1
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Han X, Shi Z, Wu Z, Zeng X, Sun Y, Yao K, Shen Q, Fan X, Luo J, Pan D. AGEs in cooked meat: Production, detection, and mechanisms of its inhibition by plant extracts. Food Res Int 2025; 207:116067. [PMID: 40086958 DOI: 10.1016/j.foodres.2025.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
With the growing demand for food safety and nutrition, the challenge of ensuring the quality of cooked meat products while reducing the accumulation of AGEs during processing needs urgent attention. In this study, the patterns of AGEs production, detection methods, quality contribution, and molecular mechanisms of its inhibition by natural plant-based extracts (NPBE) in cooked meat products were comprehensively reviewed. NPBE can effectively reduce the accumulation of AGEs in meat by binding to AGEs precursors and reducing glycosylation sites. It has also been shown to significantly remove off-flavour, and inhibit protein carbonylation. The potential for synergistic inhibition of AGE formation using NPBE and exogenous physical field treatments such as pulsed electric fields, microwave irradiation, thermal cycling of air, and ultrasound was emphasized, as well as the urgent need for the development of portable AGE detectors integrated with artificial intelligence and big data analytical models. This study indicates the future research direction for inhibiting the generation of AGEs in cooked meat products, which can promote and guide the practical application of NPBE in cooked meat products.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zihang Shi
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhen Wu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yangying Sun
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kaiyong Yao
- Lanhai Ecological Agriculture (Hangzhou) Co., Ltd, Hangzhou 311402, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Xiankang Fan
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Daodong Pan
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Liu Y, Liang Y, Qiu R, Huang C, Zheng J, Liu F, Ou S, Ou J. Formation of amino acid-based imidazole salts considerably increased the determined level of fluorescent advanced glycation end products in biscuits. Food Chem 2025; 466:142227. [PMID: 39608115 DOI: 10.1016/j.foodchem.2024.142227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Glycine, serine, and γ-aminobutyric acid are effective scavengers of reactive carbonyl species and should inhibit the formation of advanced glycation end products (AGEs). However, here we found that amino acids unexpectedly increased the intensity of fluorescent AGEs in biscuits. This study aimed to elucidate these contradictory findings and highlight concerns regarding the determination of fluorescent AGEs in foods. In gliadin-methylglyoxal (MGO) glycation model, amino acids were found to induce formaldehyde formation from MGO. Thereafter, formaldehyde and MGO reacted with the amino acids to generate imidazole salts. The imidazole salts exhibited broad fluorescence range, overlapping with the fluorescence range used to determine fluorescent AGEs in foods, thus resulting in an apparent increase in fluorescent AGEs content after amino acid addition. Since amino acids are ubiquitous in food materials, the formation of imidazole salts during food processing may result in an overestimation of fluorescent AGEs in foods.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yufeng Liang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ruixia Qiu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center, Guangzhou College of Technology and Business, Guangzhou 510580, China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Chen N, Wang N, Fang Q, Yu Z, Hu Y, Jin J, Yang S. Inhibition effect of AGEs formation in vitro by the two novel peptides EDYGA and DLLCIC derived from Pelodiscus sinensis. Front Nutr 2025; 12:1537338. [PMID: 39949540 PMCID: PMC11821488 DOI: 10.3389/fnut.2025.1537338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The antioxidant activity of natural products is closely related to their antiglycation effects. This study aimed to examine the antiglycation activity and elucidate the underlying mechanisms of two specific peptides, EDYGA (Glu-Asp-Tyr-Gly-Ala) and DLLCIC (Asp-Leu-Leu-Cys-Ile-Val), derived from protein hydrolysates of the Pelodiscus sinensis. Both EDYGA and DLLCIC were efficient in bovine serum albumin (BSA)/glucose model to inhibit BSA glycation, while DLLCIC showed higher antiglycation activity than EDYGA. Firstly, it was found that EDYGA and DLLCIC could inhibit the formation of NEG and AGEs. Moreover, EDYGA and DLLCIC were able to maintain the protein secondary structure and stabilize the band positions (amide I & II). Additionally, molecular simulations indicated that DLLCIC can spontaneously interact with the central site of BSA, specifically at Lys114 and Glu424 residues, through hydrogen bonds with an energy strength of -0.7 kcal/mol. Furthermore, CCK-8 and morphological experiments confirmed that EDYGA and DLLCIC improved cell survival against AGEs-induced cytotoxicity, with EC50 values of 17.64 μM for EDYGA and 15.08 μM for DLLCIC. These findings serve as a significant reference for the development of EDYGA and DLLCIC as effective antiglycation agents in the prevention of glycation-mediated diseases.
