1
|
Arancibia-Díaz A, Astudillo-Castro C, Altamirano C, Vergara-Castro M, Soto-Maldonado C, Córdova A, Fuentes P, Zúñiga-Hansen ME, Bravo J. Enhanced antioxidant capacity and yield of release of chlorogenic acids and derivates by solid-state fermentation of spent coffee ground under controlled conditions of aeration and moisturizing. Food Chem 2025; 479:143744. [PMID: 40068539 DOI: 10.1016/j.foodchem.2025.143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 04/09/2025]
Abstract
This study proposed investigates the role of forced aeration flow and humidification pulses during solid-state fermentation (SSF) of spent coffee grounds (SCG) in optimizing fungal growth, metabolic activity, and bioactive compound release. Five fermentation conditions with aeration flows (0.5-1.5 L/min) and moisturizing pulses (30-90 mL/d) were evaluated. Chlorogenic acid (CGA), caffeic acid (CA), and quinic acid (QA) were quantified via HPLC, while antioxidant activities (AA) were assessed using ORAC, DPPH, and FRAP methods. The highest CGA yield (76.1 ± 5.2 mg/g SCGinitial) occurred between days 8-13 under 0.5LA-30LM conditions, while QA peaked at 89.5 ± 4.8 mg/g SCGinitial during days 27-30 under 0.5LA-90HM. AA reached 79,000 μmol TEAC/100 g SCGinitial at late fermentation stages. Low aeration and controlled moisture enhanced fungal colonization, enzymatic hydrolysis, and bioactive compound recovery. These findings evidence the potential of SSF for SCG valorization and offer a framework for process optimization in industrial applications.
Collapse
Affiliation(s)
- Alejandra Arancibia-Díaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Carolina Astudillo-Castro
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Mauricio Vergara-Castro
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Carmen Soto-Maldonado
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Andrés Córdova
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Javier Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| |
Collapse
|
2
|
Martínez-Inda B, Jiménez-Moreno N, Esparza I, Ancín-Azpilicueta C. Coffee and Cocoa By-Products as Valuable Sources of Bioactive Compounds: The Influence of Ethanol on Extraction. Antioxidants (Basel) 2025; 14:42. [PMID: 39857376 PMCID: PMC11762683 DOI: 10.3390/antiox14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Cocoa and coffee are two of the world's most important crops. Therefore, their by-products are generated in large quantities. This work proposes a simple method for the valorization of these residues by obtaining phenolic compounds and melanoidins by solid-liquid extraction using different hydroalcoholic solutions as extracting solvents (0, 25, 50, 75, 100% ethanol). Extracts of both by-products presented the highest antioxidant capacity and total phenolic and melanoidin content when using 50-75% ethanol in the solvent. Among all the extracts, those obtained from spent coffee grounds at 75% ethanol showed the highest concentrations of total phenolic compounds (13.5 ± 1.3 mmol gallic acid equivalents/g dry matter) and melanoidins (244.4 ± 20.1 mg/g dry matter). Moreover, the sun protection factor values of the coffee extracts obtained with 50 and 75% of ethanol as extraction solvent (7.8 ± 0.9 and 8.5 ± 0.7, respectively) showed their potential for use in the cosmetic sector. The most important phenolic compounds identified in the coffee by-products extracts were phenolic acids, and most of them were found in higher concentration in extracts obtained with lower percentages of ethanol (0-25%). Protocatechuic acid was the most abundant phenolic in cocoa extracts, with concentrations ranging from 18.49 ± 2.29 to 235.35 ± 5.55 µg/g dry matter, followed by 4-hydroxybenzoic acid, (-)-epicatechin and (+)-catechin. Esculetin was found in both coffee and cocoa extracts, which had not been reported to date in these residues. In summary, the use of 75% ethanol as an extraction solvent seems a good strategy to obtain extracts rich in phenolic compounds from food by-products rich in melanoidins, such as coffee and cocoa by-products. The high antioxidant potential of these extracts makes them of great interest for the cosmetic and nutraceutical industries.
Collapse
Affiliation(s)
- Blanca Martínez-Inda
- Analytical Chemistry Group, Science Department, Public University of Navarre, 31006 Pamplona, Spain; (B.M.-I.); (N.J.-M.); (I.E.)
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Analytical Chemistry Group, Science Department, Public University of Navarre, 31006 Pamplona, Spain; (B.M.-I.); (N.J.-M.); (I.E.)
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Irene Esparza
- Analytical Chemistry Group, Science Department, Public University of Navarre, 31006 Pamplona, Spain; (B.M.-I.); (N.J.-M.); (I.E.)
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Analytical Chemistry Group, Science Department, Public University of Navarre, 31006 Pamplona, Spain; (B.M.-I.); (N.J.-M.); (I.E.)
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
3
|
Xiao L, Hou J, Chen P, Tan X, Qin X, Nie J, Zhu H, Zhong S. Isolation, characterization, and activity of the polysaccharides in Bulbophyllum kwangtumgense Schltr. Int J Biol Macromol 2024; 283:137382. [PMID: 39557278 DOI: 10.1016/j.ijbiomac.2024.137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
A microwave-assisted method was used to extract the polysaccharide from Bulbophyllumkwangtumgense Schltr, and the optimum extraction conditions were determined by orthogonal experiments. The purified polysaccharide component BKP-1 had an obvious polysaccharide characteristic structure on the infrared spectrum and was mainly composed of xylose and glucuronic acid at a ratio of 0.568:0.432. Its molecular weight distribution (polydispersity index was 0.58) was uniform with 1.92× 106 Da. The main structural skeleton of BKP-1 was →4)-β-D-Xylp-(1 → [4)-β-D-Xylp-(1]4 → 4)-α-D-GlcAp-(1 → [4)-α-D-GlcAp-(1]2→. BKP-1 could clear certain free radicals, among which the hydroxyl free radical scavenging ability was the best, with a clearance rate of 61.46 %. Furthermore, BKP-1 significantly modulated the secretion of both pro-inflammatory and anti-inflammatory cytokines at a concentration of 125 μg/mL. Notably, the mechanism BKP-1 exhibiting inhibitory effects were related to regulating of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liuyue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaojiao Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- GuangXi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
4
|
Jiang B, Liu J, Zhu Z, Fu L, Chang Y, Wang Y, Xue C. Establishment of a workflow for high-throughput identification of anti-inflammatory peptides from sea cucumbers. Food Res Int 2024; 197:115171. [PMID: 39593382 DOI: 10.1016/j.foodres.2024.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Developing an effective workflow for screening anti-inflammatory peptides is crucial for discovering novel food-derived anti-inflammatory peptides and optimizing the screening and identification process of bioactive peptides. Virtual screening identified three major yolk proteins as target precursor proteins for anti-inflammatory peptides in sea cucumbers. A portfolio of 170 peptides was identified from hydrolysates after 9 h of alcalase treatment by combining antioxidant activity determination and peptidomics analysis. Among these, 12 high-confidence anti-inflammatory peptides were identified through virtual screening. Three of these peptides were shown to effectively inhibit the production of NO and the release of pro-inflammatory cytokines in RAW264.7 cells. Molecular docking demonstrated that these three peptides exerted their anti-inflammatory effects primarily by binding to the active sites of cyclooxygenase-2 and inducible nitric oxide synthase through hydrophobic interactions. This study provided a reference workflow for screening anti-inflammatory peptides, facilitating the discovery of novel anti-inflammatory peptides and the high-value utilization of sea cucumber cooking liquid.
