1
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2025; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Lee IY, Lee D, Park JH, Joo N. UHPLC-HRMS/MS-Based Metabolic Profiling and Quantification of Phytochemicals in Different Parts of Coccinia grandis (L.) Voigt. Food Sci Nutr 2025; 13:e70004. [PMID: 39931272 PMCID: PMC11808390 DOI: 10.1002/fsn3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Coccinia grandis (L.) Voigt (C. grandis), a member of the Cucurbitaceae family, is recognized for its phytochemicals that possess antioxidant and antidiabetic properties, along with a wide array of nutritional and health-promoting benefits. However, a comprehensive investigation of the phytochemical profiles and biologically active constituents in different parts of C. grandis has not yet been reported. Therefore, this study aimed to evaluate the phytochemical constituents of three distinct parts of C. grandis (fruit, leaves, and stem) at the same growth stage. The phytochemicals in C. grandis were identified using UHPLC-HRMS-based untargeted metabolomics, followed by a quantitative analysis of the primary metabolites. The qualitative analysis revealed 60 secondary metabolites, including phenolic compounds (6 hydroxybenzoic acids, 22 hydroxycinnamic acids, 2 coumarins, 1 flavanone, 1 flavanonol, 2 flavones, 22 flavonols, and 2 lignans) and triterpenes (2 cucurbitacins). Furthermore, nine plant hormones and 30 amino acids were successfully identified. The quantitative analysis of 32 types of secondary metabolites indicated that the leaves contained the highest total amounts of flavonoids (501.37 mg/100 g) and hydroxycinnamic acids (1148.23 mg/100 g). Additionally, the analysis of amino acids revealed a total of 20 types, with the leaf extract exhibiting the highest total amounts of both essential and nonessential amino acids, followed by the fruit and stem extracts. In conclusion, the analysis of the primary and secondary metabolite composition and content of various parts of C. grandis demonstrated that the leaf extract replace with had the greatest functionality, suggesting its potential utility in the development of health functional foods.
Collapse
Affiliation(s)
- In Young Lee
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Doo‐Hee Lee
- National Instrumentation Center for Environmental ManagementSeoul National UniversitySeoulRepublic of Korea
| | - Ju Hong Park
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Nami Joo
- Department of Food and NutritionSookmyung Women's UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Gao C, Wu X, Yang Z, Qin L, Wu D, Fan Q, Zhao Y, Tan D, Li J, Zhang J, He Y. Quantitative analysis of six sesquiterpene glycosides from Dendrobium nobile Lindl. under different growth conditions by high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry in MRM mode. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1249-1260. [PMID: 38659238 DOI: 10.1002/pca.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION The sesquiterpene glycosides (SGs) from Dendrobium nobile Lindl. have immunomodulatory effects. However, there are no studies on the growth conditions affecting its contents and quantitative analysis methods. OBJECTIVE In the present study, a quantitative analysis method for six SGs from D. nobile was established. We explored which growth conditions could affect the contents of SGs, providing a basis for the cultivation and clinical application of D. nobile. METHODS Firstly, based on the optimization of mass spectrometry parameters and extraction conditions for six SGs in D. nobile, a method for the determination of the contents of six SGs was established using high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Then, the methodology of the established method was validated. Secondly, the established method was applied to determine the contents of six SGs from 78 samples of D. nobile grown under different growth conditions. Finally, chemometrics analysis was employed to analyze the results and select optimal growth conditions for D. nobile. RESULTS The results indicated significant variations in the contents of SGs from D. nobile grown under different growth conditions. The primary factors influencing SG contents included age, geographical origin, altitude, and epiphytic pattern. CONCLUSION Therefore, the established method for determining SG contents from D. nobile is stable. In particular, the SG contents were relatively high in samples of 3-year-old D. nobile grown at an altitude of approximately 500 m on Danxia rocks in Chishui, Guizhou.
Collapse
Affiliation(s)
- Chunxue Gao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhou Yang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Guizhou Standard Pharmaceutical Health Co., Ltd., Zunyi, China
- Key Laboratory of Natural Bioactive Substances of Fujian Province, Fuzhou, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiaying Li
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Zhao J, Jiang Y, Bi Y, Wei J. Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai-Tibet Plateau. Antioxidants (Basel) 2024; 13:763. [PMID: 39061832 PMCID: PMC11273727 DOI: 10.3390/antiox13070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The unique ecological environment of the Qinghai-Tibetan Plateau has endowed Chinese sea buckthorn leaves with rich bioactivities. In this study, we investigated the bioactivity and stress resistance mechanisms of flavonoids derived from Chinese sea buckthorn leaves (FCL) native to the Qinghai-Tibet Plateau. Our analysis identified a total of 57 flavonoids, mainly flavonol glycosides, from FCL, of which 6 were novel flavonoids. Isorhamnetin glycosides, quercetin glycosides and kaempferol glycosides were the three most dominant classes of compounds in FCL. In particular, isorhamnetin-3-O-glucoside-7-O-rhamnoside emerged as the most abundant compound. Our results showed that FCL possesses potent antioxidant properties, as evidenced by its ability to effectively scavenge DPPH free radicals and demonstrate ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) levels comparable to Trolox, a well-known antioxidant standard. Furthermore, FCL showed remarkable efficacy in reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) levels while enhancing the activities of key antioxidant enzymes, namely superoxide dismutase (SOD) and catalase (CAT), in Caenorhabditis elegans, a widely used model organism. Mechanistically, we elucidated that FCL exerts its stress resistance effects by modulating of transcription factors DAF-16 and HSF-1 within the insulin/insulin-like growth factor-1 signaling pathway (IIS). Activation of these transcription factors orchestrates the expression of downstream target genes including sod-3, ctl-1, hsp16.2, and hsp12.6, thus enhancing the organism's ability to cope with stressors. Overall, our study highlights the rich reservoir of flavonoids in Chinese sea buckthorn leaves as promising candidates for natural medicines, due to their robust antioxidant properties and ability to enhance stress resistance.
Collapse
Affiliation(s)
| | | | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (Y.J.)
| | - Juan Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (Y.J.)
| |
Collapse
|
5
|
Yan Z, Feng X, Li X, Gao Z, Wang Z, Ren G, Long F. Sea Buckthorn Flavonoid Extracted by High Hydrostatic Pressure Inhibited IgE-Stimulated Mast Cell Activation through the Mitogen-Activated Protein Kinase Signaling Pathway. Foods 2024; 13:560. [PMID: 38397537 PMCID: PMC10887968 DOI: 10.3390/foods13040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sea buckthorn (Hippophaë rhamnoides L.), as one of the Elaeagnaceae family, has the significant function of anti-tumor, anti-inflammation, anti-oxidation, and other physiological activities. High hydrostatic pressure (HHP) extraction has the advantages of being easy and efficient, while maintaining biological activity. In this study, sea buckthorn flavonoid (SBF) was extracted with HHP and purified sea buckthorn flavonoid (PSBF) was isolated by AB-8 macroporous resin column. HPLC analysis was used to quantified them. In addition, the effect of anti-allergy in RBL-2H3 cells by SBF, PSBF, and their flavonoid compounds was evaluated. The results demonstrate the conditions for obtaining the maximum flavonoid amount of SBF: 415 MPa for 10 min, 72% ethanol concentration, and a liquid to solid ratio of 40 mL/g, which increased the purity from 1.46% to 13.26%. Both SBF and PSBF included rutin, quercitrin, quercetin, isorhamnetin, and kaempferol. In addition, quercitrin, kaempferol, and SBF could regulate Th1/Th2 cytokine balance. Moreover, extracellular Ca2+ influx was reduced by quercitrin and PSBF. Furthermore, rutin, quercetin, iso-rhamnetin, and SBF could also inhibit P-p38 and P-JNK expression, thereby suppressing the phosphorylation of the MAPK signaling pathways. Overall, SBF is effective for relieving food allergy and might be a promising anti-allergic therapeutic agent.
