1
|
Xu Q, Wang D, Lv X, Chen H, Wei F. Comprehensive profiling and evaluation of free/conjugated Phytosterols in crops using chemical derivatization coupled with UHPLC-ESI-QTOF-MS/MS. Food Chem 2025; 463:141316. [PMID: 39316913 DOI: 10.1016/j.foodchem.2024.141316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Phytosterols are naturally existed in crops but their detection is constrained by sensitivity and accuracy due to the inefficient analytical approaches. This study hypothesizes that an untargeted analytical method combining chemical derivatization with ultrahigh performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry can identify the various composition and contents of phytosterols in different crops. The results showed that chemical derivatization significantly enhanced intensity of phytosterols compared with non-derivatized samples. Using precursor ion scanning (PIS) of m/z 252.0690, dansyl chloride-labeled phytosterols were identified, demonstrating that rapeseeds had the highest content of total phytosterol (3981.2 ± 95.3 mg/kg), followed by sunflower seeds, flaxseeds, corn and rice, respectively. Principal component analysis revealed significant variations in phytosterol distribution among 15 crop samples, suggesting the applicability of phytosterol profile as a marker for phytosterols-contained crops. Hence, the proposed analytic approach proves high efficiency and accuracy in determining phytosterols and advances the study for phytosterol-enriched crops.
Collapse
Affiliation(s)
- Qiuhui Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
2
|
Zacometti C, Lante A, Cisneros M, Massaro A, Mihaylova D, Chalova V, Krastanov A, Kalaydzhiev H, Riuzzi G, Tata A, Segato S. Rapid Assessment of Metabolomic Fingerprinting of Recycled Sunflower By-Products via DART-HRMS. Molecules 2024; 29:4092. [PMID: 39274940 PMCID: PMC11397051 DOI: 10.3390/molecules29174092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
To comply with a more circular and environmentally friendly European common agricultural policy, while also valorising sunflower by-products, an ultrasound assisted extraction (UAE) was tested to optimise ethanol-wash solutes (EWS). Furthermore, the capabilities of DART-HRMS as a rapid and cost-effective tool for determining the biochemical changes after valorisation of these defatted sunflower EWS were investigated. Three batches of EWS were doubly processed into optimised EWS (OEWS) samples, which were analysed via DART-HRMS. Then, the metabolic profiles were submitted to a univariate analysis followed by a partial least square discriminant analysis (PLS-DA) allowing the identification of the 15 most informative ions. The assessment of the metabolomic fingerprinting characterising EWS and OEWS resulted in an accurate and well-defined spatial clusterization based on the retrieved pool of informative ions. The outcomes highlighted a significantly higher relative abundance of phenolipid hydroxycinnamoyl-glyceric acid and a lower incidence of free fatty acids and diglycerides due to the ultrasound treatment. These resulting biochemical changes might turn OEWS into a natural antioxidant supplement useful for controlling lipid oxidation and to prolong the shelf-life of foods and feeds. A standardised processing leading to a selective concentration of the desirable bioactive compounds is also advisable.
Collapse
Affiliation(s)
- Carmela Zacometti
- Istituto Zooprofilattico Sperimentale delle Venezie, Experimental Chemistry Laboratory, Viale Fiume, 78, 36100 Vicenza, Italy
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DANAE, Padova University, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Miluska Cisneros
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DANAE, Padova University, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Experimental Chemistry Laboratory, Viale Fiume, 78, 36100 Vicenza, Italy
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Vesela Chalova
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Hristo Kalaydzhiev
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Giorgia Riuzzi
- Department of Animal Medicine, Production and Health, Padova University, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale delle Venezie, Experimental Chemistry Laboratory, Viale Fiume, 78, 36100 Vicenza, Italy
| | - Severino Segato
- Department of Animal Medicine, Production and Health, Padova University, Viale dell'Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
3
|
Wang Y. Recent advances in the application of direct analysis in real time-mass spectrometry (DART-MS) in food analysis. Food Res Int 2024; 188:114488. [PMID: 38823841 DOI: 10.1016/j.foodres.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Direct analysis in real time-mass spectrometry (DART-MS) has evolved as an effective analytical technique for the rapid and accurate analysis of food samples. The current advancements of DART-MS in food analysis are described in this paper. We discussed the DART principles, which include devices, ionization mechanisms, and parameter settings. Numerous applications of DART-MS in the fields of food and food products analysis published during 2018-2023 were reviewed, including contamination detection, food authentication and traceability, and specific analyte analysis in the food matrix. Furthermore, the challenges and limitations of DART-MS, such as matrix effect, isobaric component analysis, cost considerations and accessibility, and compound selectivity and identification, were discussed as well.
