1
|
Bertolo MRV, de Oliveira Filho JG, Lamonica GC, de Oliveira Nobre Bezerra CC, da Conceição Amaro Martins V, Ferreira MD, de Guzzi Plepis AM, Bogusz Junior S. Improvement of the physical-chemical, microbiological, volatiles and sensory quality of strawberries covered with chitosan/gelatin/pomegranate peel extract-based coatings. Food Chem 2025; 471:142755. [PMID: 39764943 DOI: 10.1016/j.foodchem.2025.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 02/12/2025]
Abstract
This study investigated the effects of chitosan/gelatin (CG) coatings containing pomegranate peel extract (PPE) on the physical-chemical, microbiological, volatile profile, and sensory characteristics of strawberries over 12 days of refrigerated storage. The coatings containing PPE minimized the weight loss of the fruits by 11 % and delayed their fungal contamination by 6-8 days. Uncoated fruits showed soluble solids content, pH, and titratable acidity values characteristics of highly deteriorated fruits. The coatings preserved the color, firmness, respiratory quotient, and bioactive compounds contents of the fruits. Uncoated strawberries showed a 39.4 % reduction in total volatile compounds, approximately 6 times greater than coated fruits. The severity of injuries caused by fungi was slowed down by the coatings. The sensory quality of the fruits was not affected, and the coatings cost was estimated at approximately $ 0.03/fruit, confirming that the materials developed can be used as natural coatings and a cheap alternative for strawberries preservation.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, SP, Brazil
| | | | - Stanislau Bogusz Junior
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Tanasă F, Nechifor M, Teacă CA. Essential Oils as Alternative Green Broad-Spectrum Biocides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3442. [PMID: 39683235 DOI: 10.3390/plants13233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard.
Collapse
Affiliation(s)
- Fulga Tanasă
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
4
|
Bezerra M, Ribeiro M, Cosme F, Nunes FM. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Compr Rev Food Sci Food Saf 2024; 23:e13354. [PMID: 38682687 DOI: 10.1111/1541-4337.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Collapse
Affiliation(s)
- Mário Bezerra
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Wu H, Wang X, Li S, Zhang Q, Chen M, Yuan X, Zhou M, Zhang Z, Chen A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int J Biol Macromol 2024; 260:129469. [PMID: 38242415 DOI: 10.1016/j.ijbiomac.2024.129469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiangfeng Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Maoxu Chen
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
6
|
Phuong NTH, Tanaka F, Wardana AA, Van TT, Yan X, Nkede FN, Tanaka F. Persimmon preservation using edible coating of chitosan enriched with ginger oil and visualization of internal structure changes using X-ray computed tomography. Int J Biol Macromol 2024; 262:130014. [PMID: 38340933 DOI: 10.1016/j.ijbiomac.2024.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The incorporation of ginger oil (GO) influenced the physical, optical, and structural properties of the chitosan (CH) film including the decreases of moisture content (60.15 %), water solubility (35.37 %) and water vapor permeability (WVP) (32.79 %) and the increases of tensile strength (TS) (125 %), elongation at break (EAB) (2.74 %) and opacity (131.08 %). Antifungal capacity of the CH film was enhanced when GO was added to the film. The CH + GO film showed a less homogeneous surface that the presence of the oil droplets on the film surface. Moreover, the CH and CH + GO coatings reduced weight loss of persimmon by 14.87 %, and 21.13 %, respectively, compared to the control. Moisture content loss of the coated CH- and the coated CH + GO- persimmons was decreased by 1.94 % and 4.92 %, respectively, compared to that of the control persimmon. Furthermore, the CH and CH + GO coatings decreased in color changes, respiration rate, ethylene production, changes in pH and TSS, and remained firmness of persimmon during storage at 25 °C. In addition, X-ray CT images can be used to monitor internal changes and observe the tissue breakdown during storage period. The ΔGS value can be used as a predictor of persimmon internal qualities. Thus, the CH film containing GO can be applied as an active packaging material.
Collapse
Affiliation(s)
- Nguyen Thi Hang Phuong
- Department of Food Technology, Faculty of Agriculture and Food Technology, Tien Giang University, 119 Ap Bac, My Tho city, Viet Nam.
| | - Fumina Tanaka
- Division of Bio-production Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, W5-873,744 Motooka, Nishi-ku Fukuoka shi 819-0395, Japan
| | - Ata Aditya Wardana
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Tran Thi Van
- Division of Bio-production Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, W5-873,744 Motooka, Nishi-ku Fukuoka shi 819-0395, Japan; Department of Preservation Technology Research on Agricultural Product, Vietnam Institution of Agricultural Engineering and Postharvest Technology, Hanoi 10000, Viet Nam
| | - Xirui Yan
- Division of Bio-production Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, W5-873,744 Motooka, Nishi-ku Fukuoka shi 819-0395, Japan
| | - Francis Ngwane Nkede
- Division of Bio-production Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, W5-873,744 Motooka, Nishi-ku Fukuoka shi 819-0395, Japan
| | - Fumihiko Tanaka
- Division of Bio-production Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, W5-873,744 Motooka, Nishi-ku Fukuoka shi 819-0395, Japan
| |
Collapse
|
7
|
Kačániová M, Čmiková N, Vukovic NL, Verešová A, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Ban Z, Vukic MD. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. PLANTS (BASEL, SWITZERLAND) 2024; 13:524. [PMID: 38498554 PMCID: PMC10893099 DOI: 10.3390/plants13040524] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), β-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|
8
|
Wang W, Liu Y, Di J, Wang Y, Deng B, Yang J, Li Z, Zhang L. Impacts of Selenium-Chitosan Treatment on Color of "Red Globe" Grapes during Low-Temperature Storage. Foods 2024; 13:499. [PMID: 38338634 PMCID: PMC10855749 DOI: 10.3390/foods13030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining the vibrant color of fruit is a longstanding challenge in fruit and vegetable preservation. Chitosan and selenium, known for their protective and antioxidant properties, have been applied to preserve these produce. This study aimed to investigate the influence of selenium-chitosan treatment (comprising 25 mg L-1 selenium and 1.0% chitosan) on the color of "Red Globe" grapes and to analyze the relative expression of genes associated with anthocyanin synthesis enzymes (VvCHS, VvCHI, VvF3H, VvF3'H, VvF3'5'H, VvDFR, VvLDOX, VvUFGT, VvOMT, Vv5GT, and VvGST) using RT-qPCR. Our goal was to uncover the regulatory mechanisms governing grape color. Comparing various treatments, we observed that selenium-chitosan treatment had a significant effect in reducing decay, maintaining the soluble solids content of grape flesh, and preserving the vivid color of grape. This research indicated that selenium-chitosan treatment slowed down browning and prevented the reduction in total phenolic, flavonoids, and anthocyanin in the grape. Moreover, gene expression analysis revealed that selenium-chitosan treatment increased the expression of VvCHS, VvF3H, VvF'3'H, VvLDOX, and Vv5GT, while also stabilized the expression of VvCHI, VvF3'H, and VvDFR in grape skins. These findings shed light on the potential mechanism by which selenium-chitosan impacts grape color. This study established a theoretical foundation for investigating the molecular mechanisms behind selenium-chitosan's ability to slow down grape browning and provides a novel approach to enhancing fruit and vegetable preservation techniques.