Collapse
Affiliation(s)
- Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xinian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Guangxu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China;
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| |
Collapse
|
6
|
Wu D, Yang Z, Li J, Huang H, Xia Q, Ye X, Liu D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn ( Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024; 13:482. [PMID: 38338617 PMCID: PMC10855374 DOI: 10.3390/foods13030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 μg/g), epigallocatechin (105.49 ± 0.69 μg/g), and protocatechuic acid (27.9 ± 2.38 μg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Zhihao Yang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Jiong Li
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| |
Collapse
|
7
|
Nybom H, Ruan C, Rumpunen K. The Systematics, Reproductive Biology, Biochemistry, and Breeding of Sea Buckthorn-A Review. Genes (Basel) 2023; 14:2120. [PMID: 38136942 PMCID: PMC10743242 DOI: 10.3390/genes14122120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Both the fruit flesh and seeds of sea buckthorn have multiple uses for medicinal and culinary purposes, including the valuable market for supplementary health foods. Bioactive compounds, such as essential amino acids, vitamins B, C, and E, carotenoids, polyphenols, ursolic acid, unsaturated fatty acids, and other active substances, are now being analyzed in detail for their medicinal properties. Domestication with commercial orchards and processing plants is undertaken in many countries, but there is a large need for improved plant material with high yield, tolerance to environmental stress, diseases, and pests, suitability for efficient harvesting methods, and high contents of compounds that have medicinal and/or culinary values. Applied breeding is based mainly on directed crosses between different subspecies of Hippophae rhamnoides. DNA markers have been applied to analyses of systematics and population genetics as well as for the discrimination of cultivars, but very few DNA markers have as yet been developed for use in selection and breeding. Several key genes in important metabolic pathways have, however, been identified, and four genomes have recently been sequenced.
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, 29194 Kristianstad, Sweden
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China;
| | - Kimmo Rumpunen
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| |
Collapse
|
8
|
Qiu S, Zorig A, Sato N, Yanagihara A, Kanazawa T, Takasugi M, Arai H. Effect of Polyphenols in Sea Buckthorn Berry on Chemical Mediator Release from Mast Cells. Prev Nutr Food Sci 2023; 28:335-346. [PMID: 37842252 PMCID: PMC10567591 DOI: 10.3746/pnf.2023.28.3.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a deciduous shrub of the Elaeagnaceae family and is widely distributed in northern Eurasia. Sea buckthorn berry (SBB) has attracted attention for its use in many health foods, although its physiological function remains unknown. In this study, we investigated the inhibitory effect of SBB extract and its fractions on Type-I allergy using mast cell lines. Among these fractions, SBB fraction with the highest amount of antioxidant polyphenols significantly inhibited the release of chemical mediators such as histamine and leukotriene B4 (LTB4) from the stimulated mast cells. This fraction also inhibited the influx of calcium ions (Ca2+) and the phosphorylation of tyrosine residues in proteins, including spleen tyrosine kinase, which is associated with signal transduction during the release of chemical mediators. The active SBB fraction contained isorhamnetin as its major flavonol aglycon. Isorhamnetin inhibited histamine and LTB4 release from the stimulated cells and suppressed intracellular Ca2+ influx. These results indicate that isorhamnetin is the primary substance responsible for the antiallergic activity in SBB. In conclusion, SBB may alleviate Type-I allergy by inhibiting the release of chemical mediators from mast cells, and polyphenols may contribute to this effect.
Collapse
Affiliation(s)
- Shiman Qiu
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Anuu Zorig
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Naoko Sato
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Ai Yanagihara
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Tsutomu Kanazawa
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Mikako Takasugi
- Department of Life Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| |
Collapse
|
9
|
Tiwari D, Kewlani P, Gaira KS, Bhatt ID, Sundriyal RC, Pande V. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Sci Rep 2023; 13:10888. [PMID: 37407604 DOI: 10.1038/s41598-023-37495-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
The present study uses a systematic approach to explore the phytochemical composition of medicinal plants from Uttarakhand, Western Himalaya. The phytochemical composition of medicinal plants was analyzed based on (i) the presence of different chemical groups and (ii) bioactive compounds. The Generalized Additive Model (GAM) analysis was used to predict the occurrence of chemical groups and active compounds across different eco-climatic zones and the elevation in Uttarakhand. A total of 789 medicinal plants represented by 144 taxonomic families were screened to explore the phytochemical diversity of the medicinal plants of Uttarakhand. These medicinal plant species are signified in different life forms such as herbs (58.86%), shrubs (18.24%), trees (17.48%), ferns (2.38%), and climbers (2.13%). The probability of occurrence of the chemical groups found in tropical, sub-tropical, and warm temperate eco-climatic zones, whereas active compounds have a high Probability towards alpine, sub-alpine, and cool temperate zones. The GAM predicted that the occurrence of species with active compounds was declining significantly (p < 0.01), while total active compounds increased across elevation (1000 m). While the occurrence of species with the chemical group increased, total chemical groups were indicated to decline with increasing elevation from 1000 m (p < 0.000). The current study is overwhelmed to predict the distribution of phytochemicals in different eco-climatic zones and elevations using secondary information, which offers to discover bioactive compounds of the species occurring in the different eco-climatic habitats of the region and setting the priority of conservation concerns. However, the study encourages the various commercial sectors, such as pharmaceutical, nutraceutical, chemical, food, and cosmetics, to utilize unexplored species. In addition, the study suggests that prioritizing eco-climatic zones and elevation based on phytochemical diversity should be a factor of concern in the Himalayan region, especially under the climate change scenario.
