1
|
Feng C, Chen Z, Guan S, Li J, Qu M, Geng H. Formation mechanism of injured bacteria after disinfection with epigallocatechin gallate (EGCG) as a disinfectant. JOURNAL OF WATER AND HEALTH 2025; 23:288-300. [PMID: 40156208 DOI: 10.2166/wh.2024.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/14/2024] [Indexed: 04/01/2025]
Abstract
This study explored the effects of epigallocatechin gallate (EGCG), the main antibacterial component of tea polyphenols, on Escherichia coli in terms of disinfection damage and the underlying mechanisms. The researchers assessed inactivation and injury rates, cell morphology, and antioxidant indicators of E. coli when subjected to different concentrations of EGCG. The results showed that varying EGCG concentrations produced damaged bacteria, with the extent of damage depending on EGCG dosage and treatment duration. The disinfection process involving EGCG resulted in oxidative damage in E. coli, evoking alterations in the antioxidant system of the affected bacteria. During disinfection-induced bacterial injury, E. coli showed the active regulation of metabolism and redox activities in response to EGCG-induced environmental stimuli. Transcriptomic analysis was conducted to investigate the damage mechanism at the gene level. The damaged E. coli countered oxidative stress by adjusting gene expression related to peroxidase and glutathione metabolism processes. In this way, E. coli adjusts its gene expression to alleviate the detrimental effects of EGCG-induced oxidative stress and maintain cellular homeostasis. These findings contribute to our understanding of tea polyphenols' disinfection effects and provide insights into EGCG's mechanisms of damaging bacteria such as E. coli.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail:
| | - Zexin Chen
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Sairui Guan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jing Li
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mengchao Qu
- Beijing Waterworks Group Co., Ltd, Beijing 100031, China
| | - Haochen Geng
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Barbarossa A, Rosato A, Tardugno R, Carrieri A, Corbo F, Limongelli F, Fumarola L, Fracchiolla G, Carocci A. Antibiofilm Effects of Plant Extracts Against Staphylococcus aureus. Microorganisms 2025; 13:454. [PMID: 40005818 PMCID: PMC11858306 DOI: 10.3390/microorganisms13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global rise in antimicrobial resistance poses a significant threat to public health, necessitating alternative therapeutic options. One critical challenge is treating infections caused by biofilm-forming bacteria, which are notably resistant to conventional antibiotics. Staphylococcus aureus, including methicillin-resistant strains (MRSA), is a major pathogen in biofilm-related infections, complicating treatment and leading to chronic cases. Plant extracts have emerged as promising alternatives, offering new avenues for effective treatment. This study evaluated the antibacterial and antibiofilm activities of commercial extracts of Vitis vinifera L. (grape), Camellia sinensis L. (green tea), Olea europaea L. (olive), Quercus robur (oak), and Coffea arabica L. (coffee) against S. aureus strains from ATCC collections and clinical isolates. Preliminary screening using the disk diffusion test assessed the zones of inhibition, which was followed by minimum inhibitory concentration (MIC) determination via broth microdilution, with Quercus robur L. showing the best overall MIC results. The results obtained demonstrate the strong antibacterial activity of the extracts, with the MIC values ranging from 0.2 to 12.4 mg/mL. Using the XTT reduction assay, the extracts inhibited biofilm growth by 80-85% after 24 h of incubation, with Coffea arabica L. achieving interesting antibiofilm activities. These findings suggest that the investigated plant extracts hold potential as antimicrobial agents and biofilm inhibitors, offering an alternative approach to tackling antimicrobial resistance. Further research is needed to explore their potential applications in developing novel adjuvant therapies.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Francesco Limongelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| |
Collapse
|
3
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
4
|
Guo J, Shu X, Yu S, Guo C, Shen G, Chen L, Zhou J, Xiao J, Guo H, Chen Y, Zeng Z, Wang P. Injectable hydrogel microsphere-bomb for MRSA-infected chronic osteomyelitis. J Control Release 2024; 376:337-353. [PMID: 39413850 DOI: 10.1016/j.jconrel.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Biofilm and bone tissue defect induced by the bacterial infection severely impede chronic osteomyelitis treatment. It is critical to break though the densely and obstinate biofilm so that the target drugs can deliver to the infected bone more effectively. Herein, an acoustically responsive multifunctional hydrogel microsphere-bomb (EMgel) was designed and prepared by microfluidic technology, which could be injected to the focus of bone infection, and blasted into the nidus deeply to destroy the bacterial biofilm matrix barrier under penetrating ultrasound, so the encapsulated natural polyphenolic EGCG and bioactive MoS2 released to repair the damaged bone. The results proved the hydrogel microsphere-bomb exhibited controlling drug release, favorable antibacterial (as high as 99 %), high biofilm resistance, fascinating antioxidation, good cytocompatibility, and osteogenic differentiation. The acoustically responsive microsphere-bomb further proved their fantastic ability to eradicate biofilm and promote bone regeneration in the Methicillin-resistant Staphylococcus aureus (MRSA) infected chronic osteomyelitis model due to the synergy effects of EGCG and bioactive MoS2. Especially, immunohistochemical staining showed lower inflammatory reaction and higher expression of OCN in EMgel group treated with ultrasound wave. This study presents a new design of hydrogel microsphere-based intelligence drug delivery for osteomyelitis treatment, which exhibit great promising potential for dealing with chronic orthopedic infections, drug delivery system and tissue engineering.