Collapse
Affiliation(s)
- Bingxue Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinqiu Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Linlan Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yanchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
5
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants (Basel) 2023; 13:29. [PMID: 38247454 PMCID: PMC10812495 DOI: 10.3390/antiox13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.
Collapse
Affiliation(s)
- Brian G. Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Frank Wilkinson
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| | - Niny Z. Rao
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| |
Collapse
|
7
|
Montoya-Hernández D, Dufoo-Hurtado E, Cruz-Hernández A, Campos-Vega R. Spent coffee grounds and its antioxidant dietary fiber promote different colonic microbiome signatures: Benefits for subjects with chronodisruption. Microb Pathog 2023; 185:106431. [PMID: 37984489 DOI: 10.1016/j.micpath.2023.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Chronodisruption, commonly displayed by people living with obesity (PLO), is linked to colonic microbiota dysbiosis, and may increase the risk of many chronic non-communicable diseases, whereas dietary interventions-called chrononutrition may mitigate it. We evaluated the in vitro effects of spent coffee grounds (SCG), and their antioxidant dietary fiber (SCG-DF) on the colonic microbiota of an obese donor displaying dysbiosis and chronodisruption. Basal microbiota pattern was associated with an increased risk of non-communicable chronic diseases. Both samples decrease species richness and increase microbiota diversity (p < 0.05; Chao and Shannon index, respectively), positively enhancing Firmicutes/Bacteroidetes index (SCG, p < 0.04; SCG-DF, p < 0.02). SCG and SCG-DF modulated the microbiota, but SCG-DF induced greater changes, significantly increasing. p_Actonobacterias (SCG p < 0.04; SCG-DF, p < 0.02), and reducing g_Alistipes; s_putredinis, g_Prevotella;s_copri. The highest increase was displayed by p_Proteobacteria (f_Desulfovibrionaceae and f_Alcanigenaceae, p < 0.05), while g_Haemophilus; s_parainfluenzae decreased (p < 0.05). However, neither SCG nor SCG-DF modulated g_Alistipes (evening-type colonic microbial marker) beneficially. SCG and SCG-DF reduced (p < 0.05) g_Lachnospira, a microbial evening-type marker, among other microbial populations, of an obese donor displaying chronodisruption and dysbiosis. SCG and SCG-DF displayed a prebiotic effect with the potential to mitigate diseases linked to chronodisruption.
Collapse
Affiliation(s)
- Diego Montoya-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Andrés Cruz-Hernández
- Escuela de Agronomía, Universidad De La Salle Bajío Campus Campestre, Av. Universidad 602, Col. Lomas del Campestre, León, 37150, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
8
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
9
|
Li M, Lu P, Wu H, de Souza TSP, Suleria HAR. In vitro digestion and colonic fermentation of phenolic compounds and their bioaccessibility from raw and roasted nut kernels. Food Funct 2023; 14:2727-2739. [PMID: 36852611 DOI: 10.1039/d2fo03392e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Roasting and digestion affect nut kernel phenolic compounds' bioaccessibility and bioactivity. In this study, three types of raw and commercially roasted nut kernels (almonds, cashews, and walnuts) were treated by in vitro digestion and colonic fermentation. The objective was to analyze the effect of roasting on their phenolic content, associated antioxidant potential, bioaccessibility, and short chain fatty acid (SCFA) synthesis altering. Among these, raw and roasted walnuts performed best, with significantly higher total phenolic content (TPC), total flavonoid content (TFC), free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay) values, and ferric reducing antioxidant power (FRAP) values after completing gastrointestinal digestion. With the exception of cashews, roasting had no significant effect on antioxidant capacity during digestion from oral to small intestinal phase. Almonds showed the highest DPPH values after 16-hour colonic fermentation, reaching above 7.60 mg TE per g. Roasting had a positive effect on the free radical savagery capacity of walnuts within 16-24 hours of fecal fermentation. Significant differences were found in the bioaccessibility of individual compounds in raw and roasted nuts. As for almond and walnut, roasting increases the release and breakdown of phenolic compounds during colonic fermentation and have a positive impact on the bioaccessibility of specific phenolic compounds. The colonic bioaccessibility of most phenolic compounds was the highest. Due to heat polysaccharide breakdown, the total SCFAs produced were limited up to 0.03 mM. Raw almonds produced the most SCFAs at 16-hour fermentation and illustrated more benefits to gut health.
Collapse
Affiliation(s)
- Minhao Li
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Peiyao Lu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
- Wuxi Food Safety Inspection and Test Center, 35 South Changjiang Road, Wuxi, Jiangsu Province, 214000, China
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Thaiza S P de Souza
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
10
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Bevilacqua E, Cruzat V, Singh I, Rose’Meyer RB, Panchal SK, Brown L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023; 15:nu15040994. [PMID: 36839353 PMCID: PMC9963703 DOI: 10.3390/nu15040994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.