Collapse
Affiliation(s)
- Deepti Tiwari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Pushpa Kewlani
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Kailash S Gaira
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| | - R C Sundriyal
- Department of Forestry and Natural Resources, HNB Garhwal University, Srinagar, Garhwal, 249169, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
10
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Woolf EK, Terwoord JD, Litwin NS, Vazquez AR, Lee SY, Ghanem N, Michell KA, Smith BT, Grabos LE, Ketelhut NB, Bachman NP, Smith ME, Le Sayec M, Rao S, Gentile CL, Weir TL, Rodriguez-Mateos A, Seals DR, Dinenno FA, Johnson SA. Daily blueberry consumption for 12 weeks improves endothelial function in postmenopausal women with above-normal blood pressure through reductions in oxidative stress: a randomized controlled trial. Food Funct 2023; 14:2621-2641. [PMID: 36847333 DOI: 10.1039/d3fo00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Estrogen-deficient postmenopausal women have oxidative stress-mediated suppression of endothelial function that is exacerbated by high blood pressure. Previous research suggests blueberries may improve endothelial function through reductions in oxidative stress, while also exerting other cardiovascular benefits. The objective of this study was to examine the efficacy of blueberries to improve endothelial function and blood pressure in postmenopausal women with above-normal blood pressure, and to identify potential mechanisms for improvements in endothelial function. A randomized, double-blind, placebo-controlled, parallel-arm clinical trial was performed, where postmenopausal women aged 45-65 years with elevated blood pressure or stage 1-hypertension (total n = 43, endothelial function n = 32) consumed 22 g day-1 of freeze-dried highbush blueberry powder or placebo powder for 12 weeks. Endothelial function was assessed at baseline and 12 weeks through ultrasound measurement of brachial artery flow-mediated dilation (FMD) normalized to shear rate area under the curve (FMD/SRAUC) before and after intravenous infusion of a supraphysiologic dose of ascorbic acid to evaluate whether FMD improvements were mediated by reduced oxidative stress. Hemodynamics, arterial stiffness, cardiometabolic blood biomarkers, and plasma (poly)phenol metabolites were assessed at baseline and 4, 8, and 12 weeks, and venous endothelial cell protein expression was assessed at baseline and 12 weeks. Absolute FMD/SRAUC was 96% higher following blueberry consumption compared to baseline (p < 0.05) but unchanged in the placebo group (p > 0.05), and changes from baseline to 12 weeks were greater in the blueberry group than placebo (+1.09 × 10-4 ± 4.12 × 10-5vs. +3.82 × 10-6 ± 1.59 × 10-5, p < 0.03, respectively). The FMD/SRAUC response to ascorbic acid infusion was lower (p < 0.05) at 12 weeks compared to baseline in the blueberry group with no change in the placebo group (p > 0.05). The sum of plasma (poly)phenol metabolites increased at 4, 8, and 12 weeks in the blueberry group compared to baseline, and were higher than the placebo group (all p < 0.05). Increases in several plasma flavonoid and microbial metabolites were also noted. No major differences were found for blood pressure, arterial stiffness, blood biomarkers, or endothelial cell protein expression following blueberry consumption. These findings suggest daily consumption of freeze-dried blueberry powder for 12 weeks improves endothelial function through reduced oxidative stress in postmenopausal women with above-normal blood pressure. The clinical trial registry number is NCT03370991 (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Emily K Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nicole S Litwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Sylvia Y Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Brayden T Smith
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Lauren E Grabos
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nate P Bachman
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Frank A Dinenno
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Comparative Assessment of Functional Components and Antioxidant Activities between Hippophae rhamnoides ssp. sinensis and H. tibetana Berries in Qinghai-Tibet Plateau. Foods 2023; 12:foods12020341. [PMID: 36673433 PMCID: PMC9858552 DOI: 10.3390/foods12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The Qinghai-Tibet Plateau is the main production area of Hippophae rhamnoides ssp. sinensis (Rha) and H. tibetana (Tib), but studies on the types and contents of soluble sugars, organic acids, free phenolics, bound phenolics, vitamin C (VC), tocopherol (VE) and carotenoids of the two sea buckthorn berries from this region have not been reported. In this paper, we found that the soluble sugars in Rha and Tib were mainly glucose and fructose; Rha exhibited a higher content of total sugar and fructose compared to Tib. The organic acids were mainly quinic acid and malic acid; Rha exhibited a higher content of total acids and quinic acid, but lower tartaric acid and citric acid compared to Tib. Rha also possessed a higher total (free and bound) phenolic as well as total (free and bound) flavonoid content than those in Tib; twelve phenolic compounds were analyzed, among which flavonols were dominant. Catechin, isorhamnetin and quercetin were the main phenolic substances. VC and VE (γ-tocopherol (γ-VE) and δ-tocopherol (δ-VE)) were higher in Rha than Tib. The total carotenoid, lutein, β-carotene and lycopene content of Tib was remarkably higher than that in Rha. Moreover, both Rha and Tib showed good in vitro and cellular antioxidant activities, and Rha had a stronger antioxidant activity. Taken together, Rha had a higher antioxidant activity, which may be due to its higher content of phenolics, flavonoids, VC and VE.
Collapse
|
13
|
Popiolek-Kalisz J. The Impact of Dietary Flavonols on Central Obesity Parameters in Polish Adults. Nutrients 2022; 14:nu14235051. [PMID: 36501081 PMCID: PMC9739955 DOI: 10.3390/nu14235051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Central obesity is defined as the excessive fat tissue located in abdominal region accompanied by systemic inflammation, which drives to cardiovascular disease. Flavonols are antioxidative agents present in food. The aim of this study was investigating the relationship between dietary flavonols intake and central obesity. Methods and results: 80 participants (40 central obese and 40 healthy controls) were administered a food frequency questionnaire dedicated to flavonols intake assessment. Body composition was measured with bioelectrical impedance analysis. The analysis showed significant differences between central obese participants and healthy controls in total flavonol (p = 0.005), quercetin (p = 0.003), kaempferol (p = 0.04) and isorhamnetin (p < 0.001) habitual intake. Among central obese participants, there was a moderate inverse correlation between fat mass (FM) and total flavonol (R = −0.378; 95% CI: −0.620 to −0.071; p = 0.02), quercetin (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03), kaempferol (R = −0.425; 95% CI: −0.653 to −0.127; p = 0.01) and myricetin intake (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03). BMI was inversely correlated with total flavonol (R = −0.330; 95% CI: −0.584 to −0.016; p = 0.04) and quercetin intake (R = −0.336; 95% CI: −0.589 to −0.023; p = 0.04). Waist circumference was inversely correlated with total flavonol (R = −0.328; 95% CI: −0.586 to −0.009; p = 0.04), quercetin (R = −0.322; 95% CI: −0.582 to −0.002; p = 0.048) and myricetin intake (R = −0.367; 95% CI: −0.615 to −0.054; p = 0.02). Among flavonols’ dietary sources, there was an inverse correlation between black tea consumption and FM (R: −0.511; 95% CI: −0.712 to −0.233; p < 0.001) and between coffee and waist circumference (R: −0.352; 95% CI: −0.604 to −0.036; p = 0.03) in central obese participants. Conclusions: The higher flavonol intake could play a protective role in abdominal obesity development. What is more, total and selected flavonol dietary intakes are inversely correlated with the parameters used for obesity assessment in central obese participants. The habitual consumption of products rich in flavonols, mainly tea and coffee, could possibly have a preventive role in abdominal obesity development.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, ul. Chodzki 7, 20-093 Lublin, Poland;
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, al. Krasnicka 100, 20-718 Lublin, Poland
| |
Collapse
|
14
|
Liu R, Yang Y, Zhao M, Wang Y, Meng X, Yan T, Ho C. Effect of heat‐treating methods on components, instrumental evaluation of color and taste, and antioxidant properties of sea buckthorn pulp flavonoids. J Food Sci 2022; 87:5442-5454. [DOI: 10.1111/1750-3841.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ran Liu
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yunning Yang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Menghan Zhao
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yanqun Wang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Xianjun Meng
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Tingcai Yan
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| |
Collapse
|
15
|
Lu AJ, Cao LG, Tan DP, Qin L, Lu YL, Zhao YX, Qian Y, Bai CJ, Yang JY, Ling H, Shi JS, Yang Z, He YQ. UPLC-Q/TOF-MS coupled with multivariate analysis for comparative analysis of metabolomic in Dendrobium nobile from different growth altitudes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
16
|
Żuchowski J. Phytochemistry and pharmacology of sea buckthorn ( Elaeagnus rhamnoides; syn. Hippophae rhamnoides): progress from 2010 to 2021. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:3-33. [PMID: 35971438 PMCID: PMC9366820 DOI: 10.1007/s11101-022-09832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Sea buckthorn (Elaeagnus rhamnoides; syn. Hippophae rhamnoides) is a thorny shrub or a small tree belonging to the Elaeagnaceae family, native to Eurasia. Sea buckthorn fruit is rich in vitamins and minerals, oils from the seeds and fruit flesh find use in medicine and the cosmetic industry or as nutraceutical supplements. Fruit, leaves and other parts of buckthorn have been used in traditional medicine, especially in China, Tibet, Mongolia, and Central Asia countries, and are a rich source of many bioactive substances. Due to its health-promoting and medicinal properties, the plant has been extensively investigated for several decades, and its phytochemical composition and pharmacological properties are well characterized. The years 2010-2021 brought significant progress in phytochemical research on sea buckthorn. Dozens of new compounds, mainly phenolics, were isolated from this plant. Numerous pharmacological studies were also performed, investigating diverse aspects of the biological activity of different extracts and natural products from sea buckthorn. This review focuses on the progress in research on sea buckthorn specialized metabolites made in this period. Pharmacological studies on sea buckthorn are also discussed. In addition, biosynthetic pathways of the main groups of these compounds have been shortly described.