Collapse
Affiliation(s)
- Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
4
|
Teng YC, Gielen MC, de Gruijter NM, Ciurtin C, Rosser EC, Karu K. Phytosterols in human serum as measured using a liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol 2024; 241:106519. [PMID: 38614432 DOI: 10.1016/j.jsbmb.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Phytosterols are lipophilic compounds found in plants with structural similarity to mammalian cholesterol. They cannot be endogenously produced by mammals and therefore always originate from diet. There has been increased interest in dietary phytosterols over the last few decades due to their association with a variety of beneficial health effects including low-density lipoprotein cholesterol lowering, anti-inflammatory and anti-cancerous effects. They are proposed as potential moderators for diseases associated with the central nervous system where cholesterol homeostasis is found to be imperative (multiple sclerosis, dementia, etc.) due to their ability to reach the brain. Here we utilised an enzyme-assisted derivatisation for sterol analysis (EADSA) in combination with a liquid chromatography tandem mass spectrometry (LC-MSn) to characterise phytosterol content in human serum. As little as 100 fg of plant sterol was injected on a reversed phase LC column. The method allows semi-quantitative measurements of phytosterols and their derivatives simultaneously with measurement of cholesterol metabolites. The identification of phytosterols in human serum was based on comparison of their LC retention times and MS2, MS3 spectra with a library of authentic standards. Free campesterol serum concentration was in the range from 0.30-4.10 µg/mL, β-sitosterol 0.16-3.37 µg/mL and fucosterol was at lowest concentration range from 0.05-0.38 µg/mL in ten individuals. This analytical methodology could be applied to the analysis of other biological fluids and tissues.
Collapse
Affiliation(s)
- Yu Chun Teng
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Marie Claire Gielen
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Nina M de Gruijter
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom; Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Mangraviti D, Cafarella C, Rigano F, Dugo P, Mondello L. Direct analysis in real time of high-quality extra virgin olive oils for the rapid and automatic identification of origin trademark. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7643-7652. [PMID: 37421605 DOI: 10.1002/jsfa.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Following our previous research on the differentiation of Italian extra virgin olive oils (EVOOs) by rapid evaporative ionization mass spectrometry coupled to a tandem high resolution mass analyser, the present study deals with the evaluation of another direct mass spectrometry (direct-MS) approach for the rapid and automatic discrimination of EVOOs. In particular, direct analysis in real time (DART-MS) was explored as an ambient MS (AMS) source for the building of a top-quality Italian EVOOs database and fast identification of unknown samples. A single quadrupole detector (QDa) was coupled with DART, taking advantage of a cost-saving, user-friendly and less sophisticated instrumental setup. Particularly, quickstrip cards, located on a moving rail holder, were employed, allowing for the direct analysis of 12 EVOO spots in a total analysis time of 6 min. The aim was to develop a reliable statistical model by applying principal component and linear discriminant analyses to clusterize and classify EVOOs according to geographical origin and cultivar, as main factors determining their nutritional and sensory profiles. RESULTS Satisfactory results were achieved in terms of identification reliability of unknown EVOOs, as well as false positive risk, thus confirming that the use of AMS combined with chemometrics is a powerful tool against fraudulent activities, without the need for mass accuracy data, which would increase the analysis cost. CONCLUSION A DART ionization source with a compact and reliable QDa MS analyser allowed for rapid fingerprinting analysis. Furthermore, MS spectra provided quali-quantitative information successfully related to EVOO differentiation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Cinzia Cafarella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
6
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
He WS, Sun Y, Li Z, Yang H, Li J, Wang Q, Tan C, Zou B. Enhanced antioxidant capacity of lipoic acid in different food systems through lipase-mediated esterification with phytosterols. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7115-7125. [PMID: 35704042 DOI: 10.1002/jsfa.12073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND α-Lipoic acid has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. This study was undertaken (i) to develop a novel and efficient enzymatic synthesis of lipophilic lipoic acid esters using Candida sp. 99-125 lipase as a catalyst; and (ii) to systematically evaluate their antioxidant potential against bulk oil, oil-in-water emulsion (O/W) and cooked ground meat. RESULTS Lipophilic lipoic acid esters were successfully and efficiently synthesized using phytosterols as acyl receptor in the presence of Candida sp. 99-125 lipase. The product was identified as phytosterol lipoate by mass spectrometry, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The maximum conversion of phytosterol lipoate surpassed 90% within 12 h and its final yield exceeded 81%. Interestingly, the oil solubility of lipoic acid was increased at least 25-fold and other physicochemical properties were significantly improved. Most importantly, phytosterol lipoate exhibited higher antioxidant activity than lipoic acid in bulk oil, O/W emulsions and cooked ground meat. CONCLUSION The antioxidant capacity of lipoic acid can be significantly enhanced by esterification with phytosterols. Therefore, phytosterol lipoate could be further developed as a new antioxidant for use in oil- and fat-based foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuying Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhishuo Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Tan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Cetraro N, Yew JY. In situ lipid profiling of insect pheromone glands by direct analysis in real time mass spectrometry. Analyst 2022; 147:3276-3284. [PMID: 35713158 PMCID: PMC9390970 DOI: 10.1039/d2an00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of biological tissues by Direct Analysis in Real Time mass spectrometry produces semi-quantitative lipid profiles that can be used to distinguish insect species and identify abnormal phenotypes in genetic screens.