Collapse
Affiliation(s)
- Elza Bevilacqua
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
| | - Indu Singh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Roselyn B. Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
12
|
Nieto-Figueroa KH, Gaytán-Martínez M, Loarca-Piña MGF, Campos-Vega R. Effect of drying method on the production of in vitro short-chain fatty acids and histone deacetylase mediation of cocoa pod husk. J Food Sci 2022; 87:4476-4490. [PMID: 36102033 DOI: 10.1111/1750-3841.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of cocoa pod husk (CPH) processing (microwave [MW], forced-air drying [FAD], and FAD plus extrusion [FAD-E]), and in vitro gastrointestinal digestion on the in vitro human colonic fermentation metabolism, in vitro bioactivity on human HT-29 colon cancer cell, and the in silico mechanism of selected compounds. CPH as a substrate for human colonic microbiota significantly decrease local pH (MW -0.7, FAD -0.2, and FAD-E -0.3, 24 h) and modifies their metabolic activity (short-chain fatty acids [SCFAs] production). FAD-E generated the highest butyric (7.6 mM/L, 4 h) and FAD the highest acetic and propionic acid levels (71.4 and 36.7 mM/L, 24 h). The in vitro colonic fermented FAD-E sample (FE/FAD-E) caused HT-29 colorectal cancer cells death by inducing damage on membrane integrity and inhibiting (up to 92%) histone-deacetylase (HDAC) activity. In silico results showed that chlorogenic acid, (-)-epicatechin, and (+)-catechin, followed by butyric and propionic acids, are highly involved in the HDAC6 inhibitory activity. The results highlight the potential human health postbiotic benefits of CPH consumption, mediated by colonic microbiota-derived metabolites. PRACTICAL APPLICATION: The enormous amount of CPH (10 tons/1 ton of dry beans) generated by the cocoa industry can be used as a removable source of bioactive compounds with physicochemical functionality and health bioactivity. However, their potential applications and health benefits are insufficiently explored. CPH represents a serious disposal problem; practical and innovative ideas to use this highly available and affordable material are urgent. Research exploring their potential applications can increase the sustainability of the cocoa agro-industry. This paper highlights the value addition that can be achieved with this valuable industrial co-product, generating new functional products and ingredients.
Collapse
Affiliation(s)
- Karen Haydeé Nieto-Figueroa
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Ma Guadalupe Flavia Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| |
Collapse
|
13
|
Wu H, Liu Z, Lu P, Barrow C, Dunshea FR, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem 2022; 386:132794. [PMID: 35349898 DOI: 10.1016/j.foodchem.2022.132794] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Bioaccessibility and bioactivity of phenolic compounds in coffee beans relate to roasting and digestion process. This study aimed to estimate phenolic content, antioxidant potential, bioaccessibility, and changes in short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of commercial roasted (light, medium and dark) coffee beans. There was no significant difference found among all three different roasting levels. TPC and DPPH were enhanced 15 mg GAE/g and 60 mg TE/g during gastrointestinal digestion, respectively. For colonic fermentation, the highest TPC and FRAP of all coffee beans was found at 2 and 4 h, respectively. The gastric bioaccessibility of most of the phenolic compounds were relatively higher due to thermal phenolic degradation. Total SCFAs production was only up to 0.02 mM because of thermal polysaccharide decomposition. Light roasted beans exhibited relatively higher phenolic bioaccessibility, antioxidant activities and SCFAs production, which would be more beneficial to gut health.
Collapse
Affiliation(s)
- Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Peiyao Lu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| |
Collapse
|
14
|
Yust BG, Rao NZ, Schwarzmann ET, Peoples MH. Quantification of Spent Coffee Ground Extracts by Roast and Brew Method, and Their Utility in a Green Synthesis of Gold and Silver Nanoparticles. Molecules 2022; 27:molecules27165124. [PMID: 36014362 PMCID: PMC9413573 DOI: 10.3390/molecules27165124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology has become increasingly important in modern society, and nanoparticles are routinely used in many areas of technology, industry, and commercial products. Many species of nanoparticle (NP) are typically synthesized using toxic or hazardous chemicals, making these methods less environmentally friendly. Consequently, there has been growing interest in green synthesis methods, which avoid unnecessary exposure to toxic chemicals and reduce harmful waste. Synthesis methods which utilize food waste products are particularly attractive because they add value and a secondary use for material which would otherwise be disposed of. Here, we show that spent coffee grounds (SCGs) that have already been used once in coffee brewing can be easily used to synthesize gold and silver NPs. SCGs derived from medium and dark roasts of the same bean source were acquired after brewing coffee by hot brew, cold brew, and espresso techniques. The total antioxidant activity (TAC) and total caffeoylquinic acid (CQA) of the aqueous SCG extracts were investigated, showing that hot brew SCGs had the highest CQA and TAC levels, while espresso SCGs had the lowest. SCG extract proved effective as a reducing agent in synthesizing gold and silver NPs regardless of roast or initial brew method.
Collapse
Affiliation(s)
- Brian G. Yust
- Department of Physics, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
- Correspondence: ; Tel.: +1-(215)-951-2879
| | - Niny Z. Rao
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
| | - Evan T. Schwarzmann
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
| | - Madisyn H. Peoples
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
- College of Computing & Informatics, Drexel University, 3675 Market St., Philadelphia, PA 19144, USA
| |
Collapse
|
15
|
Zeng L, Xiang R, Fu C, Qu Z, Liu C. The Regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review. Biomed Pharmacother 2022; 149:112831. [PMID: 35303566 DOI: 10.1016/j.biopha.2022.112831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Chlorogenic acid (CGA) is a phenolic compound that is widely distributed in honeysuckle, Eucommia, fruits and vegetables. It has various biological functions, including cardiovascular, nerve, kidney, and liver protection, and it exerts a protective effect on human health, according to clinical research and basic research. The intestine and brain are two important organs that are closely related in the human body. The intestine is even called the "second brain" in humans. However, among the many reports in the literature, an article systematically reporting the regulatory effects and specific mechanisms of CGA on the intestines and brain has not been published. In this context, this review uses the regulatory role and mechanism of CGA in the intestine and brain as the starting point and comprehensively reviews CGA metabolism in the body and the regulatory role and mechanism of CGA in the intestine and brain described in recent years. Additionally, the review speculates on the potential biological actions of CGA in the gut-brain axis. This study provides a scientific theory for CGA research in the brain and intestines and promotes the transformation of basic research and the application of CGA in food nutrition and health care.