Collapse
Affiliation(s)
- Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
17
|
Shi MZ, Yu YL, Zhu SC, Yang J, Cao J. Latest Development of Matrix Solid Phase Dispersion Extraction and Microextraction for Natural Products from 2015-2021. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2094274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Juan Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
In Vitro Anthelmintic Activity of Sea Buckthorn (Hippophae rhamnoides) Berry Juice against Gastrointestinal Nematodes of Small Ruminants. BIOLOGY 2022; 11:biology11060825. [PMID: 35741346 PMCID: PMC9219796 DOI: 10.3390/biology11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Gastrointestinal nematodes are one of the major threats in small ruminant breeding. Their control is difficult due to the development of anthelmintic resistance, and the search for new molecules endowed with anthelmintic activity (AH) is considered a priority. In this context, we evaluated the in vitro AH activity of two commercial sea buckthorn (Hippophae rhamnoides) berry juices, namely SBT and SBF. The in vitro evaluation was based on the egg-hatch test and larval exsheathment assay at different concentrations. Data were statistically analysed, and the EC50 was calculated. Chemical analyses were performed to evaluate the total polyphenol content of the juices and chemical profile of the most represented compounds. The role of the polyphenolic fraction in the anthelmintic activity of the juices was also assessed. At the highest concentrations, the activity of SBT was high in both tests and comparable to that observed in the thiabendazole-treated positive controls, while SBF showed a lower efficacy. Glycosylated isorhamnetin and quercetin were the most represented polyphenolic compounds in both juices. In conclusion, both H. rhamnoides berry juices tested in this study showed interesting anthelmintic properties in vitro.
Collapse
|
19
|
Kewlani P, Tiwari DC, Singh B, Negi VS, Bhatt ID, Pande V. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:162. [PMID: 35141786 DOI: 10.1007/s10661-022-09786-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Prinsepia utilis, a wild-growing Himalayan shrub, is a good source of phytoceuticals, cosmeceuticals, and antioxidants. The present study is an attempt to investigate the effect of altitude and edaphic factors on phenolics and antioxidant activity in fruit pulp of Prinsepia utilis. The ripened fruits and soil samples were collected for detailed investigation. The fruits (pulp) were extracted in methanol for analyzing total phenolics and antioxidant activity using a spectrophotometric method and phenolic compounds by high-performance liquid chromatography (HPLC). Similarly, standard methods for soil analysis were used. Results reveal that altitude negatively correlated with total phenolics and flavonoid contents determined by a spectrophotometric method and with specific phenolic compounds determined by HPLC. For instance, Dwarahat population (PU-1) at lower altitude (1400 m asl) exhibited higher values of total phenolics and flavonoids, while total tannin was higher at Nainital (PU-6) population (2000 m asl). The antioxidant activity measured by 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was found higher in Narayan Ashram (PU-9) population (2750 m asl), while ferric reducing antioxidant power (FRAP) was significantly higher in Badechena (PU-2) population (1600 m asl). Soil nutrients (edaphic factors) showed a good correlation among measured parameters. Neighbor-joining and principal component analysis identified phenolics and antioxidant-rich populations that can be utilized for collection of fruits from these populations.
Collapse
Affiliation(s)
- Pushpa Kewlani
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Deep C Tiwari
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Basant Singh
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Vikram S Negi
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Indra D Bhatt
- G. B. Pant, National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India.
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, 263 136, Nainital, Uttarakhand, India
| |
Collapse
|
20
|
Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022; 23:605. [PMID: 35054793 PMCID: PMC8775512 DOI: 10.3390/ijms23020605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.
Collapse
Affiliation(s)
- Dina A. I. Albadawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Thomas M. Vallance
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| |
Collapse
|
21
|
Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn ( Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021; 26:molecules26237189. [PMID: 34885771 PMCID: PMC8659002 DOI: 10.3390/molecules26237189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Sea buckthorn berries are rich in bioactive compounds and can be used for medicine and food. The variety and drying method used have an important influence on quality. In this study, different sea buckthorn varieties from China were selected and dried with four common drying methods. The total phenolic content (TPC), total flavonoids content (TFC), contents of 12 phenolic compounds and antioxidant capacity in vitro were analyzed. The results showed that the TPC, TFC and antioxidant activity of two wild sea buckthorn berries were higher than those of three cultivated berries, and for the same varieties, measured chemical contents and antioxidant activity of the freeze-dried fruit were significantly higher than those obtained with three conventional drying methods. In addition, forty-one compounds in sea buckthorn berry were identified by UPLC-PDA-Q/TOF-MS, most of which were isorhamnetin derivatives. Multivariate statistical analysis revealed narcissin and isorhamnetin-3-O-glucoside varied significantly in sea buckthorn berries of different varieties and with different drying methods; they were potential quality markers. Strong correlations were found between TPC, gallic acid and antioxidant capacity (p < 0.05). The results revealed how components and antioxidant activity varied in different sea buckthorn, which provides a valuable reference for quality control and further development and utilization of sea buckthorn.
Collapse
|
23
|
Tkacz K, Wojdyło A, Turkiewicz IP, Nowicka P. Triterpenoids, phenolic compounds, macro- and microelements in anatomical parts of sea buckthorn (Hippophaë rhamnoides L.) berries, branches and leaves. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021; 26:molecules26154474. [PMID: 34361625 PMCID: PMC8348699 DOI: 10.3390/molecules26154474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed at assessing the composition of bioactive compounds, including ascorbic acid, carotenoids and polyphenols, the volatile compound profile and the antioxidant activity of red arils (RAs) of Taxus baccata L. grown in diverse locations in Poland. Among the carotenoids assayed in high quantities (3.3-5.42 μg/g), the lycopene content (2.55-4.1 μg/g) was remarkably higher than that in many cultivated fruits. Samples collected from three sites were distinguished by higher amounts of ascorbic acid (125 mg/100 g, on average) than those found in many cultivated berries. Phenylpropanoids quantitatively dominated among the four groups of phenolic compounds. Chromatographic separation enabled the detection of two phenylpropanoid acids: ferulic and p-coumaric. Irrespectively of the growth site, RAs contained substantial amounts of (-)-epicatechin (1080 μg/100 g, on average). A higher ability to scavenge DPPH● and ABTS●+ radicals was found in the hydrophilic fraction of RAs from two sites (Warsaw and Koszalin) compared with the other two sites. The volatile compound profile of RAs was dominated by alcohols, followed by ketones, esters and aldehydes. The presence of some volatiles was exclusively related to the specific growth site, which may be regarded as a valuable indicator. The combination of bioactive and volatile compounds and the fairly good antioxidant potential of RAs render them an attractive source for preparing functional foods.