Collapse
Affiliation(s)
| | - Yaping Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030800, China; (W.W.); (J.D.); (Y.W.); (B.D.); (J.Y.); (Z.L.); (L.Z.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Tao R, Zheng X, Fan B, He X, Sun J, Sun Y, Wang F. Enhancement of the Physical and Functional Properties of Chitosan Films by Incorporating Galla chinensis Extract. Antioxidants (Basel) 2024; 13:69. [PMID: 38247493 PMCID: PMC10812399 DOI: 10.3390/antiox13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Composite films based on chitosan (CS) incorporating Galla chinensis extract (GCNE) at different CS/GCNE weight ratios, which are both biodegradable and multifunctional, were fabricated using the solution-casting method. The FTIR analyses indicated that a good interaction was presented among the GCNE and CS through an intermolecular hydrogen bond. The incorporation of the GCNE improved the films' elongation at break, UV-light blocking, and decreased the moisture regain (from 16.68% to 10.69%) and water absorption (from 80.65% to 54.74%). Moreover, the CS/GCNE films exhibited a strong antioxidant activity (from 57.11% to 70.37% of DPPH and from 35.53% to 46.73% of ABTS scavenging activities) mainly due to the high content of phenolic compounds in the incorporated GCNE. The CS/GCNE film-forming solution coatings demonstrated their effectiveness in preserving the quality of postharvest mangoes, specifically by minimizing the change in the firmness, weight loss, titratable acidity, and total phenolic and ascorbic acids. These findings suggest that the multifunctional composite films possess a high application potential to preserve postharvest fruits.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China (X.Z.)
| | - Xiuxia Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China (X.Z.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China (X.Z.)
| | - Xuemei He
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China (J.S.)
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China (J.S.)
| | - Yufeng Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China (X.Z.)
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China (X.Z.)
| |
Collapse
|
10
|
Nia AE, Malekzadeh E, Taghipour S, Tatari A, Arshad ZG. Effects of preharvest chitosan-Myrtus communis essential oil composite and postharvest nanocellulose on quality of strawberry. Int J Biol Macromol 2023; 253:126733. [PMID: 37678697 DOI: 10.1016/j.ijbiomac.2023.126733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The objective of this study was to investigate the effects of preharvest chitosan-Myrtus communis essential oil composite (1.5 and 3.0 %) and postharvest nanocellulose (0.3 and 0.6 %) on the quality of strawberries. The gas chromatography-mass spectrometry (GC/MS) analysis led to identification of 32 compounds in the Myrtus communis essential oil. The study showed that using CHS-ES composite coating for foliar application could increase the lifespan of the fruit by up to 24 days. This is because it increases the levels of components, such as phenol content (TPC) total flavonoids content (TFC) vitamin C, firmness and SSC. It also enhances the effectiveness of enzymes such, as glutathione peroxidase (GSH POD) and polyphenol oxidase (PPO). The use of CHS-ES treatments reduced the weight loss of fruits between 50 and 80 %, which is very important from the commercial point of view and maintaining nutritional properties, marketability and appearance. The microscopic analysis further revealed that using CHS-ES composite + nanocellulose coating produced a more continuous and uniform surface than the control. In general, this method is both safe and environmentally friendly while also proving to be effective, in preserving and enhancing the quality of strawberries.
Collapse
Affiliation(s)
- Abdollah Ehtesham Nia
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Elham Malekzadeh
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shirin Taghipour
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Aliasghar Tatari
- Department of Cellulose Industries Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Zeinab Ghasemi Arshad
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
11
|
Xia S, Fang D, Shi C, Wang J, Lyu L, Wu W, Lu T, Song Y, Guo Y, Huang C, Li W. Preparation of a thermosensitive nanofibre membrane for blackberry preservation. Food Chem 2023; 415:135752. [PMID: 36881958 DOI: 10.1016/j.foodchem.2023.135752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Blackberries provide multiple health benefits. However, they deteriorate easily during harvesting, storage, and transportation (temperature-changing). Therefore, to extend their shelf-life under variable temperature conditions, a temperature-sensitive nanofibre-based material with good preservation attributes was developed, composed of polylactic acid (PLA) electrospun fibres, loaded with lemon essential oil (LEO) and covered with poly (N-isopropylacrylamide) (PNIPAAm). Compared with PLA and PLA/LEO nanofibres, PLA/LEO/PNIPAAm exhibited good mechanical properties, oxidation resistance, antibacterial ability, and controlled release of LEO. The PNIPAAm layer prevented rapid LEO release below the low critical solution temperature (32 °C). When the temperature exceeded 32 °C, the PNIPAAm layer underwent a chain-to-globule transition and accelerated LEO release (slower than PLA/LEO). The temperature-controlled release of LEO via PLA/LEO/PNIPAAm membrane prolongs its action time. Therefore, PLA/LEO/PNIPAAm effectively maintained the appearance and nutritive quality of blackberries during variable storage temperatures. Our research demonstrated that active fibre membranes have great potential applications in preserving fresh products.