Collapse
Affiliation(s)
- Nuo Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qiaoyun Fang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zuolong Yu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Yiyuan Hu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jiancang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
El-Desouky TA. Evaluation of ozonated and ultrasonically treated corn starch as an adsorbent for patulin in buffer solutions. Sci Rep 2025; 15:2264. [PMID: 39825024 PMCID: PMC11742034 DOI: 10.1038/s41598-025-85108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025] Open
Abstract
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity. Adsorption efficiency was tested across different adsorbent doses (150 mg, 200 mg, 250 mg) and contact times (15, 30, 45, and 60 min). The highest removal efficiency of 92.5% was recorded for the 250 mg dose at 60 min, with USOCS showing superior performance compared to native corn starch and OCS. Kinetic studies revealed that the pseudo-second-order model provided the best fit for the adsorption process, indicating chemisorption as the dominant mechanism. The Langmuir and Freundlich isotherms were used to describe the adsorption behavior, with a maximum adsorption capacity (qmax) of 15.19 µg/mg and a Langmuir constant (KL) of 54.00 L/µg for the 250 mg dose. Additionally, the modified starch demonstrated consistent adsorption performance at varying concentrations, with a favorable adsorption intensity (n > 1), supporting its potential for practical applications. These findings highlight the modified corn starch as an efficient, biodegradable, and low-cost adsorbent suitable for mitigating patulin contamination in food products, offering a sustainable alternative for improving food safety.
Collapse
Affiliation(s)
- Tarek A El-Desouky
- Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
6
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
7
|
Wang L, Jiang Y, Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024; 33:e15065. [PMID: 38563644 DOI: 10.1111/exd.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.
Collapse
Affiliation(s)
- Lingyu Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| |
Collapse
|
8
|
Shi B, Wang H, Nawaz A, Khan IA, Wang Q, Zhao D, Cheng KW. Dual functional roles of nutritional additives in nutritional fortification and safety of thermally processed food: Potential, limitations, and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13268. [PMID: 38284588 DOI: 10.1111/1541-4337.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/30/2024]
Abstract
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Collapse
Affiliation(s)
- Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Iftikhar Ali Khan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Šeremet D, Durgo K, Kosanović J, Huđek Turković A, Mandura Jarić A, Vojvodić Cebin A, Komes D. Studying the Functional Potential of Ground Ivy ( Glechoma hederacea L.) Extract Using an In Vitro Methodology. Int J Mol Sci 2023; 24:16975. [PMID: 38069297 PMCID: PMC10707382 DOI: 10.3390/ijms242316975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Glechoma hederacea L., known as ground ivy, has a long history of use in folk medicine. The main bioactive compounds in ground ivy are polyphenolic compounds known for their potent antioxidant and antimicrobial activities and thus have high potential as functional ingredients against bacterial infections and the occurrence of chronic diseases associated with oxidative stress in the human body. The aim of the present study was to determine the biological activity of ground ivy extract on selected human cell lines, including hepatic (HepG2), tongue (CAL 27), gastric (AGS) and colon (Caco-2) cancer cell lines by evaluating cytotoxicity, formation of reactive oxygen species and genotoxicity. The antioxidant capacity of the extract was additionally evaluated using cellular model macromolecules of protein and DNA, bovine serum album and plasmid phiX174 RF1 DNA. The effect of ground ivy extract on representatives of human microflora, including L. plantarum, E. coli and S. aureus, was also studied. The cytotoxicity of the extract depended on the type of cells treated, and the pro-oxidant effect generally decreased with increasing exposure time. The most pronounced genoprotective effect against hydroxyl radical damage was monitored in model plasmid DNA and occurred at the highest tested concentration (0.25 mg mL-1), with 95.89% preservation of the supercoiled form of the plasmid. This concentration also had the most significant antioxidant activity on the model protein-14.01% more than the positive control prepared using Trolox. The ground ivy extract showed high antimicrobial potential against the pathogenic bacteria E. coli and S. aureus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Draženka Komes
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (D.Š.); (K.D.); (J.K.); (A.H.T.); (A.M.J.); (A.V.C.)