Collapse
Affiliation(s)
- Jiayi Guo
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xian Shu
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Guangxin Shen
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong Province, Foshan 528031, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jiayi Zhou
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yi Chen
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| | - Ping Wang
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
5
|
Huang R, Zhang F, Wang X, Yang F, Ma C. Proteomic Profiling in Pediococcus pentosaceus SF11 Exposed to Condensed Tannins from Sainfoin. ACS OMEGA 2024; 9:41148-41156. [PMID: 39398120 PMCID: PMC11465268 DOI: 10.1021/acsomega.3c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
The antibacterial mechanism of condensed tannins (CTs) obtained from tea has been elucidated, but the mechanism of legume-derived CTs remains unclear. The mechanisms of legume- and tea-derived CTs probably differ due to the diverse compositions of CTs. Previous research found that sainfoin CTs directly inhibited the growth of Pediococcus. The present study investigated the inhibition mechanism of CTs against Pediococcus pentosaceus SF11 (SF11) through proteomic analysis. The results showed that the minimum inhibitory concentration (MIC) of CTs against SF11 was 1500 mg/L and that CTs increased cell membrane permeability in a dose-dependent manner. In total, 418 differentially expressed proteins (DEPs) were identified between the CT treatment and the control, among which 341 were down-regulated and 77 were up-regulated in the CT treatment. The protein interaction network showed that the expression of only two DEPs was highly different between CT treated and control (|log2FC|> 2); the atpD protein was up-regulated in the CT-treated group, which was involved in ATP synthesis; down-regulated DEPs were most involved in lipoteichoic acid synthesis, peptidoglycan synthesis, and glycine metabolism. Twenty-seven proteins were not detected after CT treatment, which were involved in functions including fatty acid synthesis, RNA synthesis and translation, drug resistance, and cell membrane permeability in SF11. Therefore, the findings suggest that the inhibition mechanism of CTs may be related to cell membrane damage and inhibition of cell reproduction.
Collapse
Affiliation(s)
- Rongzheng Huang
- Grassland Science,
School
of Animal Technology, Shihezi University, Shihezi 832000, China
| | - Fanfan Zhang
- Grassland Science,
School
of Animal Technology, Shihezi University, Shihezi 832000, China
| | - Xuzhe Wang
- Grassland Science,
School
of Animal Technology, Shihezi University, Shihezi 832000, China
| | - Fan Yang
- Grassland Science,
School
of Animal Technology, Shihezi University, Shihezi 832000, China
| | - Chunhui Ma
- Grassland Science,
School
of Animal Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
6
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Kruk M, Ponder A, Horoszewicz J, Popławski D, Król K, Leszczyńska J, Jaworska D, Trząskowska M. By-product hazelnut seed skin characteristics and properties in terms of use in food processing and human nutrition. Sci Rep 2024; 14:18835. [PMID: 39138272 PMCID: PMC11322380 DOI: 10.1038/s41598-024-69900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The hazelnut seed skins (HSS) are by-products from roasting or blanching hazelnuts without direct second utilization. The generation of HSS creates an economic and environmental problem. The object of the study was a comprehensive analysis of the properties for reuse of HSS. Water extraction of industrial HSS was applied (water with sonication of the HSS for 10 min at 90 ℃). The extracts obtained were freeze-dried to facilitate analysis and future application. The HSS and their extracts were analysed. Polyphenols, antioxidants, allergens, antimicrobial properties and instrumental sensory analysis were examined. The total polyphenol content in the samples was 37.8-44.0 mg gallic acid equivalent g-1. Gallic acid was the major phenolic compound. The antioxidant capacity of the samples was 198.9-250.6 mg VCEAC g-1 (vitamin C equivalent) according to the ABTS method and 98.4-106.8 mg VCEAC g-1 in the DPPH method. The extracts inhibited all tested strains of pathogenic bacteria. Allergen content was reduced in HSS and the extracts. Instrumental sensory analysis showed differences between taste parameters and odour profile samples. HSS can be reused in food production as a bacteriostatic, antioxidant additive and sensory-creating factor due to various chemical compounds corresponding with taste and odour.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland.
| | - Alicja Ponder
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Joanna Horoszewicz
- Faculty of Human Nutrition, Warsaw, University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Damian Popławski
- Faculty of Human Nutrition, Warsaw, University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Katarzyna Król
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Joanna Leszczyńska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego St. 4/10, 90-924, Lodz, Poland
| | - Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland.
| |
Collapse
|
8
|
Wang S, Li R, Han M, Zhuang D, Zhu J. Intelligent active films of sodium alginate and konjac glucomannan mixed by Lycium ruthenicum anthocyanins and tea polyphenols for milk preservation and freshness monitoring. Int J Biol Macromol 2023; 253:126674. [PMID: 37660868 DOI: 10.1016/j.ijbiomac.2023.126674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
To achieve real-time monitoring of food freshness, a pH-responsive film based on sodium alginate-konjac glucomannan loaded with Lycium ruthenicum anthocyanins (LRA) was prepared, with the addition of tea polyphenols (TP) to enhance the stability of LRA. The surface structure of the films was observed by AFM. The results of FTIR and molecular docking simulation showed that LRA and TP were bound to polysaccharide by hydrogen bonds. The mechanical properties, barrier properties, and antioxidant/antibacterial properties of the films were significantly improved and the films showed obvious color response to pH. Notably, the AFM images showed TP and LRA could lead to more severe damage to the bacterial structure. The results of molecular docking simulation suggested that TP and LRA could act on different components of the bacterial cell wall, indicating their synergistic mechanism in antimicrobial activity. Moreover, the stability of LRA was improved due to the interactions of TP and polysaccharides with LRA. The aggregates formed by TP and LRA were clearly observed by AFM. Finally, the film showed excellent preservation and freshness monitoring effect in milk. In conclusion, TP-LRA-SA-KGM intelligent film exhibited excellent performance and represented a promising novel food packaging material with potential applications.