Collapse
Affiliation(s)
- Nicolas Cetraro
- Pacific Biosciences Research Center, School of Environment and Ocean Science Technology, University of Hawai‘i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA
- Molecular Bioscience and Bio-Engineering, College of Tropical Agriculture and Human Resources, University of Hawai‘i at Mānoa, 1955 East West Road, Honolulu, HI 96822
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, School of Environment and Ocean Science Technology, University of Hawai‘i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA
- Molecular Bioscience and Bio-Engineering, College of Tropical Agriculture and Human Resources, University of Hawai‘i at Mānoa, 1955 East West Road, Honolulu, HI 96822
| |
Collapse
|
9
|
Goriainov SV, Esparza CA, Borisova AR, Orlova SV, Vandyshev VV, Hajjar F, Platonov EA, Chromchenkova EP, Novikov OO, Borisov RS, Kalabin GA. Phytochemical Study of the Composition of the Unsaponifiable Fraction of Various Vegetable Oils by Gas Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821140045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Massaro A, Stella R, Negro A, Bragolusi M, Miano B, Arcangeli G, Biancotto G, Piro R, Tata A. New strategies for the differentiation of fresh and frozen/thawed fish: A rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Massaro A, Negro A, Bragolusi M, Miano B, Tata A, Suman M, Piro R. Oregano authentication by mid-level data fusion of chemical fingerprint signatures acquired by ambient mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Zhang Y, Han Y, Hu W, Pan Q, Liu Z, Ling G, Shi Q, Weng R. Diacylglycerols ions as novel marker indicators for the classification of edible oils using ultrahigh resolution mass spectrometry. Food Res Int 2021; 145:110422. [PMID: 34112424 DOI: 10.1016/j.foodres.2021.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Diacylglycerols (DAGs) ions, instead of triacylglycerols (TAGs) ions, were established as marker indicators for an improved classification of edible oils using ultrahigh resolution mass spectrometry (UHRMS). DAGs ions can be used not only to identify triacylglycerols (TAGs) and their embedded fatty acids (FAs), but also to distinguish positional isomers of TAGs. In this work, DAGs ions were determined in edible oils by direct infusion atmospheric pressure chemical ionization-ultrahigh resolution mass spectrometry (APCI-UHRMS), where the ultrahigh resolving power up to 500,000 FWHM (full width at half maximum) can provide accurate molecular compositions and detailed fingerprints MS spectra in a minute. A total of 146 samples belonging to 22 species of plant oils and animal fats, were characterized. Chemometric analyses were performed using principal component analysis, partial least square-discriminant analysis and orthogonal partial least squares-discriminant analysis. DAGs ions were proved to be better than TAGs ions as marker indicators in the chemometric analyses. An overall correct rate of 93.40% was achieved for the classification of tested samples. In addition, blend oils and gutter oils were also characterized by this developed method.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Guannan Ling
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Zhang X, Ren X, Chingin K. Applications of direct analysis in real time mass spectrometry in food analysis: A review. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9013. [PMID: 33277776 DOI: 10.1002/rcm.9013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Direct analysis in real time (DART) combined with mass spectrometry (MS) detection has become one of the most broadly used analytical approaches for the direct molecular characterization of food samples with regard to their chemical quality, safety, origin, and authentication. The major advantages of DART-MS for food analysis include high chemical sensitivity and specificity, high speed and throughput of analysis, simplicity, and the obviation of tedious sample preparation and solvents. METHODS The recent applications of DART coupled with different mass analyzers, including quadrupole, ion trap, Orbitrap, and time of flight, are discussed. In addition, sample pretreatment methods that have been coupled with DART-MS are discussed. RESULTS We summarize the applications of DART-MS in food science and industry published in the period from 2005 to this date. The applications and analytical characteristics are systematically categorized across the three major types of foods: solid foods, liquid foods, and viscous foods. CONCLUSIONS DART-MS has proved its high suitability for the direct, rapid, and high-throughput molecular analysis of very different food samples with minimal or no sample preparation, thus offering a high-speed alternative to liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) approaches that are traditionally employed in food analysis.