| |
Collapse
|
10
|
Lyu C, Kong W, Liu Z, Wang S, Zhao P, Liang K, Niu Y, Yang W, Xiang C, Hu X, Li X, Du Y. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat Biomed Eng 2023; 7:1437-1454. [PMID: 37037967 DOI: 10.1038/s41551-023-01019-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
The extracellular matrix of cirrhotic liver tissue is highly crosslinked. Here we show that advanced glycation end-products (AGEs) mediate crosslinking in liver extracellular matrix and that high levels of crosslinking are a hallmark of cirrhosis. We used liquid chromatography-tandem mass spectrometry to quantify the degree of crosslinking of the matrix of decellularized cirrhotic liver samples from patients and from two mouse models of liver fibrosis and show that the structure, biomechanics and degree of AGE-mediated crosslinking of the matrices can be recapitulated in collagen matrix crosslinked by AGEs in vitro. Analyses via cryo-electron microscopy and optical tweezers revealed that crosslinked collagen fibrils form thick bundles with reduced stress relaxation rates; moreover, they resist remodelling by macrophages, leading to reductions in their levels of adhesion-associated proteins, altering HDAC3 expression and the organization of their cytoskeleton, and promoting a type II immune response of macrophages. We also show that rosmarinic acid inhibited AGE-mediated crosslinking and alleviated the progression of fibrosis in mice. Our findings support the development of therapeutics targeting crosslinked extracellular matrix in scarred liver tissue.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sihan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Canhong Xiang
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xueming Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Iglesias-Carres L, Racine KC, Chadwick S, Nunn C, Kalambur SB, Neilson AP, Ferruzzi MG. Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Yuan XY, He J, Su H, Liu H, Sun B. Magnetically Controlled Nanorobots Based on Red Emissive Peptide Dots and Artificial Antibodies for Specific Recognition and Smart Scavenging of Nε-(Carboxymethyl)lysine in Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4970-4981. [PMID: 36897289 DOI: 10.1021/acs.jafc.2c08777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Food-borne advanced glycation end products (AGEs) are highly related to various irreversible diseases, and Nε-(carboxymethyl)lysine (CML) is the typical hazardous AGE. The development of feasible strategies to monitor and reduce CML exposure has become desirable to address the problems. In this work, we proposed magnetically controlled nanorobots by integrating an optosensing platform with specific recognition and binding capability, realizing specific anchoring and accurate determination as well as efficient scavenging of CML in dairy products. The artificial antibodies offered CML imprinted cavities for highly selective absorption, and the optosensing strategy was designed based on electron transfer from red emissive self-assembling peptide dots (r-SAPDs) to CML, which was responsible for the identity, response, and loading process. The r-SAPDs overcame the interference from autofluorescence, and the limit of detection was 0.29 μg L-1, which bestowed accuracy and reliability for in situ monitoring. The selective binding process was accomplished within 20 min with an adsorption capacity of 23.2 mg g-1. Through an external magnetic field, CML-loaded nanorobots were oriented, moved, and separated from the matrix, which enabled their scavenging effects and reusability. The fast stimuli-responsive performance and recyclability of the nanorobots provided a versatility strategy for effective detection and control of hazards in food.
