1
|
Muñoz-Almagro N, Wilde PJ, Montilla A, Villamiel M. Development of low-calorie gels from sunflower pectin extracted by the assistance of ultrasound. Lebensm Wiss Technol 2025; 222:117609. [PMID: 40235463 PMCID: PMC11953053 DOI: 10.1016/j.lwt.2025.117609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
In this study, the effect of the application of ultrasound for the extraction of sunflower pectin on the elaboration of gels with sucrose, stevia and saccharin was investigated at pH values of 3.0, 4.6 and 6.8. The results pointed out that, in all the conditions tested, gels formed with ultrasound-extracted pectin were stronger than those obtained from pectin extracted with conventional methods. Thus, the optimal conditions to form a gel were Ca2+ concentration 25 mg/g, pH 3.0 and 10% sucrose. Under the same conditions it was possible to make gels with similar characteristics to that of sucrose by replacing it with stevia or saccharin, obtaining gels with excellent properties and low glycemic index and caloric content, especially suitable for healthy fruit-derived products such as jams, to be used instead of those made with sucrose. These important differences in gelation could be probably due to differences in galacturonic acid (GalA) content, degree of methyl esterification and molecular weight (Mw) in pectin obtained by ultrasound.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Peter J. Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
2
|
Berktas S, Cam M. Effects of acid, alkaline and enzymatic extraction methods on functional, structural and antioxidant properties of dietary fiber fractions from quince (Cydonia oblonga Miller). Food Chem 2025; 464:141596. [PMID: 39413597 DOI: 10.1016/j.foodchem.2024.141596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In this study, quince soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were obtained by acid extraction, enzyme extraction and alkaline extraction methods. The acid extracted DF displayed higher results compared to enzyme and alkaline extraction methods in terms of water holding capacity (15.97 g/g SDF), oil holding capacity (1.05 g/g SDF) and nitrite ion adsorption capacity (92.83 mg/g SDF). The antioxidant activity and phenolic content of acid extracted IDF were significantly higher than the other quince DFs. In addition, quince DFs exhibited in vitro hypoglycaemic activity, exhibiting high glucose adsorption capacity (237 mg/g) and α-amylase inhibition activity (82 %). Similarly, acid extracted SDF of quince showed in vitro hypolipidemic activity, with cholesterol adsorption capacity of 155 mg/g and lipase inhibition activity of 36 %. The structures and thermal properties of quince DFs were characterized by FT-IR and TGA. Quince DFs with high functional properties might be suitable agents for functional food formulations, such as meat products, low-calorie fruit bars, flour mixtures, etc.
Collapse
Affiliation(s)
- Serap Berktas
- Institute of Natural Sciences, Erciyes University, 38039 Kayseri, Türkiye.
| | - Mustafa Cam
- Department of Food Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
3
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
4
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
5
|
Martorano TA, Ferguson KL, Cameron RG, Zhao W, Hotchkiss AT, Chau HK, Dorado C. Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion. Foods 2024; 13:3738. [PMID: 39682811 DOI: 10.3390/foods13233738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Steam explosion (STEX) of peel from commercially juice-extracted oranges was used to convert peel pectin into pectic oligosaccharides (POSs). Surprisingly uniform populations, based on the polydispersity index (PDI; weight-average molecular weight (Mw)/number-average molecular weight (Mn)) of POSs, were obtained from the Hamlin and Valencia varieties of Citrus sinensis. The POSs from Hamlin and Valencia peel had PDI values of (1.23 ± 0.01, 1.24 ± 0.1), respectively. The Mw values for these samples were 14.9 ± 0.2 kDa for Hamlin, and 14.5 ± 0.1 kDa for Valencia, respectively. The degree of methyl-esterification (DM) was 69.64 ± 3.18 for Hamlin and 65.51 ± 1.61 for Valencia. The composition of the recovered POSs was dominated by galacturonic acid, ranging from 89.1% to 99.6% of the major pectic sugars. Only the Hamlin sample had a meaningful amount of rhamnose present, indicating the presence of an RG I domain. Even so, the Hamlin sample's degree of branching (DBr) was very low (2.95).