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Xiang Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| |
Collapse
|
14
|
Ebadnezhad H, Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M, Torbati M. Combining a liquid-liquid extraction with successive air assisted liquid-liquid microextraction for the analysis of phytosterols present in animal based butter and oil samples. J Chromatogr A 2021; 1642:462025. [PMID: 33721815 DOI: 10.1016/j.chroma.2021.462025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
In this study, an elevated temperature liquid-liquid extraction combined method with successive air-assisted liquid-liquid microextraction has been proposed for the extraction of four phytosterols in cow milk butter and animal oil samples prior to gas chromatography-flame ionization detector. The method is started by combining a few grams of the melted butter or oil samples with ethanol. The mixture is vortexed and placed into a water-bath adjusted at 50 ⁰C. After a few minutes, the mixture is allowed to cool at room temperature. In this step, the butter or oil is become stiff and ethanol is collected on top of the sample. The separated ethanol phase is collected and mixed with deionized water to obtain a homogenous solution. After that, a few microliters of ethyl methyl ammonium chloride: pivalic acid deep eutectic solvent is added into the solution and the mixture was pulled into a glass test tube and pushed back to the tube for five times. After centrifugation, whole of the collected phase at the bottom of tube was withdrawn and transferred into a microtube and contacted with sodium hydroxide solution. The mixture is withdrawn and released to the tube 2 times to remove the extracted fatty acids. The validation data verified that high enrichment factors (385-450) and extraction recoveries (77-90%), low limits of quantification (2.6-5.2 ng g-1) and detection (0.73-1.5 ng g-1), and satisfactory relative standard deviations (≤ 9.3%) can be obtained with this method. At last, the developed method was successfully used for the analysis of phytosterols in various butter and oil samples marketed in Tabriz, Iran.
Collapse
Affiliation(s)
- Hassan Ebadnezhad
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Mohebbi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass. Talanta 2021; 224:121793. [PMID: 33379022 DOI: 10.1016/j.talanta.2020.121793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
Abstract
Sterol analysis of complex matrices can be very laborious. To minimize the existing drawbacks, a new micro-method of sterols and squalene determination in cyanobacteria was developed and applied to monitor their production of Phormidium autumnale cultured heterotrophically. Sample extraction/saponification and GC analysis of the target compounds were optimized separately using Plackett-Burman design (PB) followed by a central composite rotational design (CCRD). The most influential variables were identified to maximize compound recovery. Chloroform presented the highest capability to extract all target compounds with a horizontal shaker table (HST) for homogenization in the saponification step. For the pretreatment, a small amount of chloroform was used for 90 min at 50 °C and 6 min for the saponification time. The sample introduction in the GC injector was studied by evaluating pressure and injector temperature. High response for sterols and squalene were obtained between 19 and 23 psi and at 310 °C of injection temperature. The new method was able to determine different sterol concentrations: 0.2-0.6 mg kg-1 of squalene, 5-18 mg kg-1 of stigmasterol, 6 mg kg-1 of cholesterol, and 3 mg kg-1 of β-sitosterol, showing high analytical performance and fulfilling all steps, thus proving to be a promising technique.