Collapse
Affiliation(s)
- Xin-Yue Yuan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jingbo He
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
13
|
Boz H. N ϵ -(carboxymethyl)lysine in bakery products: A review. J Food Sci 2023; 88:901-908. [PMID: 36695775 DOI: 10.1111/1750-3841.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to draw attention to the Nϵ -(carboxymethyl)lysine (CML) content of bakery products with respect to their formation during baking and their health effects. Phenolic components added to the formulation in bakery products significantly reduce the formation of CML. Among the phenolic components, ferulic acid showed the most significant lowering effect on CML. Among the flavanones tested in the model cookie system, dihydromyricetin exhibited the strongest CML-reducing effect. The addition of fat-, sugar-, and protein-rich ingredients to the formulations of bakery products generally increases the CML content in these products. In addition, the addition of components that have a water activity-reducing effect, such as dietary fiber, and the high temperature in baking also increase the formation of CML. Therefore, the food industry should also focus on optimizing food production to minimize CML formation while maintaining the safety and organoleptic properties of bakery products. PRACTICAL APPLICATION: The CML level in foods is likely to increase 200 times with an increase in cooking temperature. The addition of protein and fat to bakery product formulations can increase CML formation. The addition of glucose in cakes can produce higher levels of CML than fructose, refined sucrose, or unrefined sucrose. Phenolic compounds have a reducing effect on CML formation in bakery products.
Collapse
Affiliation(s)
- Hüseyin Boz
- Gastronomy and Culinary Arts Department, Tourism Faculty, Erzurum, Turkey
| |
Collapse
|
14
|
Ullah I, Hassan M, Khan KM, Sajid M, Umar M, Hassan S, Ullah A, El-Serehy HA, Charifi W, Yasmin H. Thiourea derivatives inhibit key diabetes-associated enzymes and advanced glycation end-product formation as a treatment for diabetes mellitus. IUBMB Life 2023; 75:161-180. [PMID: 36565478 DOI: 10.1002/iub.2699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
This study was designed to screen novel thiourea derivatives against different enzymes, such as α-amylase, α-glucosidase, protein tyrosine phosphatase 1 B, and advanced glycated end product (AGEs). A cytotoxicity analysis was performed using rat L6 myotubes and molecular docking analysis was performed to map the binding interactions between the active compounds and α-amylase and α-glucosidase. The data revealed the potency of five compounds, including E (1-(2,4-difluorophenyl)-3-(3,4-dimethyl phenyl) thiourea), AG (1-(2-methoxy-5-(trifluoromethyl) phenyl)-3-(3-methoxy phenyl) thiourea), AF (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), AD (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), and AH (1-(2,4-difluorophenyl)-3-(2-iodophenyl) thiourea), showed activity against α-amylase. The corresponding percentage inhibitions were found to be 85 ± 1.9, 82 ± 0.7, 75 ± 1.2, 72 ± 0.4, and 65 ± 1.1%, respectively. These compounds were then screened using in vitro assays. Among them, AH showed the highest activity against α-glucosidase, AGEs, and PTP1B, with percentage inhibitions of 86 ± 0.4% (IC50 = 47.9 μM), 85 ± 0.7% (IC50 = 49.51 μM), and 85 ± 0.5% (IC50 = 79.74 μM), respectively. Compound AH showed an increased glucose uptake at a concentration of 100 μM. Finally, an in vivo study was conducted using a streptozotocin-induced diabetic mouse model and PTP1B expression was assessed using real-time PCR. Additionally, we examined the hypoglycemic effect of compound AH in diabetic rats compared to the standard drug glibenclamide.
Collapse
Affiliation(s)
- Imran Ullah
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Mukhtiar Hassan
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Khalid M Khan
- H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Umar
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Amin Ullah
- Department of Health and Biological Sciecnes, Abasyn University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Charifi
- Cochin Institute, University of Paris, INSERM, U1016, Paris, France
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
15
|
Yang SH, Tao G, Yang L, Wu X, Liu JW, Dagher F, Ou SY, Song Y, Huang JQ. Dietary phytochemical and metabolic disease prevention: Focus on plant proteins. Front Nutr 2023; 10:1089487. [PMID: 36761228 PMCID: PMC9905127 DOI: 10.3389/fnut.2023.1089487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Plant-based functional foods have attracted increasing research interest to validate their use in preventing metabolic disease. Since it is increasingly recognized that inflammation, oxidative stress, and circadian rhythm play vital roles in various metabolic diseases, including diabetes, obesity and non-alcoholic liver disease, plant proteins, protein hydrolysates, and food extracts that intervene in these biological processes are promising dietary supplements to prevent metabolic diseases. Here, we reviewed the recent research on plant-based foods used for metabolic disease prevention and provided new perspectives regarding the current study gaps and future directions in this field.