Collapse
Affiliation(s)
- Li Zeng
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rong Xiang
- The Library of Shaoyang University, Shaoyang, Hunan 422000, China
| | - Chunyan Fu
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Zhihao Qu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Changwei Liu
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
16
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
17
|
The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field. PLANTS 2022; 11:plants11091124. [PMID: 35567125 PMCID: PMC9103486 DOI: 10.3390/plants11091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The exploitation of massive amounts of food and agro-waste represents a severe social, economic, and environmental issue. Under the growing demand for food products that are free of toxic synthetic insecticides, a methanolic extract of spent coffee grounds (SCGs), which represent the main byproduct of coffee production, was applied in the current study as a bioinsecticide against the main pests of the green bean: Spodoptera littoralis, Agrotis ipsilon, Bemisia tabaci, Empoasca fabae, and Aphis craccivora. A deterrent assay, contact bioassay, and lethal concentration analysis were performed to reveal the repellent, antifeedant, and oviposition deterrent effects. Parallel to the above-mentioned bioassays, the phytochemical composition of the methanolic SCG extract was investigated via a high-performance liquid chromatography (HPLC) analysis. Fourteen phenolic acids and five flavonoids, in addition to caffeine (alkaloid), were identified in the extract. Cinnamic, rosmarinic, and gallic acids were the predominant phenolics, while apigenin-7-glucoside was the main flavonoid, followed by naringin, catechin, and epicatechin. The extract of SCGs showed an insecticidal effect, with a mortality between 27.5 and 76% compared to the control (7.4%) and based on the concentration of the extract used. In the same trend, the oviposition efficiency revealed different batches of laid eggs (0.67, 2.33, 7.33, and 8.67 batches/jar) for 100, 50, and 25% of the SCG extract and the control. Finally, the major components of the SCG extract were docked into the insecticide acetylcholinesterase enzyme to explore their potential for inhibition, where apigenin-7-glucoside showed a higher binding affinity, followed by catechin, compared to the control (lannate). The obtained findings could be a starting point for developing novel bioinsecticides from SCGs.
Collapse
|
18
|
Wang CR, Hu TY, Hao FB, Chen N, Peng Y, Wu JJ, Yang PF, Zhong GC. Type 2 Diabetes-Prevention Diet and All-Cause and Cause-Specific Mortality: A Prospective Study. Am J Epidemiol 2022; 191:472-486. [PMID: 34729579 PMCID: PMC8895391 DOI: 10.1093/aje/kwab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
We aimed to examine whether type 2 diabetes–prevention diet, a dietary pattern previously developed for reducing type 2 diabetes risk, was associated with mortality in a US population. A population-based cohort of 86,633 subjects was identified from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (1993–2015). Dietary information was collected with a food frequency questionnaire. A dietary diabetes risk-reduction score was calculated to reflect adherence to this dietary pattern, with higher scores representing better adherence. Hazard ratios (HRs) and absolute risk differences (ARDs) in mortality rates per 10,000 person-years were calculated. After a mean follow-up of 13.6 years, 17,532 all-cause deaths were observed. Participants with the highest versus the lowest quintiles of dietary diabetes risk-reduction score were observed to have decreased risks of death from all causes (HR = 0.76, 95% CI: 0.72, 0.80; ARD: −81.94, 95% CI: −93.76, −71.12), cardiovascular disease (HR = 0.73, 95% CI: 0.66, 0.81; ARD: −17.82, 95% CI: −24.81, −11.30), and cancer (HR = 0.85, 95% CI: 0.78, 0.94; ARD: −9.92, 95% CI: −15.86, −3.59), which were modified by sex, smoking status, or alcohol consumption in subgroup analyses (P for interaction < 0.05 for all). In conclusion, a type 2 diabetes–prevention diet confers reduced risks of death from all causes, cardiovascular disease, and cancer in this US population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guo-Chao Zhong
- Correspondence to Dr. Guo-Chao Zhong, Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong district, Chongqing 400010, China (e-mail: )
| |
Collapse
|
19
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
20
|
Purification and anti-inflammatory effect of selenium-containing protein fraction from selenium-enriched Spirulina platensis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Badr AN, El-Attar MM, Ali HS, Elkhadragy MF, Yehia HM, Farouk A. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities. Toxins (Basel) 2022; 14:toxins14020109. [PMID: 35202136 PMCID: PMC8876227 DOI: 10.3390/toxins14020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Spent coffee grounds (SCGs), which constitute 75% of original coffee beans, represent an integral part of sustainability. Contamination by toxigenic fungi and their mycotoxins is a hazard that threatens food production. This investigation aimed to examine SCGs extract as antimycotic and anti-ochratoxigenic material. The SCGs were extracted in an eco-friendly way using isopropanol. Bioactive molecules of the extract were determined using the UPLC apparatus. The cytotoxicity on liver cancer cells (Hep-G2) showed moderate activity with selectivity compared with human healthy oral epithelial (OEC) cell lines but still lower than the positive control (Cisplatin). The antibacterial properties were examined against pathogenic strains, and the antifungal was examined against toxigenic fungi using two diffusion assays. Extract potency was investigated by two simulated models, a liquid medium and a food model. The results of the extract showed 15 phenolic acids and 8 flavonoids. Rosmarinic and syringic acids were the most abundant phenolic acids, while apigenin-7-glucoside, naringin, epicatechin, and catechin were the predominant flavonoids in the SCGs extract. The results reflected the degradation efficiency of the extract against the growth of Aspergillus strains. The SCGs recorded detoxification in liquid media for aflatoxins (AFs) and ochratoxin A (OCA). The incubation time of the extract within dough spiked with OCA was affected up to 2 h, where cooking was not affected. Therefore, SCGs in food products could be applied to reduce the mycotoxin contamination of raw materials to the acceptable regulated limits.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Marwa M. El-Attar
- Radioisotopes Department, Nuclear Research Center, Atomic Energy Authority, Cairo 11787, Egypt;
| | - Hatem S. Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Manal F. Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Cairo 11221, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
22
|
Mediani A, Kamal N, Lee SY, Abas F, Farag MA. Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2027444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ahmed Mediani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Nurkhalida Kamal
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Soo Yee Lee
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Faridah Abas
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
23
|