Collapse
|
16
|
Development of an ultrasonic and heat-assisted liquid–liquid extraction method combined with deep eutectic solvent-based dispersive liquid–liquid microextraction for the extraction of some phytosterols from cow milk butter samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02206-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Ebadnezhad H, Afshar Mogaddam MR, Mohebbi A, Farajzadeh MA, Nemati M, Torbati M. Combination of temperature‐assisted ternary phase homogenous liquid–liquid extraction with deep eutectic solvent–based dispersive liquid–liquid microextraction for the extraction of phytosterols from cow milk and cream samples. J Sep Sci 2021; 44:1482-1489. [DOI: 10.1002/jssc.202001012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Ebadnezhad
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohebbi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus Turkey
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
18
|
Han C, Zhou H, Wu W, Chen X, Li H, Li Y, Feng D. Development and Validation of a Method to Simultaneously Determine Multiple Sterols in Diversiform Food Substrates with UPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Deng J, Yang Y, Luo L, Xiao Y, Luan T. Lipid analysis and lipidomics investigation by ambient mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Martínez-Beamonte R, Sanclemente T, Surra JC, Osada J. Could squalene be an added value to use olive by-products? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:915-925. [PMID: 31670393 DOI: 10.1002/jsfa.10116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 05/21/2023]
Abstract
Squalene (SQ) is an intermediate hydrocarbon in the biosynthesis of phytosterols and terpenes in plants. It is widely used for applications such as skin moisturizers, vaccines, or in carriers for active lipophilic molecules. It has commonly been obtained from sharks, but restrictions on their use have created a need to find alternative sources. We present a review of studies concerning SQ in olive groves to characterize its content and to provide new aspects that may increase the circular economy of the olive tree. There is a large variation in SQ content in virgin olive oil due to cultivars and agronomic issues such as region, climate, types of soil, crop practices, and harvest date. Cultivars with the highest SQ content in their virgin olive oil were 'Nocellara de Belice', 'Drobnica', 'Souri', and 'Oblica'. An interaction between cultivar and aspects such as irrigation practices or agricultural season is frequently observed. Likewise, the production of high SQ content needs precise control of fruit maturation. Leaves represent an interesting source, if its extraction and yield compensate for the expenses of their disposal. Supercritical carbon dioxide extraction from olive oil deodorizer distillates offers an opportunity to obtain high-purity SQ from this derivative. Exploiting SQ obtained from olive groves for the pharmaceutical or cosmetic industries poses new challenges and opportunities to add value and recycle by-products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Sanclemente
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Ciencias de la Salud y del Deporte-Universidad de Zaragoza, Huesca, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
| | - Jesús Osada
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
22
|
Yew JY. Natural Product Discovery by Direct Analysis in Real Time Mass Spectrometry. Mass Spectrom (Tokyo) 2020; 8:S0081. [PMID: 33299731 PMCID: PMC7709883 DOI: 10.5702/massspectrometry.s0081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Direct analysis in real time mass spectrometry (DART MS) is one of the first ambient ionization methods to be introduced and commercialized. Analysis by DART MS requires minimal sample preparation, produces nearly instantaneous results, and provides detection over a broad range of compounds. These advantageous features are particularly well-suited for the inherent complexity of natural product analysis. This review highlights recent applications of DART MS for species identification by chemotaxonomy, chemical profiling, genetic screening, and chemical spatial analysis from plants, insects, microbes, and metabolites from living systems.
Collapse
Affiliation(s)
- Joanne Y. Yew
- Pacific Biosciences Research Center, University of
Hawai‘i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA
| |
Collapse
|
23
|
Vasiljevic T, Gómez-Ríos GA, Li F, Liang P, Pawliszyn J. High-throughput quantification of drugs of abuse in biofluids via 96-solid-phase microextraction-transmission mode and direct analysis in real time mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1423-1433. [PMID: 31063263 DOI: 10.1002/rcm.8477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE The workload of clinical laboratories has been steadily increasing over the last few years. High-throughput (HT) sample processing allows scientists to spend more time undertaking matters of critical thinking rather than laborious sample processing. Herein we introduce a HT 96-solid-phase microextraction (SPME) transmission mode (TM) system coupled to direct analysis in real time (DART) mass spectrometry (MS). METHODS Model compounds (opioids) were extracted from urine and plasma samples using a 96-SPME-TM device. A standard voltage and pressure (SVP) DART source was used for all experiments. Examination of SPME-TM performance was done using high-resolution mass spectrometry (HRMS) in full scan mode (100-500 m/z), whereas quantitation of opioids was performed using triple quadrupole MS in multiple reaction monitoring mode and by using a matrix-matched internal standard correction method. RESULTS Thirteen points (0.5 to 200 ng mL-1 ) were used to establish a calibration curve. Low limits of quantitation (LOQ) were obtained (0.5 to 25 ng mL-1 ) for matrices used. Acceptable accuracy (71.4-129.4%) and repeatability (1.1-24%) were obtained for validation levels tested (0.5, 30 and 90 ng mL-1 ). In less than 1.5 hours, 96 samples were extracted, desorbed and processed using the 96-SPME-TM system coupled to DART-MS. CONCLUSIONS A rapid HT method for detection of opioids in urine and plasma samples was developed. This study demonstrated that ambient ionization mass spectrometry coupled to robust sample preparation methods such as SPME-TM can rapidly and efficiently screen/quantify target analytes in a HT context.