Collapse
Affiliation(s)
- Toni-Ann Martorano
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA
| | - Kyle L Ferguson
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA
| | - Randall G Cameron
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA
| | - Wei Zhao
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA
| | - Arland T Hotchkiss
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Springfield, PA 19038, USA
| | - Hoa K Chau
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Springfield, PA 19038, USA
| | - Christina Dorado
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA
| |
Collapse
|
6
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
7
|
Feng X, Ameer K, Ramachandraiah K, Jiang G. Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue. Molecules 2024; 29:4875. [PMID: 39459244 PMCID: PMC11510121 DOI: 10.3390/molecules29204875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
In this research, the dietary fibers (DFs) from ginseng residue were extracted by employing three different extraction methods (alkaline: AL, acidic: AC, enzymatic: EN). The extracted DFs were characterized in terms of their structural and functional properties. The results clearly showed that, regardless of the extraction methods, all DF samples exhibited representative infrared spectral features. The DF extracted by AC (citric acid) had more porous structures with a looser configuration, in conjunction with high apparent viscosity, whereas the DF extracted by EN (α-amylase and protease) exhibited higher thermal stability. Moreover, the monosaccharide composition of the DF samples was significantly influenced by the extraction method type. The DF from ginseng residue extracted by AC had the highest functional properties, such as water holding capacity (8.16 g/g), oil holding capacity (3.99 g/g), water swelling capacity (8.13 g/g), cholesterol-absorption capacity (12.85 mg/g), bile acid absorption capacity (91.51 mg/g), nitrite ion absorption capacity (124.38 ug/g at pH 2.0), glucose absorption capacity (52.67 mg/g at 150 mmol/L), as compared to those of DF extracted by the EN and AL (sodium hydroxide) methods. Hence, ginseng residue-derived DF extracted by the AC method may be potentially employed in the preparation of functional food ingredients.
Collapse
Affiliation(s)
- Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | | | - Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
8
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Banerjee S, Kundu D, Dey S, Kumbhakar P, Mahapatra PL, Karmakar S, Tiwari CS, Banerjee R. A cleaner and eco-friendly approach to simultaneous extraction and characterization of essential oil and pectin from Assam lemon peel and its application for energy generation through TENG devices. Heliyon 2024; 10:e32999. [PMID: 39165985 PMCID: PMC11334901 DOI: 10.1016/j.heliyon.2024.e32999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 08/22/2024] Open
Abstract
Scientists have been working on developing a green bio-TENG for portable remote devices, including wearables in the biomedical sector. The process involves obtaining pectin, a green material with anti-microbial properties, as a Triboelectric material. This study focuses on the extraction of essential oil (EO) and pectin from Assam lemon peel simultaneously. A single-step strategy was optimized using a central composite design-based response surface approach. The extracted pectin yielded 4.19 ± 0.31 % and 11.53 ± 0.11 %, respectively. GC-MS analysis revealed 52 volatile components in the Assam lemon EOs, with limonin being 94.47 % and β-Bisabolene being 1.26 %. Only khusilal was found in the EOs, a rare discovery in the scientific domain. The extracted pectin showed good purity and antimicrobial properties. The in vitro activities of the citrus EO against microbial cultures revealed its activity in controlling and eradicating bacterial and fungal growth. Hydro distillation followed by enzyme treatment is a promising approach that combines two separate extraction procedures. The produced biopolymer showed the generation of electrical signals under minimal pressure and stretching and prevented microbial degeneration when applied to a nanogenerator.
Collapse
Affiliation(s)
- Subhodeep Banerjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debajyoti Kundu
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subhara Dey
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Partha Kumbhakar
- Department of Metalllurgy and Material Science, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Preeti Lata Mahapatra
- Department of Metalllurgy and Material Science, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sandipan Karmakar
- Department of Management Studies, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Chandra Sekhar Tiwari
- Department of Metalllurgy and Material Science, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rintu Banerjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
10
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
11
|
Yu Y, Lu P, Yang Y, Ji H, Zhou H, Chen S, Qiu Y, Chen H. Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques. Sci Rep 2024; 14:9182. [PMID: 38649422 PMCID: PMC11035564 DOI: 10.1038/s41598-024-59760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.