Collapse
Affiliation(s)
- Shuqiong Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Junying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Tao Lu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuanyuan Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chaobo Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
12
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
13
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
14
|
Zhou C, Li C, Cui H, Lin L. Metabolomics insights into the potential of encapsulated essential oils as multifunctional food additives. Crit Rev Food Sci Nutr 2022; 64:5143-5160. [PMID: 36454059 DOI: 10.1080/10408398.2022.2151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Collapse
Affiliation(s)
- Changqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
15
|
Cao Z, Zhou D, Ge X, Luo Y, Su J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J Food Biochem 2022; 46:e14513. [PMID: 36385402 DOI: 10.1111/jfbc.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Fruits are highly susceptible to postharvest losses induced majorly by postharvest diseases. Peach are favored by consumers because of their high nutritional value and delicious taste. However, it was easy to be affected by fungal infection. The current effective method to control postharvest diseases of fruits is to use chemical fungicides, but these chemicals may cause adverse effects on human health and the residual was potentially harmful to nature and the environment. So, it is especially important to develop safe, non-toxic, and highly effective strategies for the preservation of the fruits. Essential oil, as a class of the natural bacterial inhibitor, has been proven to exhibit strong antibacterial activity, low toxicity, environmental friendliness, and induce fruit resistance to microorganism, which could be recognized as one of the alternatives to chemical fungicides. This paper reviews the research progress of essential oils (Eos) in the storage and preservation of fruits, especially the application in peach, as well as the application in active packaging such as edible coatings, microcapsules, and electrospinning loading. Electrospinning can prepare a variety of nanofibers from different viscoelastic polymer solutions, and has broad application prospects. The paper especially summarizes the application of the new Eos technology on peach. The essential oil with thymol, eugenol, and carvacrol as the main components has a better inhibitory effect on the postharvest disease of peaches, and can be further applied. PRACTICAL APPLICATIONS: As an environmentally friendly natural antibacterial agent, essential oil can be used as a substitute for chemical preservatives to keep fruits fresh. This paper summarizes the different preservation methods of essential oils for fruits, and especially summarizes the different preservation methods of essential oils for peaches after harvesting, as well as their inhibitory effects on pathogenic fungi. It could provide ideas for preservation of fruits and vegetables by essential oils.
Collapse
Affiliation(s)
- Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Kim I, Ahn D, Choi JH, Lim JH, Ok G, Park KJ, Lee J. Changes in Volatile Compounds in Short-Term High CO 2-Treated 'Seolhyang' Strawberry ( Fragaria × ananassa) Fruit during Cold Storage. Molecules 2022; 27:molecules27196599. [PMID: 36235135 PMCID: PMC9571338 DOI: 10.3390/molecules27196599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
'Seolhyang' strawberry is harvested before it is fully ripened and treated with CO2 to extend the shelf-life. However, the volatile changes in the 'Seolhyang' strawberry after short-term CO2 treatment have not been investigated, although the volatile profile is an important quality attribute. Herein, we investigated the effect of short-term high CO2 treatment on the changes in the composition of volatile compounds in 'Seolhyang' strawberries at two ripening stages (i.e., half-red and bright-red) during cold storage using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Furthermore, the effect of CO2 treatment on fruit quality with respect to the aroma was investigated. A total of 30 volatile compounds were identified. Storage increased the volatile compound concentrations, and the total concentration of volatiles in the CO2-treated strawberries was lower than that of the untreated strawberries during storage. The production of some characteristic strawberry volatiles (e.g., 4-methoxy-2,5-dimethyl-3(2H)-furanone) was inhibited in CO2-treated strawberries. However, CO2 treatment helped maintain the concentrations of hexanal and 2-hexenal, which are responsible for the fresh odor in strawberries. Interestingly, CO2 treatment suppressed the production of off-odor volatiles, acetaldehyde, and hexanoic acid during strawberry storage. Thus, short-term CO2 treatment may help maintain the fresh aroma of strawberries during cold storage.
Collapse
Affiliation(s)
- Inhwan Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Donghee Ahn
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Jeong-Ho Lim
- Korea Food Research Institute, Wanju 55365, Korea
| | - Gyeongsik Ok
- Korea Food Research Institute, Wanju 55365, Korea
| | - Kee-Jai Park
- Korea Food Research Institute, Wanju 55365, Korea
- Correspondence: (K.-J.P.); (J.L.)
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea
- Correspondence: (K.-J.P.); (J.L.)
| |
Collapse
|
17
|
Kumar Pandey V, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front Nutr 2022; 9:987674. [PMID: 36185660 PMCID: PMC9521177 DOI: 10.3389/fnut.2022.987674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated the use of synthetic preservatives and chemical additives in food is causing poisoning, cancer, and other degenerative disorders. New solutions for food preservation with quality maintenance are currently emerging. As a result, public concern has grown, as they desire to eat healthier products that use natural preservatives and compounds rather than synthetic ones. Clove is a highly prized spice used as a food preservative and for a variety of therapeutic reasons. Clove essential oil and its principal active component, eugenol, indicate antibacterial and antifungal action, aromaticity, and safety as promising and valuable antiseptics in the food sector. Clove essential oil and eugenol are found to have strong inhibition effects on a variety of food-source bacteria, and the mechanisms are linked to lowering migration and adhesion, as well as blocking the creation of biofilm and various virulence factors. This review emphasizes the importance of CEO (clove essential oil) in the food industry and how it can be explored with edible coatings to deliver its functional properties in food preservation.
Collapse
Affiliation(s)
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, India
- Rahul Singh
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Pulwama, India
- *Correspondence: Aamir Hussain Dar
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-harvest Technology, ICAR–Central Plantation Crops Research Institute, Kasaragod, India
- R. Pandiselvam
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| |
Collapse
|
18
|
EL-Bauome HA, Abdeldaym EA, Abd El-Hady MAM, Darwish DBE, Alsubeie MS, El-Mogy MM, Basahi MA, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alasmari A, Ismail IA, Dessoky ES, Doklega SMA. Exogenous Proline, Methionine, and Melatonin Stimulate Growth, Quality, and Drought Tolerance in Cauliflower Plants. AGRICULTURE 2022; 12:1301. [DOI: 10.3390/agriculture12091301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The impact of proline, methionine, and melatonin on cauliflower plants under drought stress is still unclear in the available publications. So, this research aims to study these biochemical compounds’ effects on cauliflower plants grown under well-irrigated and drought-stressed conditions. The obtained results showed that under drought-stressed conditions, foliar application of proline, methionine, and melatonin significantly (p ≤ 0.05) enhanced leaf area, leaf chlorophyll content, leaf relative water content (RWC), vitamin C, proline, total soluble sugar, reducing sugar, and non-reducing sugar compared to the untreated plants. These treatments also significantly increased curd height, curd diameter, curd freshness, and dry matter compared to untreated plants. Conversely, the phenolic-related enzymes including polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) were significantly reduced compared to the untreated plants. A similar trend was observed in glucosinolates, abscisic acid (ABA), malondialdehyde (MDA), and total phenols. Eventually, it can be concluded that the foliar application of proline, methionine, and melatonin can be considered a proper strategy for enhancing the growth performance and productivity of cauliflower grown under drought-stressed conditions.