Collapse
Affiliation(s)
- Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Han
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Innovation Group of Biophysics, College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Innovation Group of Biophysics, College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Zhong W, Tang M, Xie Y, Huang X, Liu Y. Tea Polyphenols Inhibit the Activity and Toxicity of Staphylococcus aureus by Destroying Cell Membranes and Accumulating Reactive Oxygen Species. Foodborne Pathog Dis 2023; 20:294-302. [PMID: 37347934 DOI: 10.1089/fpd.2022.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Mengsheng Tang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
11
|
Naomi R, Yazid MD, Teoh SH, Balan SS, Shariff H, Kumar J, Bahari H, Embong H. Dietary Polyphenols as a Protection against Cognitive Decline: Evidence from Animal Experiments; Mechanisms and Limitations. Antioxidants (Basel) 2023; 12:antiox12051054. [PMID: 37237920 DOI: 10.3390/antiox12051054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests that cognitive impairments may result from various factors, such as neuroinflammation, oxidative stress, mitochondrial damage, impaired neurogenesis, synaptic plasticity, blood-brain barrier (BBB) disruption, amyloid β protein (Aβ) deposition, and gut dysbiosis. Meanwhile, dietary polyphenol intake in a recommended dosage has been suggested to reverse cognitive dysfunction via various pathways. However, excessive intake of polyphenols could trigger unwanted adverse effects. Thus, this review aims to outline possible causes of cognitive impairments and how polyphenols alleviate memory loss via various pathways based on in vivo experimental studies. Thus, to identify potentially relevant articles, the keywords (1) nutritional polyphenol intervention NOT medicine AND neuron growth OR (2) dietary polyphenol AND neurogenesis AND memory impairment OR (3) polyphenol AND neuron regeneration AND memory deterioration (Boolean operators) were used in the Nature, PubMed, Scopus, and Wiley online libraries. Based on the inclusion and exclusion criteria, 36 research papers were selected to be further reviewed. The outcome of all the studies included supports the statement of appropriate dosage by taking into consideration gender differences, underlying conditions, lifestyle, and causative factors for cognitive decline, which will significantly boost memory power. Therefore, this review recapitulates the possible causes of cognitive decline, the mechanism of polyphenols involving various signaling pathways in modulating the memory, gut dysbiosis, endogenous antioxidants, bioavailability, dosage, and safety efficacy of polyphenols. Hence, this review is expected to provide a basic understanding of therapeutic development for cognitive impairments in the future.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Santhra Segaran Balan
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Halim Shariff
- Faculty of Health Sciences, University Technology Mara (UITM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Garcia-Contreras R, Chavez-Granados PA, Jurado CA, Aranda-Herrera B, Afrashtehfar KI, Nurrohman H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics (Basel) 2023; 8:biomimetics8010075. [PMID: 36810406 PMCID: PMC9944806 DOI: 10.3390/biomimetics8010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.
Collapse
Affiliation(s)
- Rene Garcia-Contreras
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Carlos Alberto Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
- Correspondence: (C.A.J.); (H.N.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Kelvin I. Afrashtehfar
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman City P.O. Box 346, United Arab Emirates
- Department of Reconstructive Dentistry & Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Hamid Nurrohman
- Missouri School of Dentistry & Oral Health, A. T. Still University, Kirksville, MO 63501, USA
- Correspondence: (C.A.J.); (H.N.)
| |
Collapse
|
13
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
14
|
Chen F, Wang H, Lin Z, Hu J, Wu Y, Shi L, Wang J, Xiu Y, Lin S. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Li J, Feng C, Jin J, Yang W, Wang Z. Current understanding on antibacterial mechanisms and research progress of tea polyphenols as a supplementary disinfectant for drinking water. JOURNAL OF WATER AND HEALTH 2022; 20:1611-1628. [PMID: 36448612 DOI: 10.2166/wh.2022.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disinfection by-products (DBPs) generated during the disinfection of drinking water have become an urgent problem. So, tea polyphenol, a natural green disinfectant, has attracted widespread attention in recent years. This review summarizes the antibacterial mechanism of tea polyphenols and the recent findings on tea polyphenols as disinfectants for drinking water. These studies show that tea polyphenol is an antibacterial agent that works through different mechanisms and can be used as a supplementary disinfectant because of its higher lasting effect and economical cost. The dosage of tea polyphenols as a disinfectant of ultrafiltration effluent is the lowest among all the tea polyphenols disinfection methods, which can ensure the microbial safety of drinking water. This application of tea polyphenols is deemed a practical solution to solving the issue of disinfecting drinking water and reducing DBPs. However, it is necessary to further explore the influence of factors such as pipeline materials on the disinfection process and efficacy to expand the application scope of tea polyphenols. The large-scale application of tea polyphenols still needs to be fine-tuned but with new developments in tea polyphenol purification technology and the long-term need for drinking water that is safe for human consumption, tea polyphenols have good prospects for further development.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiyue Jin
- Beijing Waterworks Group, Beijing 100031, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zile Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
16
|
Aribisala JO, Sabiu S. Redox Impact on Bacterial Macromolecule: A Promising Avenue for Discovery and Development of Novel Antibacterials. Biomolecules 2022; 12:1545. [PMID: 36358894 PMCID: PMC9688007 DOI: 10.3390/biom12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance in bacteria has remained a serious public health concern, resulting in substantial deaths and morbidity each year. Factors such as mutation and abuse of currently available antibiotics have contributed to the bulk of the menace. Hence, the introduction and implementation of new therapeutic strategies are imperative. Of these strategies, data supporting the role of reactive oxygen species (ROS) in bacterial lethality are intriguing, with several antimicrobials, including antibiotics such as fluoroquinolones, β-lactams, and aminoglycosides, as well as natural plant compounds, being remarkably implicated. Following treatment with ROS-inducing antimicrobials, ROS such as O2•-, •OH, and H2O2 generated in bacteria, which the organism is unable to detoxify, damage cellular macromolecules such as proteins, lipids, and nucleic acids and results in cell death. Despite the unique mechanism of action of ROS-inducing antibacterials and significant studies on ROS-mediated means of bacterial killing, the field remains a topical one, with contradicting viewpoints that require frequent review. Here, we appraised the antibacterial agents (antibiotics, natural and synthetic compounds) implicated in ROS generation and the safety concerns associated with their usage. Further, background information on the sources and types of ROS in bacteria, the mechanism of bacterial lethality via oxidative stress, as well as viewpoints on the ROS hypothesis undermining and solidifying this concept are discussed.