Collapse
Affiliation(s)
- Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ping Lu
- China Tobacco Fujian Industrial Co., Ltd, Xiamen, 361012, China
| | - Yongfeng Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huifu Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hang Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyuan Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Riyamol, Gada Chengaiyan J, Rana SS, Ahmad F, Haque S, Capanoglu E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS OMEGA 2023; 8:46309-46324. [PMID: 38107881 PMCID: PMC10723649 DOI: 10.1021/acsomega.3c04010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
Pectin is a structural polysaccharide present in plants that primarily consists of galacturonic acid units. This Review discusses the chemistry of pectin, including its composition and molecular weight. Pectin is conventionally extracted from agricultural waste (fruit and vegetable peels) using an acidic or basic aqueous medium at high temperatures. These processes are time- and energy-consuming and also result in severe environmental problems due to the production of acidic effluents and equipment corrosion. As pectin usage is increasing in food industries for developing different products and it is also used as an excipient in pharmaceutical products, better extraction procedures are required to maximize the yield and purity. The Review encompasses various alternate green approaches for the extraction of pectin, including traditional acid extraction and various emerging technologies such as deep eutectic solvent-based extraction, enzyme-assisted extraction, subcritical fluid extraction, ultrasound-assisted extraction, and microwave-based extraction, and evaluates the yield and physicochemical characteristics of the extracted pectin. This work aims to provide a platform for attracting more thorough research focused on the engineering of novel and more efficient green methods for the extraction of pectin and its utilization for various biotechnological purposes.
Collapse
Affiliation(s)
- Riyamol
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sandeep Singh Rana
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Faraz Ahmad
- Department
of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jizan 45142, Saudi Arabia
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
13
|
Xiong M, Feng M, Chen Y, Li S, Fang Z, Wang L, Lin D, Zhang Q, Liu Y, Luo Y, Chen H. Comparison on structure, properties and functions of pomegranate peel soluble dietary fiber extracted by different methods. Food Chem X 2023; 19:100827. [PMID: 37780339 PMCID: PMC10534148 DOI: 10.1016/j.fochx.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023] Open
Abstract
In this research, the different methods (acid extraction, alkaline extraction and enzymatic extraction) were used to extract soluble dietary fiber (SDF) from pomegranate peel and compared with water extraction. Results revealed that all three extraction methods influenced the structure, physicochemical and functional properties of SDF. Especially, SDF extracted by enzymes (E-SDF) and SDF extracted by alkali (A-SDF) had higher yield (27.30% and 27.17%), molecular weight and thermal stability than SDF extracted by water (W-SDF). Higher oil holding capacity (OHC) was found in SDF extracted by acid (C-SDF) (3.18 g/g), A-SDF (3.18 g/g) and E-SDF (5.36 g/g) compared with W-SDF. In addition, A-SDF showed the smallest particle size, lowest ζ-potential and highest viscosity among the tested samples. E-SDF presented a more porous structure, better glucose adsorption capacity (GAC) and antioxidant activity than C-SDF and A-SDF. To sum up, A-SDF and E-SDF may have great potential to be functional food ingredients in the food industry.
Collapse
Affiliation(s)
- Min Xiong
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Mei Feng
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yanli Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Lina Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| |
Collapse
|
14
|
Puzeryte V, Martusevice P, Sousa S, Balciunaitiene A, Viskelis J, Gomes AM, Viskelis P, Cesoniene L, Urbonaviciene D. Optimization of Enzyme-Assisted Extraction of Bioactive Compounds from Sea Buckthorn ( Hippophae rhamnoides L.) Leaves: Evaluation of Mixed-Culture Fermentation. Microorganisms 2023; 11:2180. [PMID: 37764024 PMCID: PMC10536544 DOI: 10.3390/microorganisms11092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.