Collapse
Affiliation(s)
- Tijana Vasiljevic
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Germán Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
- Restek Corporation, Bellefonte, Pennsylvania, 16823, USA
| | - Frederick Li
- Ionsense, Inc., Saugus, Massachusetts, 01906, USA
| | - Paul Liang
- Ionsense, Inc., Saugus, Massachusetts, 01906, USA
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
24
|
Gao Y, Wu S. Comprehensive analysis of the phospholipids and phytosterols in Schisandra chinensis oil by UPLC-Q/TOF- MSE. Chem Phys Lipids 2019; 221:15-23. [DOI: 10.1016/j.chemphyslip.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/26/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
|
25
|
Benham K, Fernández FM, Orlando TM. Sweep Jet Collection Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization for Lipid Analysis Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:647-658. [PMID: 30617859 DOI: 10.1007/s13361-018-2118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Laser-induced acoustic desorption coupled to microplasma-based atmospheric pressure photoionization (LIAD-APPI) using a nebulized sweep jet to aid in dopant introduction and ion transmission has been applied to the analysis of model, apolar lipid compounds. Specifically, several sterols, sterol esters, and triacylglycerols were detected using dopants such as anisole and toluene. Additionally, several triacylglycerols, sterols, carboxylic acids, and hopanoids were detected from complex mixtures of olive oil and Australian shale rock extract as a first demonstration of the applicability of LIAD-APPI on real-world samples. Detection limits using a sweep jet configuration for α-tocopherol and cholesterol were found to be 609 ± 61 and 292 ± 29 fmol, respectively. For sterol esters and triacylglycerols with a large number of double bonds in the fatty acid chain, LIAD-APPI was shown to yield greater molecular ion or [M+NH4]+ abundances than those with saturated fatty acid chains. Dopants such as anisole and toluene, with ionization potentials (IPs) of 8.2 and 8.8 eV, respectively, were tested. A greater degree of fragmentation with several of the more labile test compounds was observed using toluene. Overall, LIAD-APPI with a nebulized sweep jet requires minimal sample preparation and is a generally useful and sensitive analysis technique for low-polarity mixtures of relevance to biochemical assays and geochemical profiling. Graphical Abstract.
Collapse
Affiliation(s)
- Kevin Benham
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Thomas M Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Effect of chemical refining on the levels of bioactive components and hazardous substances in soybean oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00058-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Han J, Wang B, Bender M, Seehafer K, Bunz UHF. Poly(p-phenyleneethynylene)-based tongues discriminate fruit juices. Analyst 2018; 142:537-543. [PMID: 28112310 DOI: 10.1039/c6an02387h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe a simple optoelectronic tongue, consisting of a positively charged, fluorescent poly(para-phenyleneethynylene), P2, that reacts to fruit juices, when employed at three different pH-values (pH 3, 7, 13). This minimal tongue identifies and discriminates 14 different commercially available apple juices, 6 different grape juices and 5 different black currant juices from each other. A similar, negatively charged fluorescent polymer, P1, also achieved discrimination, but the analyte concentration had to be increased by a factor of 50. A mixture of black currant juice and red grape juice is identified as red grape juice, for specific combinations of grape and black currant juices. A mixture of red and green grape juice passes as red grape juice in our sensing system when it contains more than 70% of red grape juice. The data were obtained by fluorescence quenching of the conjugated polymers and processed by linear discriminant analysis of the collected data.