Collapse
|
17
|
Lan W, Chen X, Zhao Y, Xie J. Insight into the Antibacterial Mechanism of Ozone water Combined with Tea Polyphenols against
Shewanella putrefaciens
: Membrane Disruption and Oxidative Stress. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai 201306 China
| | - Xuening Chen
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Yanan Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai 201306 China
| |
Collapse
|
18
|
Gao T, Ye F, Tan Y, Peng M, Yuan F, Liu Z, Zhou D, Yang K, Liu W, Guo R, Zhang T, Zheng L, Zhou R, Tian Y. Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against Streptococcus suis. Front Cell Infect Microbiol 2022; 12:973282. [PMID: 36204637 PMCID: PMC9531131 DOI: 10.3389/fcimb.2022.973282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiqing Tan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lin Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| |
Collapse
|
19
|
Cheng Y, Li X, Fang MY, Ye QJ, Li ZM, Ahammed GJ. Systemic H 2O 2 signaling mediates epigallocatechin-3-gallate-induced cadmium tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129511. [PMID: 35809367 DOI: 10.1016/j.jhazmat.2022.129511] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Toxic heavy metal cadmium (Cd) reduces crop yield and threatens human health via the food chain. The bioactive flavonoid 'Epigallocatechin-3-gallate' (EGCG) affects plant stress response; however, the function of EGCG in Cd tolerance and the molecular pathways remain largely unknown. Here, we revealed that root application of EGCG alleviated Cd stress in tomato plants. While Cd stress decreased Fv/Fm, ФPSII, photosynthetic rate, root growth, root vitality and biomass accumulation by increasing reactive oxygen species (ROS) accumulation and lipid peroxidation, exogenous EGCG minimized excessive ROS accumulation and oxidative stress by promoting the activity of antioxidant enzymes and redox poise in roots and leaves. Moreover, EGCG induced the transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and decreased Cd content and photoinhibition in leaves. Interestingly, similar to EGCG, exogenous H2O2 application also enhanced Cd tolerance; however, the application of an NADPH oxidase inhibitor, diphenyleneiodonium (DPI), aggravated Cd phytotoxicity and attenuated the beneficial effects of EGCG on plant tolerance to Cd stress, suggesting that root applied EGCG-induced expression of RBOH1 and associated H2O2 signaling mediate the EGCG-induced enhanced Cd tolerance. This work elucidates a fundamental mechanism behind EGCG-mediated Cd tolerance and contributes to our existing knowledge of stress resistance properties of EGCG in plants.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China
| | - Ming-Ya Fang
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, PR China
| | - Qing-Jing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhi-Miao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables.
| |
Collapse
|
20
|
Wang S, Liu S, Hao G, Zhao L, Lü X, Wang H, Wang L, Zhang J, Ge W. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Pei J, Yu H, Qiu W, Mei J, Xie J. Antimicrobial Effect of Epigallocatechin Gallate Against Shewanella putrefaciens ATCC 8071: A Study Based on Cell Membrane and Biofilm. Curr Microbiol 2022; 79:297. [PMID: 35996024 DOI: 10.1007/s00284-022-02978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023]
Abstract
The study was to evaluate the antimicrobial impacts and biofilm influences on epigallocatechin gallate (EGCG) against Shewanella putrefaciens ATCC 8071. The minimum inhibitory concentration (MIC) of EGCG on S. putrefaciens was 160 μg mL-1. The growth curve exhibited that EGCG had a good antimicrobial activity. EGCG caused damages to the bacterial cell wall and membrane based the intracellular component leakage and cell viability analysis. The damage to the membrane integrity by EGCG has been confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM shows deformation of shape, TEM shows cell membrane and wall damage, and the leakage of cytoplasmic material. The treatment with EGCG at 0.25× and 0.5× MIC resulted in decreased motility and elevated levels of oxidative stress, leading to an increase in biofilm formation. These results demonstrated that EGCG may be used as a natural preservative to reduce S. putrefaciens in fish during cold storage.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
22
|
Fahmi A, Syukur S, Chaidir Z, Melia S. GREEN TEA ETHANOL EXTRACT EFFICACY AGAINST PSEUDOMONAS AERUGINOSA. BIOLINK (JURNAL BIOLOGI LINGKUNGAN INDUSTRI KESEHATAN) 2022. [DOI: 10.31289/biolink.v9i1.7336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Research about green tea ethanol extract efficacy against Pseudomonas aeruginosa has been done. The green tea leaves were sourced from tea distributor in Sidamanik District, North Sumatra, Indonesia. Green tea leaves extract was obtained by maceration technique in which green tea leaves were soaked with ethanol 96% for 24 hours. After that, the filtrate was concentrated to be thick extract with no liquid content again. After that, the concentrated extract was made by 5%, 10% and 15% as extract variations. The efficacy of green tea ethanol extract against Pseudomonas aeruginosa was signed by increasing the inhibitory diameter that using disc method, in which the distilled water was used as negative blank. The results obtained for blanks, 5%, 10% and 15% extracts were 0; 1.85; 2.9 and 4.45 mm. The conclusion of this study is that the concentration of the extract is increasing proportionally to its inhibitory power, the higher of extract concentration is higher of its inhibitory activity against Pseudomonas aeruginosa. The conclusion described the green tea ethanol extract was effective to be antibacterial agent against Pseudomonas aeruginosa.