Collapse
|
19
|
Oliveira Filho JGD, Albiero BR, Calisto ÍH, Bertolo MRV, Oldoni FCA, Egea MB, Bogusz Junior S, de Azeredo HMC, Ferreira MD. Bio-nanocomposite edible coatings based on arrowroot starch/cellulose nanocrystals/carnauba wax nanoemulsion containing essential oils to preserve quality and improve shelf life of strawberry. Int J Biol Macromol 2022; 219:812-823. [PMID: 35963346 DOI: 10.1016/j.ijbiomac.2022.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of bio-nanocomposite coatings developed using arrowroot starch (AA), cellulose nanocrystals (CNC), carnauba wax nanoemulsion (CWN), and Cymbopogon martinii and Mentha spicata essential oils (CEO and MEO, respectively) on the physicochemical, microbiological, bioactive, antioxidant, and aromatic characteristics of strawberries cv. 'Oso Grande' in refrigerated storage for 12 days. The coatings improved the shelf life and stability of strawberries, minimizing their weight loss (2.6-3.9 %), as well as changes in color and texture (except for those coated with CEO), titratable acidity, pH, soluble solids, anthocyanins, phenolic compounds, ascorbic acid content, and antioxidant activity compared with uncoated control strawberries. The bio-nanocomposite coatings containing MEO and CEO also exhibited antimicrobial activity, reduced visible fungal deterioration (40-60 %), and reduced microbial load (3.59-4.03 log CFU g-1 for mesophilic aerobic bacteria and 4.45-5.22 log CFU g-1 for fungi and yeast) during storage. They also significantly reduced the severity of decay caused by inoculation with Botrytis cinerea or Rhizopus stolonifer. The coatings altered the volatile profile of the fruits during storage, decreasing aldehyde and alcohol concentrations and increasing ester concentrations. Thus, these bio-nanocomposite coatings, especially those containing MEO, can be used as antimicrobial coating materials to preserve the post-harvest quality of fresh strawberries.
Collapse
Affiliation(s)
| | - Beatriz Regina Albiero
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil
| | | | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, GO, Brazil
| | - Stanislau Bogusz Junior
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil
| | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil
| |
Collapse
|
20
|
Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Microfluidic‐assisted preparation of nano and microscale chitosan based
3D
composite materials: Comparison with conventional methods. J Appl Polym Sci 2022. [DOI: 10.1002/app.52955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ceren Kimna
- Department of Chemical Engineering İzmir Institute of Technology İzmir Turkey
| | - Sibel Deger
- Department of Chemical Engineering İzmir Institute of Technology İzmir Turkey
| | - Sedef Tamburaci
- Department of Chemical Engineering İzmir Institute of Technology İzmir Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineering İzmir Institute of Technology İzmir Turkey
| |
Collapse
|
21
|
The Efficiency of Lemon Essential Oil-Based Nanoemulsions on the Inhibition of Phomopsis sp. and Reduction of Postharvest Decay of Kiwifruit. Foods 2022; 11:foods11101510. [PMID: 35627080 PMCID: PMC9140209 DOI: 10.3390/foods11101510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) have excellent antibacterial activity and are generally recognized as safe (GRAS) for use in food preservatives. However, the application of EOs is limited because of their strong volatility and easily oxidized. Encapsulation of EOs into nanoemulsions could effectively prevent oxidative deterioration. In this study, lemon essential oil-based nanoemulsion (LEO/NE) was prepared by high-pressure homogenization. FT-IR and encapsulation efficiency analysis indicated that LEO was effectively encapsulated in the nanoemulsion. The results of zeta potential changes after 35 d storage indicated that LEO/NE exhibits good stability at room temperature. The effect of LEO/NE on the main soft rot pathogens of kiwifruit Phomopsis sp. was investigated, and the results showed that LEO/NE significantly inhibited spore germination and mycelia growth of Phomopsis sp. by promoting ROS accumulation, intracellular antioxidant enzyme activities, and cell apoptosis. The preservation experiment was carried out by inoculating Phomopsis sp. spores into fresh kiwifruit, and the LEO/NE effectively inhibited soft rot development in kiwifruit in a LEO dose dependent manner. LEO/NE with 1% LEO loading amount has a good effect on preventing postharvest decay of kiwifruit caused by Phomopsis sp.
Collapse
|
22
|
Dal Bello F, Mecarelli E, Aigotti R, Davoli E, Calza P, Medana C. Development and application of high resolution mass spectrometry analytical method to study and identify the photoinduced transformation products of environmental pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114573. [PMID: 35121458 DOI: 10.1016/j.jenvman.2022.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Terpenes are among the major causes of pleasant or unpleasant odors close to active or inactive landfills. We studied R-limonene and p-cymene environmental degradation products using the heterogeneous photocatalysis mediated by titanium dioxide to explore the odor pollution. The aim of the study was the development of mass spectrometry based methods both hyphenated with GC and HPLC to identify and characterize transformation products (TPs) derived from photodegradation of R-limonene and p-cymene. With the GC-MS method we identified three TPs for R-limonene and two for p-cymene comparing the obtained mass spectra with those in the NIST library. While with HPLC-MS method, thanks to the use of the high resolution of MS tool, we recognized four and five TPs for R-limonene and p-cymene respectively. No p-cymene was detected as R-limonene transformation product. The methods developed were then applied to real environmental samples coming from landfills active (Lan1) or inactive (Lan2 and Lan3) located in northern Italy. R-limonene was detected in the active landfill (Lan1 at the concentration of 2.35 μg/mL) together with one of its TPs and one TP derived from p-cymene. p-Cymene was detected in the other two inactive landfills (Lan2 and Lan3 concentrations 0.025 and 0.15 μg/mL, respectively) together with one of its TP and two TPs coming from R-limonene photodegradation. The finding of TPs together with R-limonene and p-cymene both in active and inactive landfills point out the attention on the reduction of these molecules in the environment to reduce pollution and human risks.