Collapse
|
25
|
Li X, Chen W, Simal-Gandara J, Georgiev MI, Li H, Hu H, Wu X, Efferth T, Wang S. West meets east: open up a dialogue on phytomedicine. Chin Med 2021; 16:57. [PMID: 34281584 PMCID: PMC8287783 DOI: 10.1186/s13020-021-00467-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The desire to extend the wisdom of traditional health systems has motivated the trade of many phytomedicine on a global scale for centuries, especially some dietary herbs, making a great overlap exits between western and eastern phytomedicine. Despite the communication since ancient times, a key disconnect still exists in the dialog among western and eastern herbal researchers. There is very little systematic effort to tap into the friction and fusion of eastern and western wisdom in utilizing phytomedicine. In this review, we analyzed the similarities and differences of three representative phytomedicine, namely Rhodiola, seabuckthorn, and fenugreek, aiming to open up new horizons in developing novel health products by integrating the wisdom of the east and the west.
Collapse
Affiliation(s)
- Xiuzhu Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, 32004 Ourense, Spain
| | - Milen I. Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Hongyi Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan China
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| |
Collapse
|
26
|
Antioxidant and Antimicrobial Activity of Cleome droserifolia (Forssk.) Del. and Its Biological Effects on Redox Status, Immunity, and Gut Microflora. Animals (Basel) 2021; 11:ani11071929. [PMID: 34203524 PMCID: PMC8300390 DOI: 10.3390/ani11071929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The antioxidant, antimicrobial, and immunomodulatory activities of the Cleome droserifolia (Forssk.) Del. (Cd) shrub were investigated considering the biological activity of its phytogenic compounds. Cd shrub encompasses several phenolic compounds, mainly phenolic acids, such as benzoic acid. The methanolic extract of Cd exhibited strong in vitro antioxidant and antimicrobial activities. Anin vivo study using rabbits as an animal model confirmed the ability of a powder of Cd aerial parts to improve humoral and innate immunity, as well as gastrointestinal microbiota homeostasis. In conclusion, Cd shrub represents a novel source of secondary active metabolites that can be employed as antibiotic alternative in the livestock production field and/or in human pharmaceutical applications. Abstract This study aimed to investigate the antioxidant, antimicrobial, and immunomodulatory activities of a Cleome droserifolia (Forssk.) Del. (Cd) shoot methanolic extracts considering the biological activity of its phytogenic compounds. For this purpose, the Cd phenolic compounds were detected, and an in vitro evaluation of the antioxidant and antimicrobial activities of the Cd extract was performed. For a biological evaluation, 30 v-line rabbits were randomly distributed into three groups with treatments including: a basal diet without Cd shoots powder supplement (C group) or supplemented with 1.25- (Cdl group) or 2.5 (Cdh group)-mg Cd/kg dry matter (DM). The Cd extract showed a linear scavenging activity for 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), with the maximal activity observed at a concentration of 1 mg/mL. A total of 16 phenolic compounds were identified by reverse-phase high-performance liquid chromatography (RP-HPLC) in the Cd methanolic extract, among which benzoic acid, rutin, ellagic acid, naringenin, and o-coumaric acid were the major compounds. The methanolic extract of Cd showed inhibitory actions against microbial pathogen species. The in vivo study showed that the two concentrations of Cd significantly improved the redox status of the blood plasma and lysozyme activity. Treatment with Cdh significantly decreased the levels of interleukin-β1 in the blood plasma compared with the control. Moreover, the two concentrations of Cd significantly increased the counts of intestinal and cecal yeast and Lactobacillus species and decreased the Salmonella and Coliform species compared with the control. The aerial parts of the Cd shrub had strong antioxidant, antimicrobial, and immunomodulatory activities, which can improve the overall health status and seem to be related to its impressive range of biologically active phenolic compounds.
Collapse
|
27
|
Chen X, Fedrizzi B, Kilmartin PA, Quek SY. Free and Glycosidic Volatiles in Tamarillo ( Solanum betaceum Cav. syn. Cyphomandra betacea Sendt.) Juices Prepared from Three Cultivars Grown in New Zealand. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4518-4532. [PMID: 33843220 DOI: 10.1021/acs.jafc.1c00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the free and glycosidic-bound volatiles in the juice samples of three tamarillo cultivars (i.e. Amber, Mulligan, and Laird's Large) that are widely grown in New Zealand. Juice samples were prepared from fruits at different ripening stages (green, middle, and ripe). Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was applied to analyze the free volatiles in the samples. A total of 20 free volatiles were detected. Among the samples, the ripe Mulligan juice gave the highest contents of free terpenoids (424 μg/L) and esters (691 μg/L). The glycosidic-bound volatiles were prepared by solid-phase extraction. The matrix effect was evaluated based on the recovery rate of analytes containing multiple aglycone classes. From the results, phenyl β-d-glucopyranoside was selected to compensate the matrix effect caused by insufficient acquisition of glycosidic volatiles during analyte preparation. In all the ripe-fruit juice samples, the aglycones 4-hydroxy-2,5-dimethyl-3(2H)-furanone and trans-2, cis-6-nonadienal were found to give high odor activity values. According to multivariate statistical analysis, 11 free volatiles and 22 glycosidic volatiles could be potentially applied as volatile makers to distinguish the juice samples. This study has provided a comprehensive understanding of the flavor chemistry of tamarillo juices, with a focus on the potential role of glycosidic aglycones as aroma contributors to tamarillo products.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Centre of Research Excellence in Food Research, Riddet Institute, Palmerston North 4474, New Zealand
| |
Collapse
|
28
|
Li Y, Sun H, Li J, Qin S, Niu Z, Qiao X, Yang B. Influence of genetic background, growth latitude and bagging treatment on phenolic compounds in fruits of commercial cultivars and wild types of apples (Malus sp.). Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03695-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPhenolic compounds in apples 17 cultivars (Malus domestica Borkh.) and 3 wild forms (Malus sp.) were analyzed to study the impact of genetic background, growth site, and fruit bagging. The impact of altitude was studied in nine cultivars by analyzing fruits collected from orchards at three altitudes. Procyanidin B2 (71–628 μg/g fresh weight), ( −)-epicatechin (35–357 μg/g), and chlorogenic acid (28–563 μg/g) were always the three most abundant phenolic compounds in the apple samples studied, except for the cultivar ‘Qinguan’, which had a very low content of ( −)-epicatechin (13 μg/g) and procyanidin B2 (8 μg/g). The wild apples of M. prunifolia (Willd.) Borkh were 5-times richer in epicatechin (278 μg/g) and procyanidin B2 (628 μg/g) than the commercial cultivars of M. domestica Borkh (86 and 54, respectively). Among the commercial cultivars, ‘Qinguan’ had the highest level of chlorogenic acid but the lowest content of flavan-3-ols, whereas ‘Liuyuehong’ was characterized by the highest content of quercetin glycosides. Procyanidin B2, and ( −)-epicatechin correlated negatively, while other phenolics positively, with altitude. The response of phenolic compounds to altitude variation depended on latitude variation and genetic backgrounds. Bagging treatment reduced the contents of most phenolic compounds, with the impact of cultivars and length of re-exposure before harvest. This is also the first report on phenolic compounds in several important new cultivars, adding new knowledge on the compositional characteristics of global apple resources.