Van Doan H, Lumsangkul C, Hoseinifar SH, Jaturasitha S, Tran HQ, Chanbang Y, Ringø E, Stejskal V. Influences of spent coffee grounds on skin mucosal and serum immunities, disease resistance, and growth rate of Nile tilapia (Oreochromis niloticus) reared under biofloc system. FISH & SHELLFISH IMMUNOLOGY 2022; 120:67-74. [PMID: 34774734 DOI: 10.1016/j.fsi.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The study was executed to find out the potential effects spent coffee ground (SCG) on Nile tilapia's skin mucosal and serum immunities, disease prevention, and growth rate reared in a biofloc system. Nile tilapia fingerlings (average weight 15.25 ± 0.07 g) were disseminated into 15 aquaria (150 L tank-1) at a density of 20 fish per aquarium and treated five diets: SCG1 (control), SCG2 (10 g kg-1), SCG3 (20 g kg-1), SCG4 (40 g kg-1), and SCG5 (80 g kg-1) for eight weeks. A Completely Randomized Design (CRD) with three replications was applied. Growth rate, skin mucus, and serum immunities were quantified every 4 weeks; whereas the challenge study was conducted at the termination of the feeding trial. The outputs indicated that dietary incorporation of SCG give rise to the enhancement of SGR and FCR in comparison with the control, with best levels noted in fish fed SCG2 diet. Similarly, significant enhancements in skin mucosal and serum immunities were revealed in fish treated SCG2 over the control and other SCG diets. Likewise, higher survival rates against Streptococcus agalactiae were displayed in fish fed SCG, with the maximum level displayed in the fish treated SCG2. In conclusion, dietary supplementation of SCG2 (10 g kg-1) can be potential used as immunostimulants in tilapia aquaculture.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Hung Quang Tran
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Yaowaluk Chanbang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vlastimil Stejskal
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
24
|
Abbasi-Parizad P, De Nisi P, Pepè Sciarria T, Scarafoni A, Squillace P, Adani F, Scaglia B. Polyphenol bioactivity evolution during the spontaneous fermentation of vegetal by-products. Food Chem 2021; 374:131791. [PMID: 34915367 DOI: 10.1016/j.foodchem.2021.131791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 11/04/2022]
Abstract
Food industry by-products such as grape pomace (GP), tomato pomace (TP), and spent coffee grounds (SCG) are rich in polyphenols (PP) but are easily biodegradable. The aim of this study is to test Spontaneous Fermentation (SF) as treatment to modify PP profile and bioactivity. The results highlighted that the by-products' organic matter and the microbial populations drove the SF evolution; heterolactic, alcoholic, and their mixtures were the predominant metabolisms of TP, GP, and SCG + GP co-fermentation. Increases in the extractable amounts and antiradical activity occurred for all the biomasses. Regarding the aglycate-PPs (APP), i.e. the most bioreactive PPs, significant changes occurred for TP and GP but did not influence the anti-inflammatory bioactivity. The co-fermentation increased significantly chlorogenic acid and consumed most of the APPs, acting as a purification system to obtain a highly concentrated APP fraction, so that the extract might be employed for a specific purpose.
Collapse
Affiliation(s)
- Parisa Abbasi-Parizad
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Patrizia De Nisi
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Pietro Squillace
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
25
|
How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Rathnakumar K, Osorio-Arias JC, Krishnan P, Martínez-Monteagudo SI. Fractionation of spent coffee ground with tertiary amine extraction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Huang Y, Liu F, Chen AM, Yang PF, Peng Y, Gong JP, Li Z, Zhong GC. Type 2 diabetes prevention diet and the risk of pancreatic cancer: A large prospective multicenter study. Clin Nutr 2021; 40:5595-5604. [PMID: 34656956 DOI: 10.1016/j.clnu.2021.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Type 2 diabetes prevention diet confers a lower risk of type 2 diabetes, which exhibits overlapping mechanisms with pancreatic cancer. We performed a prospective study to examine whether adherence to this dietary pattern is associated with a reduced risk of pancreatic cancer. METHODS A population-based cohort of 101,729 American adults was identified. A dietary diabetes risk reduction score was computed to reflect adherence to this dietary pattern, with higher scores representing greater adherence. Cox regression was used to compute hazard ratios (HRs) for pancreatic cancer incidence. Prespecified subgroup analyses were used to identify the potential effect modifiers. RESULTS After an average follow-up of 8.86 years (900,871.67 person-years), a total of 402 pancreatic cancer cases were observed. In the fully adjusted model, participants in the highest quartile of dietary diabetes risk reduction score were found to have a reduced risk of pancreatic cancer compared with those in the lowest quartile [HRquartiles 4versus1: 0.62; 95% confidence interval (CI): 0.44, 0.86; Ptrend = 0.004], which remained in a series of sensitivity analyses. Subgroup analyses further found that this favorable association was more pronounced in current or former smokers (HRquartiles 4versus1: 0.48; 95% CI: 0.30, 0.77) than in never smokers (HRquartiles 4versus1: 0.71; 95% CI: 0.44, 1.15), although the interaction test did not reach statistical significance (Pinteraction = 0.095). CONCLUSIONS Greater adherence to type 2 diabetes prevention diet is associated with a lower risk of pancreatic cancer in this US population. More studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Liu
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - A-Mei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng-Fei Yang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Geriatrics, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, China.
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Vu DC, Vu QT, Huynh L, Lin CH, Alvarez S, Vo XT, Nguyen THD. Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1977657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Danh C. Vu
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Quyen T. Vu
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Long Huynh
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Chung-Ho Lin
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, Missouri, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States
| | - Xuyen T. Vo
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Trang H. D. Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies. Foods 2021; 10:foods10081837. [PMID: 34441614 PMCID: PMC8391337 DOI: 10.3390/foods10081837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Spent coffee ground (SCG) is a significant by-product generated by the coffee industry. It is considered a great source of bioactive molecules well-recognized for exerting biological properties. This study aimed to implement SCG in a baked foods, such as cookies (SCGc), to increase their bioactive potential. A comprehensive study of the polyphenolic fraction of the SCG and SCGc using a high-resolution mass spectrometry analysis was performed. Moreover, the polyphenol bioaccessibility and change in antioxidant activity during simulated gastrointestinal digestion (GiD) were assessed. Data showed that SCGc provided 780 mg of melanoidins, 16.2 mg of chlorogenic acid (CGA), 6.5 mg of caffeine, and 0.08 mg of phenolic acids per 100 g of sample. Moreover, the 5-caffeoylquinic acid was the most relevant CGA found in SCG (116.4 mg/100 g) and SCGc (8.2 mg/100 g) samples. The antioxidant activity evaluated through three spectrophotometric tests, and the total phenolic compounds of SCGc samples exhibited significantly higher values than the control samples. Furthermore, during simulated GiD, the highest bioaccessibility of SCGc polyphenols was observed after the colonic stage, suggesting their potential advantages for human health. Therefore, SCG with high content in bioactive molecules could represent an innovative ingredient intended to fortify baked food formulations.