Collapse
Affiliation(s)
- Federica Dal Bello
- Molecular Biotechnology and Health Sciences Dept, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Enrica Mecarelli
- Molecular Biotechnology and Health Sciences Dept, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Riccardo Aigotti
- Molecular Biotechnology and Health Sciences Dept, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Paola Calza
- Chemistry Dept. Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Claudio Medana
- Molecular Biotechnology and Health Sciences Dept, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
23
|
The Inhibitory Effect of Chitosan Based Films, Incorporated with Essential Oil of Perilla frutescens Leaves, against Botrytis cinerea during the Storage of Strawberries. Processes (Basel) 2022. [DOI: 10.3390/pr10040706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reduction in food waste, as well as non-invasive methods for extending the shelf-life of perishable fruits, are important global challenges. To achieve these objectives, in this paper, the use of natural compounds, chitosan films (CS) incorporated with essential oils from leaves, for postharvest fungal protection of strawberries is proposed. In the present study, the CS films incorporated with the essential oil from Perilla frutescens leaves (PFEO) at different concentrations were prepared and employed for packaging strawberries infected by B. cinerea during refrigerated storage at 4 °C for 10 days. Interestingly, the strawberries coated with CS films containing PFEO at 1.0% during this period possessed an effective antimicrobial effect against B. cinerea infection in potato dextrose agar (PDA). Moreover, the quality properties of the strawberries, (i.e., weight loss, firmness index, decay percentage, yeasts/molds, pH value, total soluble solids, titrable acidity, and maturity index), together with the sensory attributes (i.e., appearance, flavor, taste, and overall acceptability (p < 0.05 or p < 0.01)) were improved. These results demonstrated that (i) PFEO displayed a significant inhibitory effect against B. cinerea infection in strawberries, (ii) CS films containing PFEO at 1.0% could be a sustainable active food packaging for the refrigerated storage of strawberries.
Collapse
|
24
|
Liu T, Gao Z, Zhong W, Fu F, Li G, Guo J, Shan Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants (Basel) 2022; 11:antiox11040650. [PMID: 35453335 PMCID: PMC9025020 DOI: 10.3390/antiox11040650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Lemon essential oil (LEO) is a kind of citrus essential oil with antioxidant, anti-inflammatory, and antimicrobial activities, but low water solubility and biological instability hinder its industrial application. In this study, LEO was nanoemulsified to solve these problems. The preparation procedure of lemon essential oil nanoemulsions (LEO-NEs) was optimized, and the physicochemical characterization and antioxidant activities were explored. Single-factor experiments (SFEs) and response surface methodology (RSM) were conducted for the effects on the mean droplet size of LEO-NEs. Five factors of SFE which may influence the droplet size were identified: HLB value, concentration of essential oil, concentration of surfactant, ultrasonic power, and ultrasonic time. On the basis of the SFE, the RSM approach was used to optimize the preparation procedure to obtain LEO-NEs with the smallest droplet size. LEO-NEs exhibited good antioxidant activity when the HLB value was 13, content of surfactant was 0.157 g/mL, ultrasonic time was 23.50 min, and ultrasonic power was 761.65 W. In conclusion, these results can provide a good theoretical basis for the industrial application of lemon essential oil.
Collapse
Affiliation(s)
- Ting Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (W.Z.)
| | - Weiming Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (W.Z.)
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.); Tel.: +86-(0)731-8469-8915 (J.G.); +86-(0)731-8469-1289 (Y.S.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.); Tel.: +86-(0)731-8469-8915 (J.G.); +86-(0)731-8469-1289 (Y.S.)
| |
Collapse
|
25
|
Zubair M, Shahzad S, Hussain A, Pradhan RA, Arshad M, Ullah A. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers (Basel) 2022; 14:polym14061146. [PMID: 35335477 PMCID: PMC8950623 DOI: 10.3390/polym14061146] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Essential oils (EOs) have received attention in the food industry for developing biopolymer-derived food packaging materials. EOs are an excellent choice to replace petroleum-derived additives in food packaging materials due to their abundance in nature, eco-friendliness, and superior antimicrobial and antioxidant attributes. Thus far, EOs have been used in cellulose-, starch-, chitosan-, and protein-based food packaging materials. Biopolymer-based materials have lower antioxidant and antibacterial properties in comparison with their counterparts, and are not suitable for food packaging applications. Various synthetic-based compounds are being used to improve the antimicrobial and antioxidant properties of biopolymers. However, natural essential oils are sustainable and non-harmful alternatives to synthetic antimicrobial and antioxidant agents for use in biopolymer-derived food packaging materials. The incorporation of EOs into the polymeric matrix affects their physicochemical properties, particularly improving their antimicrobial and antioxidant properties. EOs in the food packaging materials increase the shelf life of the packaged food, inhibit the growth of microorganisms, and provide protection against oxidation. Essential oils also influence other properties, such as tensile, barrier, and optical properties of the biopolymers. This review article gives a detailed overview of the use of EOs in biopolymer-derived food packaging materials. The innovative ways of incorporating of EOs into food packaging materials are also highlighted, and future perspectives are discussed.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Rehan Ali Pradhan
- Biopolymer Innovation Head, Yash Pakka Limited, Ayodhya 224135, UP, India;
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
- Correspondence:
| |
Collapse
|
26
|
Yüksel Ç, Atalay D, Erge HS. The effects of chitosan coating and vacuum packaging on quality of fresh‐cut pumpkin slices during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Çiğdem Yüksel
- Department of Biology, Faculty of Science and Letters Manisa Celal Bayar University Manisa Turkey
| | - Derya Atalay
- Department of Food Engineering, Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| | - Hande Selen Erge
- Department of Food Engineering, Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| |
Collapse
|
27
|
Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in applications and prospects of bioplastics and biopolymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:379-395. [PMID: 34867134 PMCID: PMC8629338 DOI: 10.1007/s10311-021-01334-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 05/22/2023]
Abstract
Non-biodegradable plastics are continually amassing landfills and oceans worldwide while creating severe environmental issues and hazards to animal and human health. Plastic pollution has resulted in the death of millions of seabirds and aquatic animals. The worldwide production of plastics in 2020 has increased by 36% since 2010. This has generated significant interest in bioplastics to supplement global plastic demands. Bioplastics have several advantages over conventional plastics in terms of biodegradability, low carbon footprint, energy efficiency, versatility, unique mechanical and thermal characteristics, and societal acceptance. Bioplastics have huge potential to replace petroleum-based plastics in a wide range of industries from automobiles to biomedical applications. Here we review bioplastic polymers such as polyhydroxyalkanoate, polylactic acid, poly-3-hydroxybutyrate, polyamide 11, and polyhydroxyurethanes; and cellulose-based, starch-based, protein-based and lipid-based biopolymers. We discuss economic benefits, market scenarios, chemistry and applications of bioplastic polymers.