Collapse
|
29
|
Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn ( Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021; 62:3798-3816. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
30
|
Fomenko OS, Makarova AN, Simakova IV, Eliseev YY, Eliseeva YV, Artemova EN. Experimental studies of the effect of sea buckthorn and wheat bran in food on the physiological status of rats. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this research paper was a sanitary-toxicological study of the effectiveness and safety of developed functional property products, such as chopped semi-finished products from chicken with wheat bran and shortbread cake with cottage cheese and sea buckthorn, in preclinical studies on laboratory animals. Methods — The effect of new products on the experimental rats was studied using physiological, biochemical, pathomorphological and histological research methods. As a result, it was discovered that the inclusion of foods with wheat bran and fresh sea buckthorn into the diet of experimental animals had a positive effect on the behavioral reactions of rats, the increase of appetite and the rapid growth of animals. Results — The improvement in the metabolic processes physiology of the studied rats was noted in the biochemical and morphological blood parameters. In the experimental group of rats where carbohydrates were partially substituted with cottage cheese shortbread cake and sea buckthorn, a significant decrease in the total bilirubin content was noted; the level of cholesterol in the blood serum of experimental animals from group which received chicken cutlets with bran was 1.4-1.7 times lower than the cholesterol content in animals of the control and other experimental groups. At the same time, statistically significant differences in the number of red blood cells, white blood cells, platelets and hemoglobin level, the activity of alanine and aspartate aminotransferases, alkaline phosphatase and amylase, the level of total protein and the creatinine content were not revealed in the group of experimental rats compared with the control group of rats, receiving a standard diet. The histological data showed that the liver structure of the experimental animals had a more pronounced beam and capillary structure compared with the control group, and the condition of the villi and epithelium of the small intestine showed the positive physiological effect of the studied herbal additives in food technology with functional properties. Conclusion — The research results allow us to conclude that the developed products are functional, intended for the systematic use in the composition of food rations by all age groups of a healthy population, which reduces the risk of gastrointestinal and liver diseases.
Collapse
|
31
|
Vilas-Franquesa A, Saldo J, Juan B. Potential of sea buckthorn-based ingredients for the food and feed industry – a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00032-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Food industries seek to incorporate nutritious ingredients as they could bring added value to the final food products. One of the most interesting options is that sea buckthorn contains high concentrations of vitamin C, carotenoids, tocopherols, and other bioactive compounds, in addition to the unique lipid profile in the berry pulp, seed, and peel. This review summarizes the state-of-the-art of potential applications of sea buckthorn within the food and feed industry based on previously described applications. Products such as cheese, yoghurt or beverages already benefit from its application. Moreover, using sea buckthorn in feed products also derives into higher quality final products (e.g. meat quality, egg quality). Poultry, pig, and fish farming have been studied for that purpose. Despite all the accumulated articles depicted in the present review, the use of this fruit in food product formulation is nowadays scarce. New options for food product development with sea buckthorn are herein discussed.
Graphical abstract
Collapse
|
32
|
Neagu C, Mihalcea L, Enachi E, Barbu V, Borda D, Bahrim GE, Stănciuc N. Cross-Linked Microencapsulation of CO 2 Supercritical Extracted Oleoresins from Sea Buckthorn: Evidence of Targeted Functionality and Stability. Molecules 2020; 25:molecules25102442. [PMID: 32456245 PMCID: PMC7288087 DOI: 10.3390/molecules25102442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Oleoresin supercritical extracts from sea buckthorn were microencapsulated in whey proteins isolate and casein, in two states: native (N) and cross-linked mediated by transglutaminase (TG). The encapsulation efficiency showed values higher than 92% for total carotenoids and lycopene. Phytochemicals content was 352.90 ± 1.02 mg/g dry weight (DW) for total carotenoids in TG and 302.98 ± 2.30 mg/g DW in N, with antioxidant activity of 703.13 ± 23.60 mMol Trolox/g DW and 608.74 ± 7.12 mMol Trolox/g DW, respectively. Both powders had an inhibitory effect on α-glucosidase, of about 40% for N and 35% for TG. The presence of spherosomes was highlighted, with sizes ranging between 15.23-73.41 µm and an agglutination tendency in N, and lower sizes, up to 35 µm in TG. The in vitro digestibility revealed a prolonged release in an intestinal environment, up to 65% for TG. Moisture sorption isotherms were studied at 20 °C and the shape of curves corresponds to sigmoidal type II model. The presence of cross-linked mediated aggregates in TG powders improved stability and flowability. Our results can be used as evidence that cross-linked aggregates mediated by transglutaminase applied for microencapsulation of oleoresins have the potential to become new delivery systems, for carotenoids and lycopene, being valuable in terms of their attractive color and biological and bioaccessibility properties.
Collapse
|
33
|
Ma X, Yang W, Marsol‐Vall A, Laaksonen O, Yang B. Analysis of flavour compounds and prediction of sensory properties in sea buckthorn (
Hippophaë rhamnoides
L.) berries. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development Department of Biochemistry University of Turku FI‐20014 Turku Finland
| | - Wei Yang
- Food Chemistry and Food Development Department of Biochemistry University of Turku FI‐20014 Turku Finland
| | - Alexis Marsol‐Vall
- Food Chemistry and Food Development Department of Biochemistry University of Turku FI‐20014 Turku Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development Department of Biochemistry University of Turku FI‐20014 Turku Finland
| | - Baoru Yang
- Food Chemistry and Food Development Department of Biochemistry University of Turku FI‐20014 Turku Finland
- Institute of Quality, Safety of Agro-Products and Testing Technology Shanxi Academy of Agricultural Sciences Longcheng Street No. 81 Taiyuan 030031 China
| |
Collapse
|
34
|
Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn ( Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants (Basel) 2020; 9:antiox9040274. [PMID: 32218308 PMCID: PMC7222216 DOI: 10.3390/antiox9040274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed at valorisation of sea buckthorn pomace (SBP) for the production of extracts containing valuable bioactive compounds. For this purpose, SBP defatted by supercritical CO2 was subjected to consecutive fractionation with pressurized ethanol and water, which yielded 11.9% and 4.8% of extracts, respectively. The extracts were evaluated for their antioxidant potential, phytochemical composition and antiproliferative effects against cancer cells. Water extracts exhibited remarkably higher values in Folin-Ciocalteu assay of total phenolic content, oxygen radical absorbance capacity (ORAC), ABTS●+/DPPH● scavenging and cellular antioxidant activity (CAA) assays and more efficiently inhibited proliferation of HT29 cells at non-cytotoxic concentrations measured in non-tumoral Caco2 cells. Among 28 detected and 21 quantified phytochemicals, flavonols with the structures of isorhamnetin (five compounds), quercetin (three compounds), kaempferol (three compounds) glycosides and catechin (six compounds) were the most abundant in the extracts. In conclusion, the applied method of fractionation of SBP produces promising natural antioxidant complexes with antiproliferative properties that could find potential applications in nutraceuticals, functional foods and cosmeceuticals.
Collapse
|
35
|
Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, Koplík R, Belajová E, Kukurová K, Daško Ľ, Panovská Z, Revenco D, Burčová Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020; 133:109170. [PMID: 32466930 DOI: 10.1016/j.foodres.2020.109170] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 01/23/2023]
Abstract
Sea buckthorn (Hippophae L.) is a valuable, multipurpose plant extensively grown in Asia, Europe and Canada. In order to use it in the best way for products of human nutrition, it is necessary to recognize its positive aspects and to eliminate the negative ones. The exceptional value of sea buckthorn can be seen in the presence of both lipophilic antioxidants (mainly carotenoids and tocopherols) and hydrophilic antioxidants (flavonoids, tannins, phenolic acids, ascorbic acid) in remarkably high quantities. Some of the main nutrients, especially lipids of advantageous fatty acid composition, contribute to nutritional benefits of sea buckthorn products for a consumer as well. This review article focuses, besides the above mentioned compounds and vitamins, also on other important components, such as sugars, sugar derivatives, fibre, organic acids, proteins, amino acids and mineral elements. The article also deals with the effects of sea buckthorn components on the course of non-enzymatic browning of food and in vivo glycation. In addition, sensory perception of sea buckthorn and its constituents from the consumers point of view is discussed.