Collapse
|
23
|
Yang C, Wang Z, Gao Y, Li M, Li Y, Dai C, Wang Y, Sun D. EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms. NANOTECHNOLOGY 2022; 33:415101. [PMID: 35777311 DOI: 10.1088/1361-6528/ac7db0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Bacterial infections pose a serious threat to human health, and the development of new antibiotics has not kept pace with the development of bacterial resistance. Therefore, there is an urgent need to design antibiotic-like nano-formulations that break through bacterial resistance mechanisms. In this work, we successfully synthesized a safe and effective antibacterial nano-formulation of Se@Ag@EGCG by self-assembly of epigallocatechin gallate (EGCG)-coated silver nanoparticles (Ag) on the surface of selenium nanowires (Se). Thein vitrobacteriostatic results showed that 40μg ml-1Se@Ag@EGCG had significant antibacterial activity against drug-resistantStaphylococcus aureus(S. aureus) andEscherichia coli(E. coli) by destroying the formation of bacterial biofilm, promoting the production of high concentration reactive oxygen species and destroying bacterial cell wall. In addition, the results ofin vivoantibacterial experiments showed that subcutaneous administration of 10 mg kg-1of Se@Ag@EGCG could promote wound healing by reducing apoptosis and inflammatory responses in infected wounds. It is worth mentioning that the reduced and modified Se@Ag@EGCG by this natural product has negligiblein vivotoxicity. This development strategy of nano-antibacterial materials, which breaks through the drug resistance mechanism, provides new ideas for the development of drugs for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chenhao Yang
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Yue Gao
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Man Li
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Chunxue Dai
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Yunsheng Wang
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| |
Collapse
|
24
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
25
|
Comprehensive analysis of antibacterial and anti-hepatoma activity of metabolites from jujube fruit. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Preparation of epigallocatechin gallate decorated Au-Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. Acta Biomater 2022; 144:168-182. [PMID: 35358735 DOI: 10.1016/j.actbio.2022.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), a widespread degenerative disease characterized by cartilage destruction, has emerged as a public health challenge in the current aging society. In addition to applied steroids and surgery, near-infrared (NIR) sensitive nano-enzyme for the treatment of osteoarthritis through mitochondrial repair and cartilage protection is attractive and promising. In this study, a NIR sensitive multifunctional heterostructure (EGCG (Epigallocatechin gallate) decorated Au-Ag nano-jars (E@Au-Ag)) was introduced as an enzyme-sensitive active nanoplatform for the treatment of osteoarthritis. Molecular biology results indicated that E@Au-Ag possesses intrinsic properties of anti-oxidative stress and was able to reduce the apoptosis rate of chondrocytes by 83.3%. The area of the intra-articular joint cavity injected with E@Au-Ag can be elevated to 46.6 °C under NIR to promote the release of EGCG further to induce cartilage regeneration. X-ray radiography and section staining showed that E@Au-Ag reduced cartilage damage and decreased OARSI scores by approximately 52% after 8 weeks of treatment in a surgically induced OA model. The results demonstrated that this multifunctional enzyme-like nanoplatform with a synergistic NIR sensitive property to facilitate cartilage migration and regeneration repair provides a promising OA treatment strategy. STATEMENT OF SIGNIFICANCE: 1. NIR-sensitive nano-enzyme is gaining much attention in the field of biomedical materials. 2. EGCG decorated Au-Ag nano-heterostructures were utilized as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. 3. The obtained multifunctional Au-Ag nano-heterostructures are promising for osteoarthritis treatment.
Collapse
|
27
|
Sun W, Feng L, Zhang J, Lin K, Wang H, Yan B, Feng T, Cao M, Liu T, Yuan Y, Wang N. Amidoxime Group-Anchored Single Cobalt Atoms for Anti-Biofouling during Uranium Extraction from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105008. [PMID: 35064758 PMCID: PMC8981433 DOI: 10.1002/advs.202105008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Indexed: 05/14/2023]
Abstract
Marine biofouling is one of the most significant challenges hindering practical uranium extraction from seawater. Single atoms have been widely used in catalytic applications because of their remarkable redox property, implying that the single atom is highly capable of catalyzing the generation of reactive oxygen species (ROS) and acts as an anti-biofouling substance for controlling biofouling. In this study, the Co single atom loaded polyacrylamidoxime (PAO) material, PAO-Co, is fabricated based on the binding ability of the amidoxime group to uranyl and cobalt ions. Nitrogen and oxygen atoms from the amidoxime group stabilize the Co single atom. The fabricated PAO-Co exhibits a broad range of antimicrobial activity against diverse marine microorganisms by producing ROS, with an inhibition rate up to 93.4%. The present study is the first to apply the single atom for controlling biofouling. The adsorbent achieves an ultrahigh uranium adsorption capacity of 9.7 mg g-1 in biofouling-containing natural seawater, which decreased only by 11% compared with that in biofouling-removed natural seawater. These findings indicate that applying single atoms would be a promising strategy for designing biofouling-resistant adsorbents for uranium extraction from seawater.
Collapse
Affiliation(s)
- Wenyan Sun
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ke Lin
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Bingjie Yan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tiantian Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| |
Collapse
|
28
|
Wang H, Zou H, Wang Y, Jin J, Wang H, Zhou M. Inhibition effect of epigallocatechin gallate on the growth and biofilm formation of Vibrio parahaemolyticus. Lett Appl Microbiol 2022; 75:81-88. [PMID: 35353911 DOI: 10.1111/lam.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common marine foodborne pathogen that causes gastroenteritis. With the long-term use of antibiotics, many bacteria become resistant strains, therefore, developing antibiotic-free antimicrobial strategies is urgent. Epigallocatechin gallate (EGCG) as the abundant constituent of polyphenols in tea extract has broad-spectrum antibacterial activity and non-toxicity. Here, we took advantage of EGCG to evaluate its inhibition effect on the growth of V. parahaemolyticus 17802 and the biofilm formation, and explore its antibacterial mechanism. It was found that EGCG showed antibacterial activity to V. parahaemolyticus 17802, and the minimum inhibitory concentration (MIC) is 128 μg mL-1 , crystal violet staining and confocal laser scanning microscope (CLSM) evidenced EGCG hindered its biofilm formation. Moreover, the swimming motility and extracellular polysaccharides were also notably inhibited. The antibacterial mechanism was further confirmed by several assays, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), live/dead staining assay, together with membrane permeability assay, which all suggested that EGCG caused damage to cell membrane and made it lose integrity, eventually resulting in the death of V. parahaemolyticus 17802. The bactericidal activity of EGCG verified its potential as a promising candidate to combat foodborne pathogen.