Collapse
Affiliation(s)
- Sonil Nanda
- Titan Clean Energy Projects Corporation, Craik, SK Canada
| | - Biswa R. Patra
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| | - Jamie Bakos
- Titan Clean Energy Projects Corporation, Craik, SK Canada
| | - Ajay K. Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
28
|
Sheikh M, Mehnaz S, Sadiq MB. Prevalence of fungi in fresh tomatoes and their control by chitosan and sweet orange (Citrus sinensis) peel essential oil coating. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6248-6257. [PMID: 33937995 DOI: 10.1002/jsfa.11291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fungal contamination is a major cause of food spoilage. There is an urgent need to find and characterize natural preservatives. This study evaluates the prevalence of fungi in tomatoes and their control by using essential oil (EO) from sweet orange peel. Essential oils were extracted from dried and fresh sweet orange peels by using n-hexane and ethanol as extraction solvents. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses were performed to identify the chemical composition of the EO. A combination of chitosan (CS) and EO was used to control the fungal decay of tomatoes inoculated with Aspergillus niger and Penicillium citrinum. RESULTS Tomatoes obtained from local markets and supermarkets showed a high prevalence of Aspergillus and Penicillium spp. Essential oils extracted by ethanol from dried peels showed complete inhibition of A. niger and P. citrinum and hyphal degradation at a minimum inhibitory concentration (MIC) of 100 μL mL-1 . The combination of EO with chitosan (2%) as a coating, effectively controlled the fungal decay of tomatoes until the eighth day of storage at 25 °C. CONCLUSION Due to their edible nature, and their antifungal and preservative potential, EO- and CS-based coatings can be used to extend the shelf life of tomatoes and other agriculture commodities. Essential oil- and CS-based coating can be used as alternative to synthetic preservatives, which are associated with various health hazards. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mehrunisa Sheikh
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Samina Mehnaz
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
29
|
Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R. Advances in development of biodegradable food packaging material from agricultural and
agro‐industry
waste. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Anil Panghal
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Priyanka Rohilla
- Centre of Food Science and Technology, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Ravi Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
30
|
Zhang B, Liu Y, Wang H, Liu W, Cheong KL, Teng B. Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Extending Shelf Life and Maintaining Quality of Tomato Fruit by Calcium Chloride, Hydrogen Peroxide, Chitosan, and Ozonated Water. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tomatoes are perishable fruit that makes them deteriorate rapidly during the post-harvest chain. Therefore, the effect of calcium chloride (CaCl2), chitosan, hydrogen peroxide (H2O2), and ozonated water on the storage abil\ity and quality of tomato fruit (Solanumlycopersicum L. cv. 448) stored at 10 °C for 28 d was studied. Weight loss, firmness, fruit color, total soluble solids (TSS), titratable acidity, total carotenoids, and ascorbic acid content (AsA) of treated tomato fruit were recorded. Our results revealed that all tested treatments significantly extended the shelf-life and maintained quality of tomato fruit compared to the control. Chitosan and CaCl2 were the most effective treatments in maintaining quality attributes. Furthermore, a correlation study suggested that AsA and total carotenoids played a vital role in conserving tomato fruit quality during storage. PC1 had strong positive loading for pH, appearance, firmness, AsA, TSS, carotene, fruit color (L* & b*) and a strong negative loading for lycopene content, color (a), weight loss, and color index. PC2 had high positive loading for total acidity and total sugar content.
Collapse
|
32
|
Lu J, Li T, Ma L, Li S, Jiang W, Qin W, Li S, Li Q, Zhang Z, Wu H. Optimization of heat-sealing properties for antimicrobial soybean protein isolate film incorporating diatomite/thymol complex and its application on blueberry packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Zhang YP, Wang X, Shen Y, Thakur K, Zhang JG, Hu F, Wei ZJ. Preparation and Characterization of Bio-Nanocomposites Film of Chitosan and Montmorillonite Incorporated with Ginger Essential Oil and Its Application in Chilled Beef Preservation. Antibiotics (Basel) 2021; 10:antibiotics10070796. [PMID: 34208813 PMCID: PMC8300780 DOI: 10.3390/antibiotics10070796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, bio-nanocomposite films containing different proportions of ginger essential oil (GEO), chitosan (Ch), and montmorillonite (MMT) were prepared and characterized, and the antibacterial effect of bio-nanocomposite films on chilled beef was evaluated. Fourier transform infrared analysis showed a series of intense interactions among the components of the bio-nanocomposite films. The infiltration of GEO increased the thickness of the film, reduced the tensile strength of the film, and increased the percentage of breaking elongation and the water vapor permeability. The migration of phenols in the films began to increase exponentially and reached equilibrium at about 48 h. The bio-nanocomposite films (Ch +0.5% GEO group, and Ch + MMT + 0.5% GEO group) effectively delayed the rise of pH, hue angle, and moisture values of chilled beef with time and slowed down the lipid oxidation and the growth of surface microorganisms on chilled beef. Altogether, the prepared biological nanocomposites can be used as promising materials to replace commercial and non-degradable plastic films.
Collapse
Affiliation(s)
- Yin-Ping Zhang
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, China;
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
| | - Yi Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- Correspondence: (F.H.); (Z.-J.W.)