Collapse
Affiliation(s)
- Viktorija Puzeryte
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| |
Collapse
|
15
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
A mini-review on the plant sources and methods for extraction of rhamnogalacturonan I. Food Chem 2023; 403:134378. [DOI: 10.1016/j.foodchem.2022.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
17
|
Salazar Ripoll CS, Hincapié-Llanos GA. Evaluation of sources and methods of pectin extraction from fruit and Vegetable wastes: A Systematic Literature Review (SLR). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Gautam K, Vishvakarma R, Sharma P, Singh A, Kumar Gaur V, Varjani S, Kumar Srivastava J. Production of biopolymers from food waste: Constrains and perspectives. BIORESOURCE TECHNOLOGY 2022; 361:127650. [PMID: 35907601 DOI: 10.1016/j.biortech.2022.127650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | | |
Collapse
|
19
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
20
|
The Influence of Different Extraction Methods on the Structure, Rheological, Thermal and Functional Properties of Soluble Dietary Fiber from Sanchi (Panax notoginseng) Flower. Foods 2022; 11:foods11141995. [PMID: 35885237 PMCID: PMC9318018 DOI: 10.3390/foods11141995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The influence of different extraction methods, such as acidic (AC), enzymatic (EN), homogenization (H), ultrsonication (U) and alkali (AL), on structure, rheological, thermal and functional properties of soluble dietary fiber (SDF) from Sanchi flower was evaluated in this study. The highest extraction yield (23.14%) was obtained for AL-SDF extract. Glucose (Glc) and galactose (Gal) were found to be the major constituents in Sanchi SDF. Homogenization and Ultrsonication treatments caused significant compaction of pores in the microstructures. FTIR analysis showed increased hydrolysis of pectin and hemicellulose in U, AL and AC-SDF extracts. H-SDF and AC-SDF exhibited similar shear rate change with the rise in shear stress. H-SDF was thermally more stable than other SDF extracts. Among all extraction methods, H-SDF and U-SDF exhibited the highest water holding capacity (WHC), oil-holding capacity (OHC), Bile acid-adsorption capacity (BAC), Cholesterol-adsorption capacity (CAC) and Glucose adsorption capacity (GAC). Thus, Sanchi flower SDF with improved functional properties could be utilized as a functional food ingredient in the development of various food products.
Collapse
|
21
|
Costa KPB, Reichembach LH, de Oliveira Petkowicz CL. Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Streimikyte P, Viskelis P, Viskelis J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int J Mol Sci 2022; 23:2359. [PMID: 35216475 PMCID: PMC8876524 DOI: 10.3390/ijms23042359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The scientific community and industrial companies have discovered significant enzyme applications to plant material. This rise imparts to changing consumers' demands while searching for 'clean label' food products, boosting the immune system, uprising resistance to bacterial and fungal diseases, and climate change challenges. First, enzymes were used for enhancing production yield with mild and not hazardous applications. However, enzyme specificity, activity, plant origin and characteristics, ratio, and extraction conditions differ depending on the goal. As a result, researchers have gained interest in enzymes' ability to cleave specific bonds of macroelements and release bioactive compounds by enhancing value and creating novel derivatives in plant extracts. The extract is enriched with reducing sugars, phenolic content, and peptides by disrupting lignocellulose and releasing compounds from the cell wall and cytosolic. Nonetheless, depolymerizing carbohydrates and using specific enzymes form and release various saccharides lengths. The latest studies show that oligosaccharides released and formed by enzymes have a high potential to be slowly digestible starches (SDS) and possibly be labeled as prebiotics. Additionally, they excel in new technological, organoleptic, and physicochemical properties. Released novel derivatives and phenolic compounds have a significant role in human and animal health and gut-microbiota interactions, affecting many metabolic pathways. The latest studies have contributed to enzyme-modified extracts and products used for functional, fermented products development and sustainable processes: in particular, nanocellulose, nanocrystals, nanoparticles green synthesis with drug delivery, wound healing, and antimicrobial properties. Even so, enzymes' incorporation into processes has limitations and is regulated by national and international levels.