Collapse
|
30
|
Spent Coffee Grounds’ Valorization towards the Recovery of Caffeine and Chlorogenic Acid: A Response Surface Methodology Approach. SUSTAINABILITY 2021. [DOI: 10.3390/su13168818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amount of spent coffee grounds (SCGs) created, represents an environmental challenge worldwide. In this context, the aim of the present study was to exploit the potential of SCGs as a source of bioactive compounds that can be utilized in high value-added products. Thus, a cost-effective and environmentally friendly extraction technique was developed to ensure extracts with high total phenolic content and antioxidant activity, as well as significant amounts of caffeine and chlorogenic acid. Response surface methodology was implemented to evaluate the effects of the main extraction parameters (i.e., time, temperature, and ethanol-to-water ratio) and their interactions on the defined responses. The ethanol ratio was found to be the most significant variable. Then, a set of optimum values was determined (i.e., 7 min, 75 °C, and ethanol:water ratio 5:95), where the predicted values for responses were found to be 5.65% for the yield (Y1), 152.68 mg gallic acid equivalents per L for total phenolic content (Y2), 0.797 μmol Trolox equivalent per mL for the antioxidant activity (Y3), 30.5 ppm for caffeine concentration (Y4), and 17.4 ppm for chlorogenic acid concentration (Y5). Furthermore, the corresponding high experimental values from the validation experiment fitted well to these predictions, clearly clarifying the high potential of SCG extracts for use in high value-added applications.
Collapse
|
31
|
|
32
|
Gual-Grau A, Guirro M, Crescenti A, Boqué N, Arola L. In vitro fermentability of a broad range of natural ingredients by fecal microbiota from lean and obese individuals: potential health benefits. Int J Food Sci Nutr 2021; 73:195-209. [PMID: 34294012 DOI: 10.1080/09637486.2021.1954144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The prevalence of obesity and related complications is continuously increasing while the gut microbiota might have a significant role to address this challenge. In this context, the food industry generates large amounts of residues that could be likely revalorised as functional ingredients. Hence, we evaluated the fermentability of food skins, husks, shells, trimming residues, mosses and mushrooms, which were subjected to in vitro fermentation with faecal microbiota from lean and obese adults. We demonstrated for the first time that pumpkin skin is highly fermented by human faecal microbiota showing pH-lowering effects and promoting gas and SCFA production. Furthermore, brewers' spent grain generated an inulin-like SCFA profile after microbial fermentation, whereas Irish moss, plum skin, quinoa husk and mushrooms, including Armillaria mellea and Boletus edulis, showed high fermentation rates. Remarkably, although propionate production was significantly higher in obese individuals, the fermentability of the ingredients was similar between lean and obese conditions.
Collapse
Affiliation(s)
- Andreu Gual-Grau
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Guirro
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Lluís Arola
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
33
|
Chrysargyris A, Antoniou O, Xylia P, Petropoulos S, Tzortzakis N. The use of spent coffee grounds in growing media for the production of Brassica seedlings in nurseries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24279-24290. [PMID: 32026184 DOI: 10.1007/s11356-020-07944-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Large quantities of spent coffee grounds (SCG) are generated the last decades, and their recycling is of research interest challenge. In the present study, SCG was tested to substitute peat (P) in substrate mixtures for the production of Brassica seedlings. Seeds of cauliflower, broccoli, and cabbage were placed in substrate mixtures containing 0-2.5-5-10% SCG. The mixture of SCG with peat affected several physicochemical characteristics of the growing media, providing also considerable amount of mineral elements for the seedling growth needs. Seed emergence was stimulated in 2.5-5% of SCG for cauliflower and at 2.5% of SCG for cabbage, while 10% of SCG decreased the percentage and increased the mean emergence time of the examined species. Plant biomass and leaf number were increased at 2.5% SCG for broccoli and cabbage but maintained at cauliflower when compared with control. The SCG at 10% decreased stomatal conductance of broccoli and cabbage (including 2.5-5% SCG in cauliflower) while chlorophyll content was increased at 10% of SCG media. The incorporation of SCG impacted the mineral content accumulated in plants with increases in nitrogen, potassium, and phosphorus and decreases in magnesium and iron content. Total phenolics and antioxidant activity (DPPH, FRAP) decreased at ≥ 5% SCG at cauliflower and cabbage or unchanged for broccoli when compared with the control. The cabbage seedlings grown in 10% SCG media subjected to stress with increases in the production of hydrogen peroxides and lipid peroxidation, and reflected changes in the antioxidant enzymatic metabolism (catalase, superoxide dismutase). The present study demonstrates that SCG (up to 5%) can be used for seed germination biostimulants and/or partially substitute the peat for Brassica seedling production.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Omiros Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Spyridon Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus.
| |
Collapse
|
34
|
|
35
|
John OD, du Preez R, Panchal SK, Brown L. Tropical foods as functional foods for metabolic syndrome. Food Funct 2021; 11:6946-6960. [PMID: 32692322 DOI: 10.1039/d0fo01133a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropical foods are an integral part of the traditional diet and form part of traditional medicine in many countries. This review examines the potential of tropical foods to treat signs of metabolic syndrome, defined as a chronic low-grade inflammation leading to obesity, hypertension, impaired glucose tolerance, insulin resistance, dyslipidaemia and fatty liver. It is a major risk factor for cardiovascular and metabolic disease as well as osteoarthritis and some cancers. Tropical foods such as seaweeds and tropical fruits including indigenous fruits such as Davidson's plums are effective in reducing these signs of metabolic syndrome in rats, as well as reducing degeneration of bone cartilage and altering gut microbiome. Further, waste products from tropical fruits including mangosteen rind, coffee pulp and spent coffee grounds provide further options to reduce metabolic syndrome. Production of local tropical foods and local recovery of food waste from these foods could allow the development of commercial, sustainable and cost-effective functional foods in tropical countries. The aim is to develop these functional foods to reduce the incidence of metabolic syndrome and decrease the risk of costly chronic cardiovascular and metabolic disorders locally and globally.