Collapse
Affiliation(s)
- Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Han Zou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Yudong Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Jiaqi Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| |
Collapse
|
29
|
Zhang W, Liu Y, Zhang X, Wu Z, Weng P. Tea polyphenols-loaded nanocarriers: preparation technology and biological function. Biotechnol Lett 2022; 44:387-398. [PMID: 35229222 DOI: 10.1007/s10529-022-03234-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
Abstract
Tea polyphenols (TP) have various biological functions including anti-oxidant, anti-bacterial, anti-apoptotic, anti-inflammatory and bioengineered repair properties. However, TP exhibit poor stability and bioavailability in the gastrointestinal tract. Nanoencapsulation techniques can be used to protect TP and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. Nano-embedded TP show higher antioxidant, antibacterial and anticancer properties than TP, allowing TP to play a better role in bioengineering restoration after embedding. In this review, recent advances in nanoencapsulation of TP with biopolymeric nanocarriers (polysaccharides and proteins), lipid-based nanocarriers and innovative developments in preparation strategies were mainly discussed. Additionally, the strengthening biological functions of stability and bioavailability, antioxidant, antibacterial, anticancer activities and bioengineering repair properties activities after the nano-embedding of TP have been considered. Finally, further studies could be conducted for exploring the application of nanoencapsulated systems in food for industrial applications.
Collapse
Affiliation(s)
- Wanni Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
30
|
Action mode of cuminaldehyde against Staphylococcus aureus and its application in sauced beef. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Shi YG, Li DH, Kong YM, Zhang RR, Gu Q, Hu MX, Tian SY, Jin WG. Enhanced antibacterial efficacy and mechanism of octyl gallate/beta-cyclodextrins against Pseudomonas fluorescens and Vibrio parahaemolyticus and incorporated electrospun nanofibers for Chinese giant salamander fillets preservation. Int J Food Microbiol 2022; 361:109460. [PMID: 34785387 DOI: 10.1016/j.ijfoodmicro.2021.109460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
A series of alkyl gallates were evaluated for the antibacterial activity against two common Gram-negative foodborne bacteria (Pseudomonas fluorescens and Vibrio parahaemolyticus) associated with seafood. The length of the alkyl chain plays a pivotal role in eliciting their antibacterial activities and octyl gallate (OG) exerted an excellent inhibitory efficacy. To extend the aqueous solubility, stability, and bactericidal properties of octyl gallate (OG), an inclusion complex between OG and β-cyclodextrin (βCD), OG/βCD, was prepared and identified with various methods including X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the enhanced inhibitory effect and potential antibacterial mechanism of OG/βCD against two Gram-negative and Gram-positive foodborne bacteria were comprehensively investigated. The results show that OG/βCD could function against bacteria through effectively damaging the membrane, permeating into cells, and then disturbing the activity of the respiratory electron transport chain to cause the production of high-level intracellular hydroxyl radicals. Moreover, the reinforced OG/βCD-incorporated polylactic acid (PLA) nanofibers were fabricated using the electrospinning technique as food packaging to extend the Chinese giant salamander fillet's shelf life at 4 °C. This research highlights the antibacterial effectiveness of OG/βCD in aqueous media, which can be used as a safe multi-functionalized food additive combined with the benefits of electrospun nanofibers to extend the Chinese giant salamander fillets shelf life by 15 d at 4 °C.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Ming Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Run-Run Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
32
|
Wang S, Deng H, Wang Y, Rui W, Zhao P, Yong Q, Guo D, Liu J, Guo X, Wang Y, Shi C. Antimicrobial Activity and Action Mechanism of Thymoquinone against Bacillus cereus and Its Spores. Foods 2021; 10:foods10123048. [PMID: 34945598 PMCID: PMC8701015 DOI: 10.3390/foods10123048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, thymoquinone (TQ), a natural active substance, was investigated for its antibacterial activity against Bacillus cereus, and its inhibitory effect on B. cereus in reconstituted infant formula (RIF) was evaluated. In addition, the inhibitory effect of TQ on B. cereus spore germination was explored. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of TQ against eight B. cereus strains ranged from 4.0 to 8.0 μg/mL, whereas B. cereus treated with TQ displayed a longer lag phase than the untreated control. TQ exerted a good bactericidal effect on B. cereus in Luria–Bertani broth. In addition, TQ obviously reduced the intracellular ATP concentration of B. cereus, which caused depolarization of the cell membrane, increased the intracellular reactive oxygen species level, impaired the cell morphology, and destroyed proteins or inhibited proteins synthesis. This provides a mechanism for its bacteriostatic effect. TQ also inactivated B. cereus growth in RIF. Moreover, reverse transcription–quantitative polymerase chain reaction illustrated that TQ downregulated the transcription of genes related to hemolysin, non-hemolytic enterotoxin, enterotoxin, and cytotoxin K. Meanwhile, TQ displayed the ability to inhibit the germination of B. cereus spores. These findings indicate that TQ, as an effective natural antimicrobial preservative, has potential applications in controlling food contamination and foodborne diseases caused by B. cereus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chao Shi
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
33
|
Hu QM, Yang Z, Zhang YY, Bao GH. Efficient development of antibacterial (−) -epigallocatechin gallate-PBCA nanoparticles using ethyl acetate as oil phase through interfacial polymerization. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Ding J, Gao B, Chen Z, Mei X. An NIR-Triggered Au Nanocage Used for Photo-Thermo Therapy of Chronic Wound in Diabetic Rats Through Bacterial Membrane Destruction and Skin Cell Mitochondrial Protection. Front Pharmacol 2021; 12:779944. [PMID: 34925036 PMCID: PMC8671044 DOI: 10.3389/fphar.2021.779944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.