Collapse
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany and CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
29
|
Elevated Urinary Methylmalonic Acid/creatinine ratio and Serum Sterol levels in Patients with Acute Ischemic Stroke. REV ROMANA MED LAB 2018. [DOI: 10.2478/rrlm-2018-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Introduction: Sitosterolemia, defined as phytosterolemia, is a rare autosomal recessive disease characterized by elevated blood sterol levels. Our aim was to investigate serum plant sterols, methylmalonic acid, vitamin B12, oxidized-LDL and homocysteine levels in ischemic and hemorrhagic stroke patients and healthy subjects. Material and Methods: 50 healthy subjects (without a family history of coronary artery disease) and 89 patients hospitalized in the Selcuk University neurology clinic or intensive care unit with a diagnosis of stroke were included in this study. Serum plant sterols, homocysteine and methylmalonic acid, oxidized-LDL, total cholesterol, triglycerides, HDL-Cholesterol and vitamin B12 levels were analyzed by gas chromatography-mass spectrometry, liquid-chromatography tandem mass spectrometry, commercially available ELISA kit, spectrophotometry and chemiluminescence methods, respectively. Results: Urinary methylmalonic acid/creatinine ratio (p< 0.05), serum β-sitosterol levels and β-sitosterol/ cholesterol ratio were significantly higher (p <0.01) in patients compared to the control group. There was a significant positive correlation between the serum OxLDL- methylmalonic acid, serum homocysteine- urinary methylmalonic acid /creatinine ratio, serum methylmalonic acid - Urinary methylmalonic acid (p<0.05), serum homocysteine- urinary methylmalonic acid, urinary methylmalonic acid-methylmalonic acid/creatinine ratio, serum methylmalonic acid- methylmalonic acid/creatinine ratio, serum beta-sitosterol- beta-sitosterol /cholesterol, total cholesterol-HDL, total cholesterol-LDL (p <0.01) levels and negative correlation between vitamin B12- serum methylmalonic acid (p<0.05), cholesterol-stigmasterol/cholesterol, LDL- stigmasterol/cholesterol (p <0.01) levels in the patient group. Conclusion: Our findings presented that the serum sitosterol levels were significantly higher in stroke patients compared to controls.
Collapse
|
30
|
Gachumi G, El-Aneed A. Mass Spectrometric Approaches for the Analysis of Phytosterols in Biological Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10141-10156. [PMID: 29058915 DOI: 10.1021/acs.jafc.7b03785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant sterols (phytosterols) are important structural components of plant cellular membranes, and they play a major role during development and metabolism. They have health-associated benefits, especially in lowering blood cholesterol levels. Because of their many health claims, there is a growing interest in their analysis. Although various analytical strategies have been employed in analyzing phytosterols, chromatography linked to mass spectrometry (MS) is superior due to its sensitivity. Furthermore, specificity and selectivity are enhanced by utilizing tandem mass spectrometry (MS/MS). This article reviews the various mass spectrometric strategies used for the analysis of phytosterols. It highlights the applications and limitations associated with each MS strategy in various sample matrixes such as plant, human, animal, food, and dietary supplements. GC-MS was historically the method of choice for analysis; however, the derivatization step rendered it tedious and time-consuming. On the other hand, liquid chromatography coupled to MS (LC-MS) simplifies the analysis. Many ionization techniques have been used, namely, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). APCI showed superiority in terms of ion intensity and consistency in ion formation, primarily forming [M + H - H2O]+ ions rather than [M + H]+. In addition, matrix assisted laser desorption ionization (MALDI) as well as ambient mass spectrometry such as direct analysis in real time (DART) have also been evaluated.
Collapse
Affiliation(s)
- George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan, Canada , S7N 5E5
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan, Canada , S7N 5E5
| |
Collapse
|
31
|
García-González A, Velasco J, Velasco L, Ruiz-Méndez MV. An Analytical Simplification for Faster Determination of Fatty Acid Composition and Phytosterols in Seed Oils. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Shimada H, Maeno K, Kinoshita K, Shida Y. Rapid Analysis of Ingredients in Cream Using Ultrasonic Mist-Direct Analysis in Real-Time Time-of-Flight Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2393-2400. [PMID: 28699062 DOI: 10.1007/s13361-017-1746-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
A novel method for the simultaneous detection of ingredients in pharmaceutical applications such as creams and lotions was developed. An ultrasonic atomizer has been used to produce a mist containing ingredients. The analyte molecules in the mist can be ionized by using direct analysis in real time (DART) at lower temperature than traditionally used, and we thus solved the problem of normal DART-MS measurement using a high-temperature gas. Thereby, molecular-related ions of heat-unstable components and nonvolatile components became detectable. The deprotonated molecular ion of glycyrrhizic acid (m/z 821), which is unstable at high temperatures, was detected without pyrolysis by ultrasonic mist-DART-MS using unheated helium gas, although it was not detected by normal DART-MS using heated helium gas. The cationized molecular ions of derivatives of polyethylene glycol fatty acid monoesters, which are nonvolatile compounds, were also detected as m/z peaks observed from 800 to 2300. Although the protonated molecular ion of tocopherol acetate was not detected in ionization by ultrasonic mist, it was detected by ultrasonic mist-DART-MS even in the emulsion. It was not necessary to dissolve a sample completely to detect its ions. This method enabled us to obtain the composition of pharmaceutical applications simply and rapidly. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Haruo Shimada
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tsuzuki, Yokohama, 224-8558, Japan.