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- Correspondence: (F.H.); (Z.-J.W.)
| |
Collapse
|
35
|
Li G, Xiang S, Pan Y, Long X, Cheng Y, Han L, Zhao X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front Nutr 2021; 8:689094. [PMID: 34195220 PMCID: PMC8236505 DOI: 10.3389/fnut.2021.689094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the non-volatile composition and antioxidant differences of lemon essential oils (LEOs) obtained by cold-pressing vs. hydrodistillation. Pathological observations showed that LEO effectively inhibited liver injury caused by oxidative stress, and CPLEO was more effective than HDLEO. CPLEO increased serum T-AOC, SOD, GSH, and GSH-Px levels while decreasing NO, COX-2, IL-6, IL-1β, IFN-γ, and TNF-α levels in mice with oxidative damage. The effects of CPLEO were stronger than those of HDLEO and similar to those of vitamin C. CPLEO upregulated mRNA and protein expressions of Cu/Zn-SOD, Mn-SOD, CAT, HO-1, Nrf2, and NQO1 while downregulating nNOS, iNOS, IL-1β, COX-2, TNF-α, and NF-κB mRNA expression and nNOS, eNOS, iNOS, and COX-2 protein expression in mice with oxidative damage. The results demonstrate that LEO has good antioxidant effects and that CPLEO has a better antioxidant effect than HDLEO as it retains more active non-volatile substances.
Collapse
Affiliation(s)
- Guijie Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Sha Xiang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yujiao Cheng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Leng Han
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
36
|
Jiang T, Wang C, Liu W, Li Y, Luan Y, Liu P. Optimization and characterization of lemon essential oil entrapped from chitosan/cellulose nanocrystals microcapsules. J Appl Polym Sci 2021. [DOI: 10.1002/app.51265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianyan Jiang
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| | - Cong Wang
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| | - Wanyi Liu
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| | - Yuhang Li
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| | - Yunhao Luan
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp & Paper Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
37
|
Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Fernández-Martínez MC, Yáñez-Fernández J. Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. MEMBRANES 2021; 11:421. [PMID: 34073018 PMCID: PMC8228418 DOI: 10.3390/membranes11060421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to carry out a systematic literature review focused on the scientific production, trends, and characteristics of a knowledge domain of high worldwide importance, namely, the use of chitosan as a coating for postharvest disease biocontrol in fruits and vegetables, which are generated mainly by fungi and bacteria such as Aspergillus niger, Rhizopus stolonifera, and Botrytis cinerea. For this, the analysis of 875 published documents in the Scopus database was performed for the years 2011 to 2021. The information of the keywords' co-occurrence was visualized and studied using the free access VOSviewer software to show the trend of the topic in general. The study showed a research increase of the chitosan and nanoparticle chitosan coating applications to diminish the postharvest damage by microorganisms (fungi and bacteria), as well as the improvement of the shelf life and quality of the products.
Collapse
Affiliation(s)
- Ma de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Julia Salgado-Cruz
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Alitzel Belem García-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Hortensia Gómez-Viquez
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Rubén Oliver-Espinoza
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - María Carmen Fernández-Martínez
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| | - Jorge Yáñez-Fernández
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| |
Collapse
|
38
|
Perdana MI, Ruamcharoen J, Panphon S, Leelakriangsak M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods 2021; 10:foods10030665. [PMID: 33804642 PMCID: PMC8003668 DOI: 10.3390/foods10030665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The consumption of minimally processed fresh vegetables has increased by the consumer's demand of natural products without synthetic preservatives and colorants. These new consumption behaviors have prompted research on the combination of emulsion techniques and coatings that have traditionally been used by the food industries. This combination brings great potential for improving the quality of fresh-cut fruits and vegetables by allowing the incorporation of natural and multifunctional additives directly into food formulations. These antioxidant, antibacterial, and/or antifungal additives are usually encapsulated at the nano- or micro-scale for their stabilization and protection to make them available by food through the coating. These nano- or micro-emulsions are responsible for the release of the active agents to bring them into direct contact with food to protect it from possible organoleptic degradation. Keeping in mind the widespread applications of micro and nanoemulsions for preserving the quality and safety of fresh vegetables, this review reports the latest works based on emulsion techniques and polysaccharide-based coatings as carriers of active compounds. The technical challenges of micro and nanoemulsion techniques, the potential benefits and drawbacks of their use, the development of polysaccharide-based coatings with natural active additives are considered, since these systems can be used as alternatives to conventional coatings in food formulations.
Collapse
|
40
|
Yousuf B, Wu S, Siddiqui MW. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Wu D, Zhang M, Xu B, Guo Z. Fresh-cut orange preservation based on nano-zinc oxide combined with pressurized argon treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Ayub H, Ahmad A, Amir RM, Irshad G. Multivariate analysis of peach quality treated with essential oil coatings. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haris Ayub
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Asif Ahmad
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Rai Muhammad Amir
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Gulshan Irshad
- Department of Plant Pathology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| |
Collapse
|
43
|
Muthulakshmi L, Annaraj J, Ramakrishna S, Ranjan S, Dasgupta N, Mavinkere Rangappa S, Siengchin S. A sustainable solution for enhanced food packaging via a science‐based composite blend of natural‐sourced chitosan and microbial extracellular polymeric substances. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lakshmanan Muthulakshmi
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil India
- Department of Materials Science School of Chemistry Madurai Kamaraj University Madurai India
| | - J. Annaraj
- Department of Materials Science School of Chemistry Madurai Kamaraj University Madurai India
| | - Seeram Ramakrishna
- Center for Nanofibers and NanoTechnology National University of Singapore Singapore Singapore
| | - Shivendu Ranjan
- Institute for Intelligent Systems, Faculty of Engineering and the Built Environment University of Johannesburg Johannesburg South Africa
| | - Nandita Dasgupta
- Institute for Intelligent Systems, Faculty of Engineering and the Built Environment University of Johannesburg Johannesburg South Africa
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab King Mongkut’s University of Technology North Bangkok Bangkok Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab King Mongkut’s University of Technology North Bangkok Bangkok Thailand
| |
Collapse
|
44
|
Liang Z, Zhang P, Fang Z. Modern technologies for extraction of aroma compounds from fruit peels: a review. Crit Rev Food Sci Nutr 2020; 62:1284-1307. [PMID: 33124893 DOI: 10.1080/10408398.2020.1840333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fruit peel is an agricultural by-product and potential source to extract natural aroma compounds with low cost. In the past few decades, the extraction of plant aroma volatiles experienced a transition from traditional to modern technologies. This review summarizes the main aroma compounds in different fruit peels, evaluates modern extraction techniques applicable for these aroma compounds in terms of mechanism, procedure, merits and demerits, and practice. Additionally, the applications of fruit peel aroma extract in food, pharmaceutical and cosmetic industries are also discussed. This review provides comprehensive information for extraction and application of aroma compounds from fruit peels, which could facilitate the valorization of the agricultural by-products and reduce environmental impacts.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
45
|
Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple. COATINGS 2020. [DOI: 10.3390/coatings10111027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different polyvinyl alcohol (PVA) coating formulations incorporating starch (S) and carvacrol (C) as the active agent were applied to Golden Delicious apples to evaluate their effectiveness at controlling weight loss, respiration rate, fruit firmness, and fungal decay against B. cinerea and P. expansum throughout storage time. Moreover, the impact of these coatings on the sensory attributes of the fruit was also analyzed. The application of the coatings did not notably affect the weight loss, firmness changes, or respiration pathway of apples, probably due to the low solid surface density of the coatings. Nevertheless, they exhibited a highly efficient disease control against both black and green mold growths, as a function of the carvacrol content and distribution in the films. The sensory analysis revealed the great persistence of the carvacrol aroma and flavor in the coated samples, which negatively impact the acceptability of the coated products.