Collapse
Affiliation(s)
- Song-hong Yang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Liu Yang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xiaohui Wu
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing-wen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Shi-yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yuan Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China,Yuan Song,
| | - Jun-qing Huang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Jun-qing Huang,
| |
Collapse
|
16
|
GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010093. [PMID: 36615289 PMCID: PMC9821822 DOI: 10.3390/molecules28010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Salvia fruticosa and S. pomifera subsp. calycina are native to Eastern Mediterranean and S. pomifera subsp. pomifera is endemic to Greece. The primary aim of this study was to develop an analytical methodology for metabolomic profiling and to study their efficacy in combating glycation, the major biochemical complication of diabetes. After sequential ultrasound-assisted extraction of 2 g of leaves with petroleum ether and 70% methanol, the volatile metabolites in the petroleum ether extracts were studied with GC-MS (Gas Chromatography-Mass Spectrometry), whereas the polar metabolites in the hydroalcoholic extracts were determined and quantified by UHPLC-DAD-ESI-MS (Ultra-High Performance Liquid Chromatography-Diode Array Detector-Mass Spectrometry). This methodology was applied to five populations belonging to the three native taxa. 1,8-Cineole was the predominant volatile (34.8-39.0%) in S. fruticosa, while S. pomifera had a greater content of α-thujone (19.7-41.0%) and β-thujone (6.0-39.1%). Principal Component Analysis (PCA) analysis of the volatiles could discriminate the different taxa. UHPLC-DAD-ESI-MS demonstrated the presence of 50 compounds, twenty of which were quantified. PCA revealed that not only the taxa but also the populations of S. pomifera subsp. pomifera could be differentiated. All Salvia samples inhibited advanced glycation end-product formation in a bovine serum albumin/2-deoxyribose assay; rosmarinic and carnosic acid shared this activity. This study demonstrates the antiglycation activity of S. fruticosa and S. pomifera extracts for the first time and presents a miniaturized methodology for their metabolomic profiling, which could aid chemotaxonomic studies and serve as a tool for their authentication and quality control.
Collapse
|
17
|
Liu R, Zhang M, Xu L, Liu J, Yang P, Li M, Qin J. Fluorescent advanced glycation end products in type 2 diabetes and its association with diabetes duration, hemoglobin A1c, and diabetic complications. Front Nutr 2022; 9:1083872. [PMID: 36590223 PMCID: PMC9797537 DOI: 10.3389/fnut.2022.1083872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Fluorescent advanced glycation end products (fAGEs) are generated through the Maillard reaction between reducing sugars and amino compounds. fAGEs accumulation in human bodies have been confirmed to be related to many chronic diseases. To date, the correlations between serum fAGEs levels and clinical parameters or carotid intima media thickness (CIMT) in patients with T2DM remain unclear. Thus, this study aimed to investigate the relationship between serum AGEs levels and clinical parameters or CIMT in patients with T2DM. Method A total of 131 patients with diabetes and 30 healthy controls were enrolled. Patients were divided into three groups according to diabetes duration, including ≤5, 5-10, and ≥10 years. Serum fAGEs, protein oxidation products, clinical parameters, and CIMT were determined. Results The result showed that levels of fAGEs and protein oxidation products increased with the increasing duration of diabetics. Pearson correlation coefficients of fAGEs versus hemoglobin A1c (HbA1c) were >0.5 in patients with diabetes duration ≥10 years. A continued increase in fAGEs might cause the increase of HbA1c, urinary albumin/creatinine ratio (UACR) and CIMT in patients with T2DM. Conclusion Our study suggested that levels of fAGEs could be considered as an indicator for duration of diabetics and carotid atherosclerosis. Diabetes duration and smoking might have a synergistic effect on the increment of fAGEs levels, as evidence by the results of correlation analysis in patients with long-duration diabetics (≥10 years) and smoking. The determination of fAGEs might be helpful to advance our knowledge on the overall risk of complications in patients with T2DM.