| | - Katsuyuki Maeno
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tsuzuki, Yokohama, 224-8558, Japan
| | | | - Yasuo Shida
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan
| |
Collapse
|
33
|
Corrêa RC, Peralta RM, Bracht A, Ferreira IC. The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Abstract
Since the introduction of desorption electrospray ionization (DESI) mass spectrometry (MS), ambient MS methods have seen increased use in a variety of fields from health to food science. Increasing its popularity in metabolomics, ambient MS offers limited sample preparation, rapid and direct analysis of liquids, solids, and gases, in situ and in vivo analysis, and imaging. The metabolome consists of a constantly changing collection of small (<1.5 kDa) molecules. These include endogenous molecules that are part of primary metabolism pathways, secondary metabolites with specific functions such as signaling, chemicals incorporated in the diet or resulting from environmental exposures, and metabolites associated with the microbiome. Characterization of the responsive changes of this molecule cohort is the principal goal of any metabolomics study. With adjustments to experimental parameters, metabolites with a range of chemical and physical properties can be selectively desorbed and ionized and subsequently analyzed with increased speed and sensitivity. This review covers the broad applications of a variety of ambient MS techniques in four primary fields in which metabolomics is commonly employed.
Collapse
Affiliation(s)
- Chaevien S. Clendinen
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| |
Collapse
|
35
|
Yin J, Zhao Z, Zhan X, Duan Y. Exploration and performance evaluation of microwave-induced plasma with different discharge gases for ambient desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:919-927. [PMID: 28401996 DOI: 10.1002/rcm.7861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Microwave-induced plasma (MIP) with different discharge gases of argon or helium provides significant plasma-based ambient desorption/ionization sources, which have potential applicability in direct analysis of complex samples without any sample pre-treatment. In this study, experiments were conducted to better understand microwave-induced plasma desorption/ionization (MIPDI) sources and the corresponding ionization mechanisms. METHODS Emission spectra of microwave-induced argon (MIP-Ar) and helium (MIP-He) plasmas were obtained from the plasma tail flame of a MIP source. Compounds including L-phenylalanine, L-serine, L-valine, urea, 4-acetaminophen, gallic acid and L-ascorbic acid were analyzed using both sources. Polyethylene glycol 400 (PEG400) oligomers were detected by MIP-Ar and MIP-He mass spectrometry at different microwave powers. Mass spectra of higher molecular weight PEGs (including PEG800, PEG1000 and PEG2000) were also acquired using both sources. RESULTS In the emission spectra, N2 , H-I and O-I species were observed by MIP-Ar/He. In addition, SiO2 , Na-I, Si-I and Si-II species were generated by MIP-He. In the mass spectra of compounds, [M+H]+ , [2M+H]+ , [M+O+H]+ , [M+2O-H]+ and fragment ions were observed. In the mass spectra of PEG400 obtained by MIP-Ar/He at different microwave powers, higher molecular weight oligomers could only be observed with higher microwave power. PEGs with molecular weights as high as 1000 Da were also successfully analyzed by MIPDI. CONCLUSIONS According to the different natures of the samples, either MIP-Ar or MIP-He can be chosen as a working ion source for mass spectrometry. The MIPDI source is potentially applicable to the analysis of compounds with high molecular weights, especially polymers with high degree of polymerization (such as PEG2000), which is a challenging issue for the traditional ambient ionization sources. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinwei Yin
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhongjun Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, 610064, P.R. China
| | - Xuefang Zhan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|