Collapse
Affiliation(s)
- Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania
| |
Collapse
|
23
|
Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Çavdaroğlu E, Yemenicioğlu A. Utilization of stalk waste separated during processing of sun-dried figs (Ficus carica) as a source of pectin: Extraction and determination of molecular and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
26
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
27
|
Extraction of pectin from sugar beet pulp by enzymatic and ultrasound-assisted treatments. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
BEYECH HUNDİE K, ABDİSSA D. Extraction and Characterization of Pectin from Lemon Waste for Commercial Applications. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021; 8:1111-1120. [DOI: https:/doi.org/10.18596/jotcsa.901973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The objective of this paper was preliminary to extract and characterization of purified pectin from lemon wastes. Dry lemon waste was extracted applying citric acid solvent or water at various concentrations under a similar condition (85 ºC for 4 h). It was found that the highest yield of pectin (20.8% dry basis) was achieved using hot water extraction with an esterification degree of 47.8%. It contained 63.2 ± 0.74% galacturonic acid, followed by 17.4 ± 0.76% total sugar. The monosaccharides found in pectin were arabinose (2.7 ± 0.20%), galactose (2.3 ± 0.01%), glucose (1.4 ± 0.09%), mannose (0.4 ± 0.01%), fructose (0.4 ± 0.05%), and xylose (0.1 ± 0.01%). The found pectin had a high atomic weight of 2060 kDa with a wide polydispersity index of 4.41, decided by high-Performance Size Exclusion Chromatography (HPSEC). The extricated lemon waste pectin was grouped into low methoxyl pectin, depends on the methoxyl content and degree of esterification affirmed by Fourier transform infrared spectroscopy (FT-IR) and rheological properties. In conclusion, the discoveries of the study show that lemon waste can be investigated as a promising elective for the commercial manufacturing of pectin.
Collapse
|
29
|
Muñoz-Almagro N, Herrero-Herranz M, Guri S, Corzo N, Montilla A, Villamiel M. Application of sunflower pectin gels with low glycemic index in the coating of fresh strawberries stored in modified atmospheres. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5775-5783. [PMID: 33788966 DOI: 10.1002/jsfa.11226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND This study reports the use of low glycemic sunflower pectin gel, elaborated with calcium and without or with sweeteners (sucrose, stevia and saccharin) as an edible coating and its possible combination with two modified atmosphere packaging (MAP), in order to extend shelf life, maintaining the quality, of strawberries during the storage at 4 °C. RESULTS This pectin coating, formed with only calcium and/or stevia or saccharin, extended the shelf life of strawberries with respect to uncoating fruits, up to 12 days, keeping the microbial load constant, the firmness and less weight loss. With the same edible coatings, the shelf life of strawberries was extended up to 23 days when they were combined with MAP [10% carbon dioxide (CO2 ), 85% nitrogen (N2 ) and 5% oxygen (O2 )], maintaining the quality of strawberries, while the other MAP, with a higher CO2 concentration (20% CO2 , 75% N2 and 5% O2 ), had no effect. CONCLUSIONS These results highlight the suitability of the combination of edible pectin coating combined with MAP to obtain an important shelf life extension, maintaining the good quality of the fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - María Herrero-Herranz
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Sonia Guri
- MATGAS Research Center, Barcelona, Spain
| | - Nieves Corzo
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Antonia Montilla
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| |
Collapse
|
30
|
Santos DKDDN, Barros BRDS, Filho IJDC, Júnior NDSB, da Silva PR, Nascimento PHDB, Lima MDCAD, Napoleão TH, de Melo CML. Pectin-like polysaccharide extracted from the leaves of Conocarpus erectus Linnaeus promotes antioxidant, immunomodulatory and prebiotic effects. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
BEYECH HUNDİE K, ABDİSSA D. Extraction and Characterization of Pectin from Lemon Waste for Commercial Applications. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.901973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|
33
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
34
|
Khubber S, Kazemi M, Amiri Samani S, Lorenzo JM, Simal-Gandara J, Barba FJ. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sucheta Khubber
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Sara Amiri Samani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jose M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Avd. Parque Tecnológico De Galicia, San Cibrao Das Viñas, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Francisco J. Barba
- Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Universitat De València, Burjassot, València, Spain
| |
Collapse
|
35
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
36
|
Ferguson K, da Cruz MA, Ferrarezi R, Dorado C, Bai J, Cameron RG. Impact of Huanglongbing (HLB) on grapefruit pectin yield and quality during grapefruit maturation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Cui J, Zhao C, Feng L, Han Y, Du H, Xiao H, Zheng J. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Calvete-Torre I, Muñoz-Almagro N, Pacheco MT, Antón MJ, Dapena E, Ruiz L, Margolles A, Villamiel M, Moreno FJ. Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydr Polym 2021; 264:117980. [PMID: 33910710 DOI: 10.1016/j.carbpol.2021.117980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Comprehensive chemical characterization of nine mono-varietal apple pomaces obtained from the production of ciders with PDO is described. They were rich in essential minerals, fibers (35-52.9 %), and polyphenols. High levels in GalA (11.8-21.6 %), revealed the suitability of these apple pomaces as efficient sources of pectins. Extracted pectins showed high variability in monomer composition, with degrees of methylesterification, strongly associated with pectins functional properties, ranging from 58 to 88 %. For a subset of apple pomace varieties, pectin extraction was accomplished by conventional acid heat treatment or ultrasound. Despite ultrasound-assisted extraction did not improve pectin yield, it minimized levels of "non-pectin" components as revealed by the low content of Glc/Man, leading to the obtainment of high-purity pectin. Our work highlights the key role played by the selection of the apple variety to streamline the potential food applications (gelling/thickening agents or prebiotics) of the extracted pectins that largely depend on their structural features.