Collapse
|
46
|
Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers (Basel) 2020; 12:polym12102403. [PMID: 33086533 PMCID: PMC7603116 DOI: 10.3390/polym12102403] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.
Collapse
|
47
|
Sharma S, Barkauskaite S, Jaiswal AK, Jaiswal S. Essential oils as additives in active food packaging. Food Chem 2020; 343:128403. [PMID: 33268167 DOI: 10.1016/j.foodchem.2020.128403] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Food packaging can be considered as a passive barrier that protects food from environmental factors such as ultraviolet light, oxygen, water vapour, pressure and heat. It also prolongs the shelf-life of food by protecting from chemical and microbiological contaminants and enables foods to be transported and stored safely. Active packaging (AP) provides the opportunity for interaction between the external environment and food, resulting in extended shelf-life of food. Chemoactive packaging has an impact on the chemical composition of the food product. The application of natural additive such as essential oils in active packaging can be used in the forms of films and coatings. It has been observed that, AP helps to maintain temperature, moisture level and microbial and quality control of the food. This review article provides an overview of the active packaging incorporated with essential oils, concerns and challenges in industry, and the effect of essential oil on the packaging microstructure, antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin 8, Ireland
| | - Sandra Barkauskaite
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland.
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
48
|
Bhat PA, Nazir N, Chat OA, Dar AA. Exploiting self-assembled soft systems based on surfactants, biopolymers and their mixtures for inhibition of Citral degradation under harsh acidic Conditions. Food Chem 2020; 340:128168. [PMID: 33011467 DOI: 10.1016/j.foodchem.2020.128168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/06/2023]
Abstract
The chemical instability of Citral in acidic conditions is viewed as hurdle to commercialize it in food/beverage industries. We attempted to stabilize citral in various single and mixed surfactant systems at pH 1.0 and temperature 25 °C. The study highlights the importance of amount and density of positive charge of cationic surfactants and oxyethylene content of nonionic surfactants at the interface of self-assembly in inhibiting citral degradation. The hybrid of Chitosan and P123 showed a significant increase in the half-life of citral compared to that in its individual components. The results of the study suggest that it is possible to stabilize citral in strong acidic environs having a pH as low as 1.0 using mixed surfactant or polymer-amphiphile systems with significant positive charge/number of oxyethylene in their single components. Such polymer-surfactant systems formulations if biocompatible/food grade may act as promising media to enhance shelf life of citral.
Collapse
Affiliation(s)
- Parvaiz Ahmad Bhat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Nighat Nazir
- Department of Chemistry, Islamia College of Science and Commerce, Hawal, Srinagar 190002, J&K, India
| | - Oyais Ahmad Chat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India.
| |
Collapse
|
49
|
Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: preparation, characterization, and evaluating the storage stability and antioxidant activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Sharma S, Barkauskaite S, Duffy B, Jaiswal AK, Jaiswal S. Characterization and Antimicrobial Activity of Biodegradable Active Packaging Enriched with Clove and Thyme Essential Oil for Food Packaging Application. Foods 2020; 9:E1117. [PMID: 32823666 PMCID: PMC7466377 DOI: 10.3390/foods9081117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Bioactive packaging contains natural antimicrobial agents, which inhibit the growth of microorganisms and increase the food shelf life. Solvent casting method was used to prepare the Poly (lactide)-Poly (butylene adipate-co-terephthalate) (PLA-PBAT) film incorporated with the thyme oil and clove oil in various concentrations (1 wt%, 5 wt% and 10 wt%). The clove oil composite films depicted less green and more yellow as compared to thyme oil composite films. Clove oil composite film has shown an 80% increase in the UV blocking efficiency. The tensile strength (TS) of thyme oil and clove oil composite film decreases from 1.35 MPs (control film) to 0.96 MPa and 0.79, respectively. A complete killing of S. aureus that is a reduction from 6.5 log CFU/mL to 0 log CFU/mL was observed on the 10 wt% clove oil incorporated composite film. Clove oil and thyme oil composite film had inhibited E. coli biofilm by 93.43% and 82.30%, respectively. Clove oil composite film had exhibited UV blocking properties, strong antimicrobial activity and has high potential to be used as an active food packaging.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland; (S.S.); (S.B.); (S.J.)
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland
- Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin—City Campus, Kevin Street, D08NF82 Dublin, Ireland;
| | - Sandra Barkauskaite
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland; (S.S.); (S.B.); (S.J.)
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin—City Campus, Kevin Street, D08NF82 Dublin, Ireland;
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland; (S.S.); (S.B.); (S.J.)
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland; (S.S.); (S.B.); (S.J.)
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07H6K8 Dublin, Ireland
| |
Collapse
|