and Technology 2019; 57:152-162. [PMID: 31975718 DOI: 10.1007/s13197-019-04041-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
We evaluated soy hull dietary fibers (SHDF) extracted from different raw materials, in terms of their chemical composition, physicochemical properties, structure, and ability to regulate fecal microflora, in order to investigate the properties and functions of SHDF. The structures of insoluble dietary fiber from soy hull with oxalic acid extraction (IDFO) and insoluble dietary fiber from soy hull with citric acid extraction (IDFC) were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Compared with IDFO, IDFC had larger crystalline regions, and a higher water retention capacity (4.92 g/g), water swelling capacity (4.77 mL/g), oil adsorption capacity (1.60%), α-amylase activity inhibition ratio (12.72%), glucose adsorption capacity (1.59-13.42%), and bile acid retardation index (5.18-26.61%). Given that the gut microbiota plays a pivotal role in health homeostasis, we performed a detailed investigation of the effects of dietary fiber on fecal microbiota through 16S rDNA high-throughput sequencing. As revealed by Venn, principal component analysis, and 3D-principal co-ordinates analysis analysis, the structure of the fecal microbiota community was markedly altered by intake of IDFO and IDFC. In particular, the abundance of Bifidobacteriales and Lactobacillales significantly increased to varying degrees as a result of IDFO and IDFC intake. Altogether, this study demonstrates a prebiotic effect of SHDF on the fecal microbiota in vitro and provides a basis for the development of SHDF as a novel gut microbiota modulator for health promotion.
Collapse
|
34
|
Khan GM, Khan NM, Khan ZU, Ali F, Jan AK, Muhammad N, Elahi R. Effect of extraction methods on structural, physiochemical and functional properties of dietary fiber from defatted walnut flour. Food Sci Biotechnol 2018; 27:1015-1022. [PMID: 30263830 DOI: 10.1007/s10068-018-0338-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
The effect of different extraction methods i.e. extraction with alkali (AEDF), enzyme (EEDF) and enzyme plus shear emulsifying hydrolysis (SEDF) on structure, physiochemical as well as the functional characteristics of dietary fiber (DF) from defatted walnut flour were studied. AEDF process showed significantly higher (P < 0.05) amount of water retention capacity (WRC; 5.39 g/g), water swelling capacity (WSC; 3.16 g/mL), and particle size; while, shown lower value of oil adsorption capacity (OAC; 29 g/g) amongst all. Compared to AEDF, no major differences were observed in network except the matrix in EEDF and SEDF was more porous and honey comb like. DF extracted through AEDF, EEDF and SEDF showed good viscosity and emulsifying activity however, less stability indices. The results from this study suggest that AEDF and EEDF and SEDF had specific effects on the structure-functional properties of DF from defatted walnut flour, which has great potential in food applications.
Collapse
Affiliation(s)
- Gul Mali Khan
- 1Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| | - Nasir Mehmood Khan
- 1Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| | - Zia Ullah Khan
- 2Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Farman Ali
- 1Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| | - Abdul Khaliq Jan
- 1Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| | - Nawshad Muhammad
- 3Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rizwan Elahi
- 4Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Jin Q, Xie F, Luo J, Huang X, Wen J, Zhang W, Wu J, He J, Wang Z. Investigation of Functional and Structural Properties of Insoluble Dietary Fiber From Sichuan Natural Fermented Pickles With Different Salting Treatments. STARCH-STARKE 2018. [DOI: 10.1002/star.201800047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Quan Jin
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Fan Xie
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Jing Luo
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Xinyang Huang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Jing Wen
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Wenwei Zhang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Jinhong Wu
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Jiajuan He
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| | - Zhengwu Wang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai 200240China
| |
Collapse
|
36
|
Chen J, Mu T, Zhang M, Goffin D. Effect of heat treatments on the structure and emulsifying properties of protein isolates from cumin seeds ( Cuminum cyminum). FOOD SCI TECHNOL INT 2018; 24:673-687. [PMID: 30033759 DOI: 10.1177/1082013218788753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of heat treatments (65, 75, 85, and 95 ℃, 30 min) on the structure and the emulsifying properties of cumin protein isolates were investigated. The fluorescence spectra analysis showed that the conformations were remarkably influenced by heat treatments. An increase in the ratio of α-helix in the secondary structure of heated cumin protein isolates was observed from the result of circular dichroism. Thermal treatments at different temperatures led to an increase in the surface hydrophobicity ( Ho) and a decrease in zeta potential ( ζ) of cumin protein isolates. Emulsifying activity index and emulsion stability index of heated cumin protein isolates were reduced at different protein concentrations (0.1, 0.5, and 1.0%), while the protein absorption in emulsions stabilized by heated cumin protein isolates gradually increased with heating temperature increasing. Moreover, both emulsions stabilized by native and heated cumin protein isolates showed pseudo-plastic fluid behavior and exhibited a decrease in their viscosities with proteins concentration increasing. But thermal treatments produced different effects on the flow behavior of emulsions formed by various protein concentrations, the flow index for heated cumin protein isolates emulsions increased at protein concentrations of 0.5 and 1.0%, but decreased at a concentration of 0.1%. These results might provide reference for the cumin protein processing and its application in food industry.