Collapse
Affiliation(s)
- Rui Liu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China,*Correspondence: Rui Liu,
| | - Mengyao Zhang
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Xu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjin Liu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Pingan Yang
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Li
- Department of Cardiology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Qin
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China,Jie Qin,
| |
Collapse
|
18
|
Inhibitory Effects of Parachlorella Beijerinckii Extracts on the Formation of Advanced Glycation End Products and Glycative Stress-Induced Inflammation in an In Vitro Skin Dermis-Like Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8789903. [PMID: 36387367 PMCID: PMC9643057 DOI: 10.1155/2022/8789903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Advanced glycation end products (AGEs) are formed via a nonenzymatic glycosylation reaction called glycation. The formation and accumulation of AGEs increases in skin with age, contributing to the appearance of facial wrinkles and loss of skin elasticity. Therefore, inhibition of AGEs may delay skin aging. The microalgae Parachlorella beijerinckii has been used as a health food supplement for many years and contains carotenoids and vitamins that have antioxidant and anti-inflammatory effects. The aim of this study was to investigate whether Chlorella extract also has antiglycation activity. Antiglycation activity was measured using fluorescent AGEs, Nε-(carboxymethyl) lysine (CML), and Nε-(carboxymethyl) arginine (CMA) from glycated bovine serum albumin and type I collagen in vitro. A gel with a dermis-like structure consisting of collagen and a live fibroblast cell line was glycated with glyoxal. The content of fluorescent AGE, CML, and CMA, and the gel contraction activity were measured. In addition, to investigate the level of inflammation induced by the glycation of the collagen gel, the expression level of the receptor for AGEs and interleukin-8 were examined. Fat-solubleChlorella extract suppressed the formation of fluorescent AGEs, CML, and CMA in both models. These results indicated that Chlorella extract directly inhibited AGE formation. The collagen gel contracted over time during culturing, whereas contraction was inhibited in the glyoxal-treated collagen gel. Chlorella extract remarkably attenuated the glyoxal-induced gel contraction. Moreover, Chlorella extract substantially decreased the fluorescent AGEs, CML, and CMA in the collagen gels with glyoxal. Glyoxal exposure increased the expression levels of interleukin-8 and receptor for AGE proteins in collagen gels, while Chlorella extract inhibited this increase. This study showed that fat-solubleChlorella extract has a direct inhibitory effect on AGEs and decreases receptor expression for AGE-mediated inflammation by reducing AGEs. Chlorella may delay skin aging by inhibiting the formation and accumulation of AGEs.
Collapse
|
19
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7- O-Glucuronide) and the Antidiabetic Drug Metformin. Pharmaceutics 2022; 14:pharmaceutics14102141. [PMID: 36297576 PMCID: PMC9612222 DOI: 10.3390/pharmaceutics14102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
The discovery of new oral antidiabetic drugs remains a priority in medicine. This research aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared to the antidiabetic drug metformin, as potential antiglycation, anti–radical, and anti-α–glucosidase agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage. The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products (AGEs), (ii) the GK peptide–ribose assay, which evaluates the cross–linking between the peptide and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the investigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays were performed. Furthermore, the anti–α–glucosidase activity of baicalein and baicalin was detected. Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin was evaluated in HT–29 human colon adenocarcinoma cells using the MTT assay. Successively, the ability of the compounds to pass through the cytoplasmic membranes of HT–29 cells was detected as a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per se did not pass through cell membranes. Data show that baicalein is the most active compound in reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities, but did not inhibit the enzyme α–glucosidase.