Collapse
Affiliation(s)
- Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| | - Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia. and School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
36
|
Ramírez K, Pineda-Hidalgo KV, Rochín-Medina JJ. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
38
|
Rochín-Medina JJ, López-Moreno HS, Ramirez K. Effect of Bacillus clausii-fermented spent coffee ground extract on Salmonella-infected macrophages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020; 13:nu13010088. [PMID: 33383958 PMCID: PMC7824117 DOI: 10.3390/nu13010088] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most popular beverages consumed worldwide. Roasted coffee is a complex mixture of thousands of bioactive compounds, and some of them have numerous potential health-promoting properties that have been extensively studied in the cardiovascular and central nervous systems, with relatively much less attention given to other body systems, such as the gastrointestinal tract and its particular connection with the brain, known as the brain–gut axis. This narrative review provides an overview of the effect of coffee brew; its by-products; and its components on the gastrointestinal mucosa (mainly involved in permeability, secretion, and proliferation), the neural and non-neural components of the gut wall responsible for its motor function, and the brain–gut axis. Despite in vitro, in vivo, and epidemiological studies having shown that coffee may exert multiple effects on the digestive tract, including antioxidant, anti-inflammatory, and antiproliferative effects on the mucosa, and pro-motility effects on the external muscle layers, much is still surprisingly unknown. Further studies are needed to understand the mechanisms of action of certain health-promoting properties of coffee on the gastrointestinal tract and to transfer this knowledge to the industry to develop functional foods to improve the gastrointestinal and brain–gut axis health.
Collapse
|
40
|
Caicedo-Lopez LH, Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Lóarca-Piña G. Colonic metabolites from digested Moringa oleifera leaves induced HT-29 cell death via apoptosis, necrosis, and autophagy. Int J Food Sci Nutr 2020; 72:485-498. [PMID: 33302731 DOI: 10.1080/09637486.2020.1849039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.
Collapse
Affiliation(s)
- Laura H Caicedo-Lopez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico.,Biosystems Engineering Group, School of Engineering, Universidad Autonoma de Queretaro, Qro, Mexico
| | | | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Guadalupe Lóarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| |
Collapse
|
41
|
Wang G, Zhan Q, Wu H. Suppression of lipopolysaccharide-induced activation of RAW 264.7 macrophages by Se-methylseleno-l-cysteine. Int Immunopharmacol 2020; 89:107040. [DOI: 10.1016/j.intimp.2020.107040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
|
42
|
Ismail T, Donati-Zeppa S, Akhtar S, Turrini E, Layla A, Sestili P, Fimognari C. Coffee in cancer chemoprevention: an updated review. Expert Opin Drug Metab Toxicol 2020; 17:69-85. [PMID: 33074040 DOI: 10.1080/17425255.2021.1839412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chemoprevention of cancer refers to the use of natural or synthetic compounds to abolish or perturb a variety of steps in tumor initiation, promotion, and progression. This can be realized through different mechanisms, including activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. AREAS COVERED The goal of this article is to critically review recent evidence on association between coffee and prevention of different types of cancer, with particular emphasis on the molecular mechanisms and the bioactive compounds involved in its anticancer activity. EXPERT OPINION Coffee is a mixture of different compounds able to decrease the risk of many types of cancer. However, its potential anticancer activity is not completely understood. Hundreds of biologically active components such as caffeine, chlorogenic acid, diterpenes are contained in coffee. Further research is needed to fully elucidate the molecular mechanisms underlying the anticancer effects of coffee and fully understand the role of different confounding factors playing a role in its reported anticancer activity.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Sabrina Donati-Zeppa
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| | - Anam Layla
- National Institute of Food Science & Technology, University of Agriculture Faisalabad , Faisalabad, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| |
Collapse
|
43
|
Dattatraya Saratale G, Bhosale R, Shobana S, Banu JR, Pugazhendhi A, Mahmoud E, Sirohi R, Kant Bhatia S, Atabani AE, Mulone V, Yoon JJ, Seung Shin H, Kumar G. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. BIORESOURCE TECHNOLOGY 2020; 314:123800. [PMID: 32684320 DOI: 10.1016/j.biortech.2020.123800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Spent coffee grounds (SCG) are an important waste product millions of tons generated from coffee consumption and could be effectively utilized for various applications due to their high organic content. SCG can be used as a potential feedstock to develop coffee-based biorefinery towards value-added products generation through various biotechnological processes. Considerable developments have been reported on emerging SCG-based processes/products in various environmental fields such as removal of heavy metals and cationic dyes and in wastewater treatment. In addition, SCG are also utilized to produce biochar and biofuels. This review addressed the details of innovative processes used to produce polymers and catalysts from SCG. Moreover, the application of these developed products is provided and future directions of the circular economy for SCG utilization.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Rahul Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box e 2713, Doha, Qatar
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Mohamed Sathak Engineering College, Ramanathapuram, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Eyas Mahmoud
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ranjna Sirohi
- Department of Postharvest Process and Food Engineering GB Pant University of Agriculture and Technology Pantnagar, 263145, Uttarakhand, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Vincenzo Mulone
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Chungnam 330-825, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
44
|
Osorio‐Arias J, Contreras‐Calderón J, Martínez‐Monteagudo SI, Vega‐Castro O. Nutritional and functional properties of spent coffee ground‐cheese whey powder. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Juan Osorio‐Arias
- BIOALI Research Group, Food Department Faculty of Pharmaceutical and Food Sciences, University of Antioquia Medellín Colombia
- Aoxlab Research Group Aoxlab S.A.S., Development and Innovation Department Medellín Colombia
| | - José Contreras‐Calderón
- BIOALI Research Group, Food Department Faculty of Pharmaceutical and Food Sciences, University of Antioquia Medellín Colombia
| | | | - Oscar Vega‐Castro
- BIOALI Research Group, Food Department Faculty of Pharmaceutical and Food Sciences, University of Antioquia Medellín Colombia
| |
Collapse
|
45
|
Iriondo-DeHond A, Iriondo-DeHond M, del Castillo MD. Applications of Compounds from Coffee Processing By-Products. Biomolecules 2020; 10:E1219. [PMID: 32825719 PMCID: PMC7564712 DOI: 10.3390/biom10091219] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