Collapse
Affiliation(s)
| | - Binbin Gao
- Jinzhou Central Hospital, Jinzhou, China
| | | | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
35
|
Wang R, Fang M, Hu X, Yu Y, Xiao X. Kojic acid and tea polyphenols inactivate
Escherichia coli
O157:H7
in vitro
and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruifei Wang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Meimei Fang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinyi Hu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Yigang Yu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| |
Collapse
|
36
|
Chen Y, Cheng S, Dai J, Wang L, Xu Y, Peng X, Xie X, Peng C. Molecular mechanisms and applications of tea polyphenols: A narrative review. J Food Biochem 2021; 45:e13910. [PMID: 34426979 DOI: 10.1111/jfbc.13910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
Tea is a worldwide popular drink with high nutritional and medicinal values as it is rich in nutrients, such as polyphenols, amino acids, vitamins, glycosides, and so on. Among them, tea polyphenols (TPs) are the current research hotspot. TPs are known to have multiple biological activities such as anti-oxidation, anti-tumor, anti-inflammation, anti-bacteria, lowering lipid, and liver protection. By reviewing a large number of literatures, we explained the mechanism of TPs exerting biological activity and a wide range of applications. We also discussed the deficiencies and development potential of TPs, in order to provide theoretical reference and scientific basis for the subsequent development and utilization of TPs. PRACTICAL APPLICATIONS: We summarized the bioactivity mechanisms of TPs in anti-tumor, anti-oxidation, antibacterial, anti-inflammatory, lipid-lowering, and liver protection, focused on its application fields in food and medicine, and discussed the deficiency and development potential of current research on TPs, so as to provide a certain convenient way for scholars studying TPs. It is expected to contribute to the subsequent discovery of biological activity and the broadening of the field of TPs.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Cheng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangang Dai
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Xu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Peng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
38
|
Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021; 26:4886. [PMID: 34443474 PMCID: PMC8398118 DOI: 10.3390/molecules26164886] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.
Collapse
Affiliation(s)
- Paulina Mucha
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Anna Skoczyńska
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 41-200 Sosnowiec, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland;
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
39
|
Dos Santos MM, de Souza Prestes A, de Macedo GT, Ferreira SA, Souza Vargas JL, Schüler LC, de Bem AF, de Vargas Barbosa N. Syzygium cumini leaf extract protects macrophages against the oxidized LDL-induced toxicity: A promising atheroprotective effect. Biomed Pharmacother 2021; 142:111196. [PMID: 34210581 DOI: 10.1016/j.biopha.2020.111196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 10/21/2022] Open
Abstract
Oxidized LDL (oxLDL) plays a pivotal role on atherosclerosis development, mainly in the formation of lipid-laden macrophage "foam cells". As a consequence, substances that can modulate LDL oxidation have a pharmacological and therapeutic relevance. Based in previous findings showing the ability of Syzigium cumini leaf extract (ScExt) in preventing LDL oxidation in vitro, this study was aimed to assess the effects of ScExt on oxLDL-mediated toxicity in murine J774 macrophages-like cells. For biochemical analyses, LDL isolated from fresh human plasma and oxidized with CuSO4 was incubated with ScExt pre-treated macrophages. Our results demonstrated that ScExt was efficient in preventing the overproduction of reactive oxygen/nitrogen species (ROS/RNS), the loss of macrophage's viability and the foam cells formation induced by oxLDL. These protective effects of ScExt make it a promising antioxidant for future trials toward atherogenesis.
Collapse
Affiliation(s)
- Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - João Luís Souza Vargas
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Luana Caroline Schüler
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Andreza Fabro de Bem
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Nilda de Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
40
|
Physiological Dose of EGCG Attenuates the Health Defects of High Dose by Regulating MEMO-1 in Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546493. [PMID: 34257807 PMCID: PMC8249131 DOI: 10.1155/2021/5546493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
EGCG, as a dietary-derived antioxidant, has been extensively studied for its beneficial health effects. Nevertheless, it induces the transient increase in ROS and leads to the hormetic extension of lifespan. How exactly biology-benefiting effects with the minimum severe adverse are realized remains unclear. Here, we showed that physiological dose of EGCG could help moderate remission in health side effects exposed to high doses, including shortened lifespan, reduced body size, decreased pharyngeal pumping rate, and dysfunctional body movement in C. elegans. Furthermore, we found this result was caused by the physiological dose of EGCG to block the continued ROS accumulation and triggered acclimation responses after stressor removal. Also, in this process, we observed that EGCG downregulated the key redox protein MEMO-1 to activate the feedback loop of NADPH oxidase-mediated redox signaling. Our data indicates that the feedback signal induced by NADPH oxidase may contribute to the health-protective mechanism of dietary polyphenols in vivo.