Collapse
|
21
|
Effect of sono-pre-texturization on β-lactoglobulin-anthocyanins energy appetizers. Int J Biol Macromol 2022; 222:1908-1917. [DOI: 10.1016/j.ijbiomac.2022.09.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
22
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Nie C, Li T, Fan M, Wang Y, Sun Y, He R, Zhang X, Qian H, Ying H, Wang L, Li Y. Polyphenols in Highland barley tea inhibit the production of Advanced glycosylation end-products and alleviate the skeletal muscle damage. Mol Nutr Food Res 2022; 66:e2200225. [PMID: 35894228 DOI: 10.1002/mnfr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Highland barley tea is a kind of caffeine-free cereal tea. Previous studies have shown that it was rich in polyphenol flavonoids. Here, the effect of Highland barley tea polyphenols (HBP) on the production of advanced glycosylation end-products and alleviate the skeletal muscle damage is systematically investigated. METHODS and results: HBP effectively inhibited the formation of AGEs in vitro, and 12 phenolic compounds were identified. In addition, D-galactose was used to construct a mouse senescence model and intervened with different doses of HBP. It was found that high doses of HBP effectively inhibited AGEs in serum and flounder muscle species and increased muscle mass in flounder muscle; also, high doses of HBP increased the expression of the mitochondrial functional protein SIRT3 and decreased the expression of myasthenia-related proteins. Furthermore, cellular experiments showed that AGEs could significantly increase oxidative stress in skeletal muscle. CONCLUSION These data indicate that the relationship between the biological activity and HBP properties is relevant since Highland barley could be a potential functional food to prevent AGEs-mediated skeletal muscle damage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
25
|
Zhu P, Zhang Y, Zhang D, Han L, Liu H, Sun B. Inhibitory Mechanism of Advanced Glycation End-Product Formation by Avenanthramides Derived from Oats through Scavenging the Intermediates. Foods 2022; 11:foods11121813. [PMID: 35742012 PMCID: PMC9222356 DOI: 10.3390/foods11121813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety of biological activities, and plays an important role in the prevention and treatment of common chronic diseases. In this study, the optimum extraction conditions and structural identification of AVAs from oats was studied. The inhibitory effect of AVAs from oats on advanced glycation end-products (AGEs) in a glucose–casein simulation system was evaluated, and this revealed dose-dependent inhibitory effects. The trapping capacity of AVAs to the α-dicarbonyl compounds of AGE intermediate products was determined by HPLC–MS/MS, and the results indicate that AVA 2c, AVA 2p, and AVA 2f exhibited the ability to capture α-dicarbonyl compounds. More importantly, AVA 2f was found to be more efficient than AVA 2p at inhibiting superoxide anion radical (O2−), hydroxyl radical (OH), and singlet oxygen (1O2) radical generation, which may be the main reason that AVA 2f was more efficient than AVA 2p in AGE inhibition. Thus, this research presents a promising application of AVAs from oats in inhibiting the food-borne AGEs formed in food processing.
Collapse
Affiliation(s)
| | | | | | | | - Huilin Liu
- Correspondence: ; Tel.: +86-10-68-984-857
| | | |
Collapse
|
26
|
Ntuli S, Leuschner M, Bester MJ, Serem JC. Stability, Morphology, and Effects of In Vitro Digestion on the Antioxidant Properties of Polyphenol Inclusion Complexes with β-Cyclodextrin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123808. [PMID: 35744933 PMCID: PMC9228204 DOI: 10.3390/molecules27123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Polyphenols are inversely associated with the incidence of chronic diseases, but therapeutic use is limited by poor stability and bioaccessibility. Encapsulation has been shown to overcome some of these limitations. A selection of polyphenols (catechin, gallic acid, and epigallocatechin gallate) and their combinations were encapsulated in beta-cyclodextrin (βCD). Encapsulation was characterized and the thermal and storage stability was evaluated using the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The samples were then subjected to in vitro digestion using a simple digestion (SD) model (gastric and duodenal phases) and a more complex digestion (CD) model (oral, gastric, and duodenal phases). Thereafter, the chemical (oxygen radical absorbance capacity assay) and cellular (dichlorofluorescein diacetate assay in Caco-2 cells) antioxidant and antiglycation (advanced glycation end-products assay) activities were determined. Inclusion complexes formed at a 1:1 molar ratio with a high encapsulation yield and efficiency. Encapsulation altered the morphology of the samples, increased the thermal stability of some and the storage stability of all samples. Encapsulation maintained the antioxidant activity of all samples and significantly improved the antiglycation and cellular antioxidant activities of some polyphenols following SD. In conclusion, the formed inclusion complexes of βCD with polyphenols had greater storage stability, without altering the beneficial cellular effects of the polyphenols.