Collapse
Affiliation(s)
- Inés Calvete-Torre
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Nerea Muñoz-Almagro
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M Teresa Pacheco
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María José Antón
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Enrique Dapena
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - F Javier Moreno
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
39
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3409-3443. [PMID: 33753968 PMCID: PMC7968578 DOI: 10.1007/s10311-021-01217-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 05/18/2023]
Abstract
There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality. Here, we review technologies for extracting polyphenolic compounds from foods. Conventional techniques include percolation, decoction, heat reflux extraction, Soxhlet extraction and maceration, whereas advanced techniques are ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, high-voltage electric discharge, pulse electric field extraction and enzyme-assisted extraction. Advanced techniques are 32-36% more efficient with approximately 15 times less energy consumption and producing higher-quality extracts. Membrane separation and encapsulation appear promising to improve the sustainability of separating polyphenolic compounds. We present kinetic models and their influence on process parameters such as solvent type, solid and solvent ratio, temperature and particle size.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
40
|
Production of Extracts Composed of Pectic Oligo/Polysaccharides and Polyphenolic Compounds from Cranberry Pomace by Microwave-Assisted Extraction Process. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Wang K, Li M, Wang Y, Liu Z, Ni Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106162] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Tan H, Nie S. Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
|
45
|
Çavdaroğlu E, Farris S, Yemenicioğlu A. Development of pectin–eugenol emulsion coatings for inhibition of Listeria on webbed‐rind melons: a comparative study with fig and citrus pectins. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elif Çavdaroğlu
- Department of Food Engineering Faculty of Engineering Izmir Institute of Technology Gülbahçe Köyü Urla 35430 Izmir Turkey
| | - Stefano Farris
- DeFENS Department of Food, Environmental and Nutritional Sciences Packaging Division University of Milan Via Celoria 2 Milan 20133 Italy
| | - Ahmet Yemenicioğlu
- Department of Food Engineering Faculty of Engineering Izmir Institute of Technology Gülbahçe Köyü Urla 35430 Izmir Turkey
| |
Collapse
|
46
|
Yang Y, Zhao M, Lin L. Effects of extraction methods on structural characteristics and bile acid‐binding capacities of
Moringa oleifera
leaf polysaccharide fractions. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yanqing Yang
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center South China University of Technology Guangzhou 510641 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center South China University of Technology Guangzhou 510641 China
| | - Lianzhu Lin
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center South China University of Technology Guangzhou 510641 China
| |
Collapse
|
47
|
Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, Velmurugan K, Sathishkumar P, Jayakumar R, Seedevi P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits - A comprehensive review. Carbohydr Polym 2020; 238:116185. [PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023]
Abstract
Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Nagarajan Revathi
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| | - Abirami Ramu Ganesan
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Kalamani Velmurugan
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Rajarajeswaran Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| |
Collapse
|
48
|
Lopez-Sanchez P, Martinez-Sanz M, Bonilla M, Sonni F, Gilbert E, Gidley M. Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Ultrasound-assisted extraction of pectin from artichoke by-products. An artificial neural network approach to pectin characterisation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105238] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|