Collapse
|
41
|
Shah NA, Ren Y, Lan R, Lv J, Gul RM, Tan P, Huang S, Tan L, Xu J, Li Z. Ultrahigh molecular weight polyethylene with improved crosslink density, oxidation stability, and microbial inhibition by chemical crosslinking and tea polyphenols for total joint replacements. J Appl Polym Sci 2021. [DOI: 10.1002/app.51261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nouman Ali Shah
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Ri‐Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jia‐Cheng Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Rizwan M. Gul
- Department of Mechanical Engineering University of Engineering and Technology Peshawar Pakistan
| | - Peng‐Fei Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu China
| | - Lin Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
42
|
Yang Y, Han X, Chen Y, Wu J, Li M, Yang H, Xu W, Wei L. EGCG Induces Pro-inflammatory Response in Macrophages to Prevent Bacterial Infection through the 67LR/p38/JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5638-5651. [PMID: 33993695 DOI: 10.1021/acs.jafc.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive studies focused on the therapeutic efficacy of epigallocatechin-3-gallate (EGCG) against bacterial infection. However, little is known about its prophylactic efficacy against bacterial infection. Herein, we found that EGCG showed an effective prophylactic efficacy against bacterial infection with a broad spectrum, including Gram-negative, Gram-positive, and drug-resistant bacteria. Pretreatment with EGCG through intraperitoneal injection, intravenous injection, or intragastric administration significantly reduced the bacterial load, inflammatory response, and mortality in mouse abdominal infection models induced by bacterial inoculation or cecal ligation and puncture. Pretreatment with EGCG by intraperitoneal injection significantly increased the numbers of neutrophils and monocytes/macrophages in the abdominal cavity and peripheral blood of mice, and depletion of neutrophils and monocytes/macrophages by specific antibodies or chemical drugs obviously increased the bacterial load in mice. Of note, EGCG did not directly induce neutrophil and macrophage migration, and it just induced phagocyte migration in the presence of macrophages in a co-cultured system, implying that EGCG-induced phagocyte migration relies on its immunoregulatory effects on macrophages. EGCG markedly induced the production of cytokines and chemokines in macrophages and mouse peritoneal lavage, including tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6, CXC chemokine ligands 1 and 2 (CXCL1 and 2), and monocyte chemotactic protein-1 (MCP-1). EGCG significantly induced the phosphorylation of p38 and JNK mitogen-activated protein kinases (MAPKs) in macrophages, and inhibition of p38 and JNK MAPKs markedly reduced EGCG-induced chemokine and cytokine production. Anti-67-kDa laminin receptor (67LR) antibody treatment significantly reduced EGCG-induced chemokine production and p38 and JNK phosphorylation in macrophages. Together, EGCG showed an obvious prophylactic efficacy against bacterial infection by inducing a pro-inflammatory response in macrophages through the 67LR/p38/JNK signaling pathway, supporting the further development of EGCG as a potent prophylaxis for bacterial infection and providing new clues to understand the healthcare function of green tea.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoyang Han
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
43
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
44
|
Hao S, Yang D, Zhao L, Shi F, Ye G, Fu H, Lin J, Guo H, He R, Li J, Chen H, Khan MF, Li Y, Tang H. EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4946. [PMID: 34066609 PMCID: PMC8125375 DOI: 10.3390/ijms22094946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.
Collapse
Affiliation(s)
- Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| |
Collapse
|
45
|
On the mechanism behind enhanced antibacterial activity of alkyl gallate esters against foodborne pathogens and its application in Chinese icefish preservation. Food Microbiol 2021; 99:103817. [PMID: 34119102 DOI: 10.1016/j.fm.2021.103817] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022]
Abstract
The objective of this study was to investigate antibacterial activities and action mode of alkyl gallates against three food-related bacteria. Results show that the length of the alkyl chain plays a critical role in eliciting their antibacterial activities and octyl gallate (GAC8) exhibited an outstanding bactericidal effect against these strains. A possible bactericidal mechanism of GAC8 against E. coli was fully elucidated by analyzing associated changes in cellular functions of E. coli, including assessments of membrane modification and intracellular oxidation state. Our data strongly suggested that GAC8 functions outside and inside the bacterial membrane and causes increased intracellular reactive oxygen species (hydroxyl radicals) and subsequent oxidative damage. We demonstrated that the hydroxyl radical formation induced by GAC8 is the end product of an oxidative damage cellular death pathway involving a transient depletion of NADH, the tricarboxylic acid cycle, intrinsic redox cycling activities, and stimulation of the Fenton reaction. Also, chitosan-based edible films containing GAC8 have unique superiorities for icefish preservation at 4 °C. This research highlights the effectiveness of GAC8 as an attractive antibacterial, which possesses both antioxidant and antibacterial activities and can be used as a multifunctional food additive combined with the benefit of active packaging for food preservations.
Collapse
|
46
|
Controlled bacteriostasis of tea polyphenol loaded ultrahigh molecular weight polyethylene with high crosslink density and oxidation resistance for total joint replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112040. [PMID: 33947540 DOI: 10.1016/j.msec.2021.112040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
To avoid catastrophic bacterial infection in prosthesis failure, ultrahigh molecular weight polyethylene (UHMWPE), a common bearing material of artificial joints, has been formulated with antibiotics to eliminate bacteria locally at the implant site. However, the pressing issues regarding cytotoxic effects and evolution of drug resistant bacteria necessitates the development of bio-friendly bacteriostat with long bacteriostatic efficacy. Herein, tea polyphenol extracted from nature source was introduced in UHMWPE as a biogenic antimicrobial. Controlled antimicrobial activity was achieved by chemical crosslinking to regulate the release of the tea polyphenol. In addition, the crosslinking efficiency of UHMWPE blends with high loaded tea polyphenol was significantly improved in comparison to radiation crosslinking. The immobilized tea polyphenols also enhanced the oxidation stability of the UHMWPE, which is essential to prolong the service life in vivo and the storage time in vitro. The blends presented good biocompatibility, despite cell repellent on the highly crosslinked surface. Chemically crosslinked tea polyphenol/UHMWPE exhibited feasible properties for total joint implants, which is promising for clinical application.
Collapse
|
47
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
48
|
Efenberger-Szmechtyk M, Nowak A, Czyżowska A, Śniadowska M, Otlewska A, Żyżelewicz D. Antibacterial mechanisms of Aronia melanocarpa (Michx.), Chaenomeles superba Lindl. and Cornus mas L. leaf extracts. Food Chem 2021; 350:129218. [PMID: 33621817 DOI: 10.1016/j.foodchem.2021.129218] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the in vitro antibacterial mechanisms of Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts towards meat spoilage and pathogenic bacteria. The extracts decreased bacterial viability after 24 h and 48 h of incubation. Acting as prooxidants, the extracts induced intracellular ROS (reactive oxygen species) generation in bacteria cells, with C. mas having the strongest influence. The leaf extracts increased the release of UV intracellular absorbing components, suggesting a reduction in membrane integrity. They also increased the outer-membrane permeability of the Gram-negative bacteria, with C. superba extract being the most active. Following exposure to the leaf extracts, morphological changes in the bacteria were observed, including the formation of aggregates, EPS synthesis, irregular forms, wrinkled cell surfaces, pores in the cell wall, and shriveling of cells. The leaf extracts inhibited DNA synthesis in E. coli cells by suppressing DNA gyrase activity.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Monika Śniadowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| |
Collapse
|
49
|
The improvement of carboxymethyl β-glucan on the antibacterial activity and intestinal flora regulation ability of lotus seedpod procyanidins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|