Collapse
Affiliation(s)
- Zuzana Ciesarová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic.
| | - Michael Murkovic
- Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Biochemistry, Petersgasse 12/II, 8010 Graz, Austria
| | - Karel Cejpek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - František Kreps
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| | - Blanka Tobolková
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Richard Koplík
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Elena Belajová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Kristína Kukurová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Ľubomír Daško
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Zdenka Panovská
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Diomid Revenco
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Zuzana Burčová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| |
Collapse
|
36
|
Ghendov-Mosanu A, Cristea E, Patras A, Sturza R, Padureanu S, Deseatnicova O, Turculet N, Boestean O, Niculaua M. Potential Application of Hippophae Rhamnoides in Wheat Bread Production. Molecules 2020; 25:E1272. [PMID: 32168868 PMCID: PMC7144010 DOI: 10.3390/molecules25061272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn (Hippophae rhamnoides) berries are well known for their content in bioactive compounds, high acidity, bright yellow color, pleasant taste and odor, thus their addition in a basic food such as bread could be an opportunity for modern food producers. The aim of the present research was to investigate the characteristics and the effects of the berry' flour added in wheat bread (in concentration of 1%, 3% and 5%) on sensory, physicochemical and antioxidant properties, and also bread shelf life. Berry flour contained total polyphenols-1467 mg gallic acid equivalents (GAE)/100 g, of which flavonoids-555 mg GAE/100 g, cinnamic acids-425 mg caffeic acid equivalents (CAE)/100 g, flavonols-668 mg quercetin equivalents (QE)/100 g. The main identified phenolics were catechin, hyperoside, chlorogenic acid, cis- and trans-resveratrol, ferulic and protocatechuic acids, procyanidins B1 and B2, epicatechin, gallic acid, quercetin, p- and m-hydroxybenzoic acids. The antioxidant activity was 7.64 mmol TE/100 g, and carotenoids content 34.93 ± 1.3 mg/100 g. The addition of berry flour increased the antioxidant activity of bread and the shelf life up to 120 h by inhibiting the development of rope spoilage. The obtained results recommend the addition of 1% Hippophae rhamnoides berry flour in wheat bread, in order to obtain a product enriched in health-promoting biomolecules, with better sensorial and antioxidant properties and longer shelf life.
Collapse
Affiliation(s)
- Aliona Ghendov-Mosanu
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Elena Cristea
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Antoanela Patras
- “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Rodica Sturza
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Silvica Padureanu
- “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Olga Deseatnicova
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Nadejda Turculet
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Olga Boestean
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Marius Niculaua
- Research Center for Oenology, Romanian Academy, Iasi Branch, 9 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
37
|
Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn ( Hippophae Rhamnoides L.) Varieties. Molecules 2020; 25:E1170. [PMID: 32150954 PMCID: PMC7179145 DOI: 10.3390/molecules25051170] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Hippophae rhamnoides L. is an important source of natural antioxidant and antimicrobial agents. Phytochemical compounds, antioxidant and antibacterial properties of berries, and leaf extracts from four Romanian sea buckthorn cultivars were investigated. Large differences in the content of total polyphenols and flavonoids between the varieties were observed. HPLC analysis of the polyphenolic compounds showed greater differences in content in leaves than in berries. This study confirmed that sea buckthorn leaves and berries are a rich source of phenolic compounds, especially quercetin derivatives and hydrocinnamic acid derivatives. Five carotenoid compounds were identified in the berries: lutein, zeaxanthin, β-cryptoxanthin, cis-β-carotene, and β-carotene. From the results obtained in this study, it can be stated that the varieties whose berries yielded the highest quantities of polyphenols, flavonoids, and antioxidant activity, can be ranked as follows: SF6 > Golden Abundant > Carmen > Colosal, and for leaf extracts the ranked order is SF6 > Golden Abundant > Colosal > Carmen. A strong correlation between the total flavonoid yield and antioxidant activity (r = 0.96), was observed. All extracts showed antibacterial activity against S. aureus, B. cereus, and P. aeruginosa, however extracts from berries were less potent than extracts from leaves.
Collapse
Affiliation(s)
- Adriana Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania;
| | | | - Neli Kinga Olah
- SC PlantExtrakt SRL, Rădaia, jud. Cluj 407059, Romania; (F.R.P.F.); (N.K.O.)
| | - Robert H. Madden
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| |
Collapse
|
38
|
Tkacz K, Wojdyło A, Turkiewicz IP, Ferreres F, Moreno DA, Nowicka P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chem 2020; 309:125766. [DOI: 10.1016/j.foodchem.2019.125766] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
|
39
|
Ren R, Li N, Su C, Wang Y, Zhao X, Yang L, Li Y, Zhang B, Chen J, Ma X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv 2020; 10:44654-44671. [PMID: 35516250 PMCID: PMC9058667 DOI: 10.1039/d0ra06488b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases. Sea buckthorn (SB), also named sea berry, has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases.![]()
Collapse
|
40
|
Sharma B, Deswal R. Ecophysiolomic analysis of stress tolerant Himalayan shrub Hipppophae rhamnoides shows multifactorial acclimation strategies induced by diverse environmental conditions. PHYSIOLOGIA PLANTARUM 2020; 168:58-76. [PMID: 30737802 DOI: 10.1111/ppl.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 05/10/2023]
Abstract
Climatic fluctuations are a major global concern, affecting the agronomic productivity of plants. Hippophae rhamnoides a naturally growing stress tolerant Himalayan shrub was chosen to understand its stress hardiness mechanism. Comparative proteomic and biochemical analysis were done for pooled berry populations (HrB13 and HrB14) growing in two different environmental conditions. HrB13, growing under sub-optimal environmental conditions exhibited differential abundance of stress responsive proteins, which were the rate limiting enzymes associated with stress-responsive metabolic pathways, including Xanthine dehydrogenase (reactive oxygen species [ROS] signaling), Farnesyl diphosphate synthase (phenylpropanoid pathway), endosomal BRO-1 domain protein (ultraviolet [UV]-light stress), Phosphofructokinase (sugar metabolism) and Ubiquitin thioesterase (protein alterations). Biochemical investigations showed a positive correlation between proteomic plasticity (HrB13) and 1.6 to 15-fold accumulation of downstream adaptive metabolic signatures like enzymes and antioxidants involved in ROS scavenging pathways (Catalase, Ascorbate peroxidase, Glutathione reductase, ascorbate and glutathione content), secondary metabolites (phenolics, flavonoids, carotenoids) and polyunsaturated fatty acids (∝ - linolenic acid and linoleic acid). Interactome and KEGG pathway analysis also supported interactions of differentially accumulated proteins with stress-responsive signaling components involved in physiological pathways associated with stress tolerance. This is the first 'ecophysiolomics' study, showing the response of seabuckthorn to multiple stress conditions via activation of multifactorial acclimation strategies leading to morphological, metabolic and physiological modifications, resulting in dark orange berries in HrB13. Higher accumulation of omega-6 fatty acids, carotenoids and ascorbate during suboptimal growth conditions, provides exciting prospects for enhancing pharmaceutical properties of seabuckthorn berries, emphasizing need to analyze diversity of plant signaling mechanisms under changing climate conditions.