To obtain the coffee beverage, approximately 90% of the edible parts of the coffee cherry are discarded as agricultural waste or by-products (cascara or husk, parchment, mucilage, silverskin and spent coffee grounds). These by-products are a potential source of nutrients and non-nutrient health-promoting compounds, which can be used as a whole ingredient or as an enriched extract of a specific compound. The chemical composition of by-products also determines food safety of the novel ingredients. To ensure the food safety of coffee by-products to be used as novel ingredients for the general consumer population, pesticides, mycotoxins, acrylamide and gluten must be analyzed. According with the priorities proposed by the Food Agriculture Organization of the United Nations (FAO) to maximize the benefit for the environment, society and economy, food waste generation should be avoided in the first place. In this context, the valorization of food waste can be carried out through an integrated bio-refinery approach to produce nutrients and bioactive molecules for pharmaceutical, cosmetic, food and non-food applications. The present research is an updated literature review of the definition of coffee by-products, their composition, safety and those food applications which have been proposed or made commercially available to date based on their chemical composition.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Maite Iriondo-DeHond
- Food Quality Group, Department of Agricultural and Food Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 28800 Alcalá de Henares, Spain;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| |
Collapse
|
46
|
Campos-Vega R, Arreguín-Campos A, Cruz-Medrano MA, Del Castillo Bilbao MD. Spent coffee (Coffea arabica L.) grounds promote satiety and attenuate energy intake: A pilot study. J Food Biochem 2020; 44:e13204. [PMID: 32189354 DOI: 10.1111/jfbc.13204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
We evaluated the effects of acute intake of biscuits (B) containing either spent coffee grounds (SCG), (added with fructooligosaccharides; SC-FOS) or SCG antioxidant dietary fiber (SCF), on satiety, energy intake as well as gastrointestinal tolerance of healthy overweight volunteers. The addition of SCG and SCF to the biscuits (SC-FOS-B and SCF-B) increased their protein (11.4% and 12.2%), and total dietary fiber (8.4% and 11.8%) contents. The SCF-B significantly increased satiety perception, impacting ad libitum energy intake compared to the traditional biscuits recipe (TB; no added fiber). Moreover, SC-FOS-B and SCF-B decreased (no-observed-adverse effect) the most frequently reported symptoms by the participants, demonstrating that doses up to 5 g of SCF (per biscuit portion; 45 g) are well tolerated. The use of SCF and SCG as functional ingredients represents a sustainable strategy for the coffee industry and also potentiates the reduction of overweight, one of the leading health problems among the population. PRACTICAL APPLICATIONS: The addition of SCF or SCG as food ingredients increases protein and the dietary fiber content of traditional biscuits. SCF can slow gastric emptying, modulate appetite and thus body weight. SCF attenuates carbohydrate digestion blunting post-prandial blood glucose spikes reducing the risk of type 2 diabetes. SCF can be used as a functional ingredient to formulate foods with health benefits.
Collapse
Affiliation(s)
- Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, Mexico
| | | | | | | |
Collapse
|
47
|
Ho KV, Schreiber KL, Park J, Vo PH, Lei Z, Sumner LW, Brown CR, Lin CH. Identification and Quantification of Bioactive Molecules Inhibiting Pro-inflammatory Cytokine Production in Spent Coffee Grounds Using Metabolomics Analyses. Front Pharmacol 2020; 11:229. [PMID: 32210815 PMCID: PMC7073796 DOI: 10.3389/fphar.2020.00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/19/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, we assessed the anti-inflammatory properties of spent coffee grounds. Methanolic extracts of spent coffee grounds obtained from 3 Arabica cultivars possess compounds that exerted inhibitory effects on the secretion of inflammatory mediators (TNF-α, IL-6, and IL-10) induced by a human pro-monocytic cell line differentiated with PMA and stimulated with lipopolysaccharide (LPS). Our results indicated that the cytokine suppressive activities of the spent coffee ground (SCG) extracts were different among coffee cultivars tested. Hawaiian Kona extracts exhibited inhibitory effects on the expression of 3 examined cytokines, Ethiopian Yirgacheffe extracts reduced the secretion of TNF-α and IL-6, and Costa Rican Tarrazu extracts decreased the secretion of IL-6 only. Untargeted metabolomics analyses of SCG extracts led to the putative identification of 26 metabolites with known anti-inflammatory activities. Multiple metabolites (i.e., chrysin, daidzein, eugenol, naringenin, naringin, oxyresveratrol, pectolinarin, resveratrol, tectochrysin, theaflavin, vanillic acid, and vitexin rhamnoside) identified in the SCGs represent possible novel anti-inflammatory compounds. Of the 26 identified metabolites, the 12 compounds that had high relative intensities in all of the extracts were successfully quantified using liquid chromatography-tandem mass spectrometry analyses. Results from the targeted analyses indicated that caffeine and 5-caffeoylquinic acid (CQA) were the most abundant compounds in the SCG extracts. The contents of caffeine ranged from 0.38 mg/g (Ethiopian Yirgacheffe) – 0.44 mg/g (Costa Rican Tarrazu), whereas 5-CQA concentrations were in the range of 0.24 mg/g (Costa Rican Tarrazu) – 0.34 mg/g (Ethiopian Yirgacheffe). The presence of multiple anti-inflammatory compounds in SCGs provides a promising natural source for cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Khanh-Van Ho
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, United States.,Department of Food Technology, Can Tho University, Can Tho, Vietnam
| | - Kathy L Schreiber
- Cell and Immunobiology Core, University of Missouri, Columbia, MO, United States
| | - Jihyun Park
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, United States
| | - Phuc H Vo
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, United States
| | - Zhentian Lei
- Metabolomics Center, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lloyd W Sumner
- Metabolomics Center, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Charles R Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Chung-Ho Lin
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, United States
| |
Collapse
|
48
|
de Cosío-Barrón ACG, Hernández-Arriaga AM, Campos-Vega R. Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Bhandarkar NS, Mouatt P, Goncalves P, Thomas T, Brown L, Panchal SK. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J 2020; 34:4783-4797. [PMID: 32039529 DOI: 10.1096/fj.201902416rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks. Rats fed non-supplemented diets were used as controls. High-carbohydrate, high-fat diet-fed rats developed metabolic syndrome including abdominal obesity, impaired glucose tolerance, dyslipidemia, and cardiovascular and liver damage. Body weight, abdominal fat, total body fat mass, systolic blood pressure, and concentrations of plasma triglycerides and non-esterified fatty acids were reduced by spent coffee grounds along with improved glucose tolerance and structure and function of heart and liver. Spent coffee grounds increased the diversity of the gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Changes in gut microbiota correlated with the reduction in obesity and improvement in glucose tolerance and systolic blood pressure. These findings indicate that intervention with spent coffee grounds may be useful for managing obesity and metabolic syndrome by altering the gut microbiota, thus increasing the value of this food waste.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Priscila Goncalves
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
50
|
Reuse of spent espresso coffee as sustainable source of fibre and antioxidants. A map on functional, microstructure and sensory effects of novel enriched muffins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|