Collapse
Affiliation(s)
- Jingwang Chen
- 1 Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China.,2 Laboratory of Gastronomical Science, Department of d'Agronomie, Bio-ingeénierie et Chimie, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Taihua Mu
- 1 Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Miao Zhang
- 1 Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Dorothée Goffin
- 2 Laboratory of Gastronomical Science, Department of d'Agronomie, Bio-ingeénierie et Chimie, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
37
|
Song Y, Su W, Mu YC. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1479715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ying Chun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Chen J, Mu T, Zhang M, Goffin D, Sun H, Ma M, Liu X, Zhang D. Structure, physicochemical, and functional properties of protein isolates and major fractions from cumin (Cuminum cyminum) seeds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jingwang Chen
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
- Laboratory of Gastronomical Science, Department of d’Agronomie, Bio-ingénierie et Chimie, University of Liege - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Dorothée Goffin
- Laboratory of Gastronomical Science, Department of d’Agronomie, Bio-ingénierie et Chimie, University of Liege - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Mengmei Ma
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Xingli Liu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Duqin Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| |
Collapse
|
39
|
Ahmed R, Getachew AT, Cho YJ, Chun BS. Application of bacterial collagenolytic proteases for the extraction of type I collagen from the skin of bigeye tuna (Thunnus obesus). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Abstract
The liver has the crucial role in the regulation of various physiological processes and in the excretion of endogenous waste metabolites and xenobiotics. Liver structure impairment can be caused by various factors including microorganisms, autoimmune diseases, chemicals, alcohol and drugs. The plant kingdom is full of liver protective chemicals such as phenols, coumarins, lignans, essential oils, monoterpenes, carotenoids, glycosides, flavonoids, organic acids, lipids, alkaloids and xanthenes. Apiaceae plants are usually used as a vegetable or as a spice, but their other functional properties are also very important. This review highlights the significance of caraway, dill, cumin, aniseed, fennel, coriander, celery, lovage, angelica, parsley and carrot, which are popular vegetables and spices, but possess hepatoprotective potential. These plants can be used for medicinal applications to patients who suffer from liver damage.
Collapse
Affiliation(s)
- Milica G. Aćimović
- University of Novi Sad, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Nataša B. Milić
- University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
41
|
Saravana PS, Getachew AT, Ahmed R, Cho YJ, Lee YB, Chun BS. Optimization of phytochemicals production from the ginseng by-products using pressurized hot water: Experimental and dynamic modelling. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Xie F, Wang Y, Wu J, Wang Z. Functional Properties and Morphological Characters of Soluble Dietary Fibers in Different Edible Parts of Angelica Keiskei. J Food Sci 2016; 81:C2189-98. [DOI: 10.1111/1750-3841.13399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Fan Xie
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| | - Yuqiang Wang
- School of Perfume and Aroma Technology; Shanghai Inst. of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Jinhong Wu
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
43
|
Ma M, Mu T. Anti-diabetic effects of soluble and insoluble dietary fibre from deoiled cumin in low-dose streptozotocin and high glucose-fat diet-induced type 2 diabetic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
44
|
Xie F, Wang Y, Wu J, Wang Z. Insoluble dietary fibers fromAngelica keiskeiby-product and their functional and morphological properties. STARCH-STARKE 2016. [DOI: 10.1002/star.201600122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fan Xie
- Department of Food Science & Technology, School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Yuqiang Wang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P.R. China
| | - Jinhong Wu
- Department of Food Science & Technology, School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| |
Collapse
|
45
|
Ma MM, Mu TH. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem 2016; 194:237-46. [DOI: 10.1016/j.foodchem.2015.07.095] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 01/31/2023]
|
46
|
Ma M, Mu T. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr Polym 2015; 136:87-94. [PMID: 26572332 DOI: 10.1016/j.carbpol.2015.09.030] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 01/24/2023]
Abstract
In this study, we evaluated the effects of high hydrostatic pressure (HHP) and enzyme (laccase and cellulase) treatment on the structural, physicochemical, and functional properties and antioxidant activity of deoiled cumin dietary fiber (DF). HHP-enzyme treatment increased the contents of soluble dietary fiber (SDF) (30.37 g/100g), monosaccharides (except for glucose), uronic acids, and total polyphenol. HHP-enzyme treatment altered the honey-comb structure of DF and generated new polysaccharides. DF modified by HHP-enzyme treatment exhibited improved water retention capacity (10.02 g/g), water swelling capacity (11.19 mL/g), fat and glucose absorption capacities (10.44 g/g, 22.18-63.54 mmol/g), α-amylase activity inhibition ration (37.95%), and bile acid retardation index (48.85-52.58%). The antioxidant activity of DF was mainly correlated to total polyphenol content (R=0.8742). Therefore, DF modified by HHP-enzyme treatment from deoiled cumin could be used as a fiber-rich ingredient in functional foods.
Collapse
Affiliation(s)
- Mengmei Ma
- Laboratory of Food Chemistry and Nutrition Science, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|