Collapse
Affiliation(s)
- Bhavana Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| |
Collapse
|
41
|
Yang W, Ma X, Laaksonen O, He W, Kallio H, Yang B. Effects of Latitude and Weather Conditions on Proanthocyanidins in Blackcurrant ( Ribes nigrum) of Finnish Commercial Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14038-14047. [PMID: 31730342 DOI: 10.1021/acs.jafc.9b06031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Blackcurrants of three Finnish commercial cultivars 'Mortti', 'Ola', and 'Melalahti' cultivated in southern and northern Finland were compared on the basis of the content and composition of proanthocyanidins (PAs). Seventeen B-type PA oligomers (degree of polymerization 2-5 and 7) were detected by hydrophilic interaction liquid chromatography and electrospray ionization mass spectrometry. Total PAs, dimers, trimers, and tetramers were quantified. Among the three cultivars, 'Ola' had the highest contents of both total PAs and PA oligomers. 'Melalahti' was separated from both 'Mortti' and 'Ola' by PA profiles in the partial least-squares discriminant analysis model. All three cultivars revealed distinct responses to latitude and weather conditions. The content of total PAs showed a positive correlation to latitude in 'Ola' and 'Melalahti'. Among the meteorological variables, high temperature and radiation correlated negatively with total PAs, while only specific variables showed a correlation with PA oligomers.
Collapse
Affiliation(s)
- Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Wenjia He
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
- Institute of Quality, Safety of Agro-Products and Testing Technology , Shanxi Academy of Agricultural Sciences , Taiyuan 030031 , China
| |
Collapse
|
42
|
Tkacz K, Wojdyło A, Turkiewicz IP, Bobak Ł, Nowicka P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn ( Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants (Basel) 2019; 8:antiox8120618. [PMID: 31817215 PMCID: PMC6943611 DOI: 10.3390/antiox8120618] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to analyze in vitro biological activities as anti-oxidant, anti-α-amylase, anti-α-glucosidase, anti-lipase, and anti-lipoxygenase activity, relative to bioactive components (phenolic acids, flavonols, xanthophylls, carotenes, esterified carotenoids, tocopherols, tocotrienols, and fatty acids) and the basic chemical composition (sugars, organic acid, dry matter, soluble solid, pH, titratable acidity, ash, pectins, and vitamin C) of Hippophaë rhamnoides berries. Six sea buckthorn cultivars commonly grown in Poland were analyzed including Aromatnaja, Botaniczeskaja-Lubitelskaja, Józef, Luczistaja, Moskwiczka, and Podarok Sadu. Berries contained 1.34–2.87 g of sugars and 0.96–4.22 g of organic acids in 100 g fresh weight, 468.60–901.11 mg of phenolic compounds, and 46.61–508.57 mg of carotenoids in 100 g dry mass. The fatty acid profile was established: palmitic > palmitoleic > oleic and linoleic > stearic and linolenic acids. The highest anti-oxidant (34.68 mmol Trolox/100 g dry mass) and anti-α-amylase potential (IC50 = 26.83 mg/mL) was determined in Aromatnaja, anti-α-glucosidase in Botaniczeskaja-Lubitelskaja (IC50 = 41.78 mg/mL), anti-lipase in Moskwiczka and Aromatnaja (average IC50 = 4.37 mg/mL), and anti-lipoxygenase in Aromatnaja and Podarok Sadu fruits (100% inhibition). The studied sea buckthorn berries may be a raw material for the development of functional foods and nutraceutical products rich in compounds with high biological activity.
Collapse
Affiliation(s)
- Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.); (P.N.)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.); (P.N.)
- Correspondence: ; Tel.: +48-71-320-7706
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.); (P.N.)
| | - Łukasz Bobak
- Department of Animal Products Technology and Quality Management, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland;
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.); (P.N.)
| |
Collapse
|
43
|
Zheng WH, Bai HY, Han S, Bao F, Zhang KX, Sun LL, Du H, Yang ZG. Analysis on the Constituents of Branches, Berries, and Leaves of Hippophae rhamnoides L. by UHPLC-ESI-QTOF-MS and Their Anti-Inflammatory Activities. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19871404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea buckthorn ( Hippophae rhamnoides L.) is a medicinal plant widely distributed in Asia and Europe, containing plentiful bioactive substances. Our research aimed to promote the comprehensive utilization of the branches, leaves, and berries of sea buckthorn. Qualitative analysis of chemical constituents in branches, leaves, and berries of sea buckthorn was conducted by ultra-high performance liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS). As a result, the branch, leaf, and berry samples could be clearly separated in principal component analysis scores plot, and 24 significant markers were found to distinguish these parts by partial least squares regression discrimination analysis in Mass Profiler Professional software. Meanwhile, the compositional similarity of sea buckthorn leaves and branches was higher than that of leaves and berries. In addition, the inhibition of nitric oxide (NO) production of different parts in macrophage RAW 264.7 cells was carried out. At the concentration of 10 μg/mL, sea buckthorn extracts showed good anti-inflammatory activities with NO inhibition values from 73% to 98%.
Collapse
Affiliation(s)
| | | | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, China
| | | | - Li-Li Sun
- School of Pharmacy, Lanzhou University, China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | | |
Collapse
|
44
|
Guo X, Shi L, Yang S, Yang R, Dai X, Zhang T, Liu R, Chang M, Jin Q, Wang X. Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food Funct 2019; 10:4220-4230. [DOI: 10.1039/c8fo02511h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sea-buckthorn and flaxseed residues are high-value materials with potential application in bread-baking.
Collapse
|
45
|
Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chem 2019; 272:1-11. [DOI: 10.1016/j.foodchem.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
|
46
|
Ma X, Yang W, Laaksonen O, Nylander M, Kallio H, Yang B. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9871-9879. [PMID: 29035528 DOI: 10.1021/acs.jafc.7b04156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sensory profile, flavonols, proanthocyanidins, sugars, and organic acids were investigated in purees of six sea buckthorn (Hippophaë rhamnoides) cultivars. The sensory profiles of the purees were dominated by intense sourness followed by astringency and bitterness due to the high content of malic acid. Malic acid and isorhamnetin glycosides, especially isorhamnetin-3-O-sophoroside-7-O-rhamnoside, had close association with the astringent attributes in the different purees, whereas some of the known astringent compounds such as proanthocyanidin dimers and trimers or quercetin glycosides, had less impact. Moreover, the ratios between contents of acids and phenolic compounds were more important predictors of bitterness than the individual variables alone. Astringency and bitterness are important sensory factors for the consumer acceptance of sea buckthorn products. The current study provides new knowledge on the correlations between sensory properties and composition and supports industrial utilization of the sea buckthorn berries.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Merja Nylander
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
- Department of Food Science and Engineering, Jinan University , 510632 Guangzhou, China
| |
Collapse
|
47
|
Terpou A, Gialleli AI, Bosnea L, Kanellaki M, Koutinas AA, Castro GR. Novel cheese production by incorporation of sea buckthorn berries ( Hippophae rhamnoides L.) supported probiotic cells. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem 2017; 221:997-1003. [DOI: 10.1016/j.foodchem.2016.11.063] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 11/29/2022]
|
49
|
Shimoda H, Takeda S, Shimizu N, Hirano M, Hitoe S. Suppressive effect of triterpenoids and a flavonol glycoside in seaberry extract on carbacol-induced contraction of bladder smooth muscle and TGF-β-induced contraction of collagen gel containing bladder smooth muscle cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Tian Y, Liimatainen J, Alanne AL, Lindstedt A, Liu P, Sinkkonen J, Kallio H, Yang B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 2017; 220:266-281. [DOI: 10.1016/j.foodchem.2016.09.145] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
|