Collapse
Affiliation(s)
- Sunday Ntuli
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - Machel Leuschner
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa;
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
- Correspondence: ; Tel.: +27-12-356-3091
| |
Collapse
|
27
|
Inhibitory effects of some hydrocolloids on the formation of N-(carboxymethyl) lysine and N-(carboxyethyl) lysine in chemical models and fish patties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Yu L, Li Y, Yang Y, Guo C, Li M. Inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products formation in a bovine serum albumin–fructose model. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ligang Yu
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yong Li
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Caixia Guo
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Meiping Li
- School of Life Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
29
|
Moskalev A, Guvatova Z, Lopes IDA, Beckett CW, Kennedy BK, De Magalhaes JP, Makarov AA. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33:266-280. [PMID: 35183431 DOI: 10.1016/j.tem.2022.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
Abstract
Geroprotectors slow down aging and promote healthy longevity in model animals. Although hundreds of compounds have been shown to extend the life of laboratory model organisms, clinical studies on potential geroprotectors are exceedingly rare, especially in healthy elders. This review aims to classify potential geroprotectors based on the mechanisms by which they influence aging. These pharmacological interventions can be classified into the following groups: those that prevent oxidation; proteostasis regulators; suppressors of genomic instability; epigenetic drugs; those that preserve mitochondrial function; inhibitors of aging-associated signaling pathways; hormetins; senolytics/senostatics; anti-inflammatory drugs; antifibrotic agents; neurotrophic factors; factors preventing the impairment of barrier function; immunomodulators; and prebiotics, metabiotics, and enterosorbents.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; Institute of Biology of the Federal Research Center of Komi Science Center, Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya Street, Syktyvkar 167982, Russia.
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ines De Almeida Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Charles W Beckett
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore
| | - Joao Pedro De Magalhaes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
30
|
Muraoka MY, Justino AB, Caixeta DC, Queiroz JS, Sabino-Silva R, Salmen Espindola F. Fructose and methylglyoxal-induced glycation alters structural and functional properties of salivary proteins, albumin and lysozyme. PLoS One 2022; 17:e0262369. [PMID: 35061788 PMCID: PMC8782344 DOI: 10.1371/journal.pone.0262369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Glycation process refers to reactions between reduction sugars and amino acids that can lead to formation of advanced glycation end products (AGEs) which are related to changes in chemical and functional properties of biological structures that accumulate during aging and diseases. The aim of this study was to perform and analyze in vitro glycation by fructose and methylglyoxal (MGO) using salivary fluid, albumin, lysozyme, and salivary α-amylase (sAA). Glycation effect was analyzed by biochemical and spectroscopic methods. The results were obtained by fluorescence analysis, infrared spectroscopy (total attenuated reflection-Fourier transform, ATR-FTIR) followed by multivariate analysis of principal components (PCA), protein profile, immunodetection, enzymatic activity and oxidative damage to proteins. Fluorescence increased in all glycated samples, except in saliva with fructose. The ATR-FTIR spectra and PCA analysis showed structural changes related to the vibrational mode of glycation of albumin, lysozyme, and salivary proteins. Glycation increased the relative molecular mass (Mr) in protein profile of albumin and lysozyme. Saliva showed a decrease in band intensity when glycated. The analysis of sAA immunoblotting indicated a relative reduction in intensity of its correspondent Mr after sAA glycation; and a decrease in its enzymatic activity was observed. Carbonylation levels increased in all glycated samples, except for saliva with fructose. Thiol content decreased only for glycated lysozyme and saliva with MGO. Therefore, glycation of salivary fluid and sAA may have the potential to identify products derived by glycation process. This opens perspectives for further studies on the use of saliva, an easy and non-invasive collection fluid, to monitor glycated proteins in the aging process and evolution of diseases.
Collapse
Affiliation(s)
- Mariane Yumiko Muraoka
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Allisson Benatti Justino
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Douglas Carvalho Caixeta
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Julia Silveira Queiroz
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Foued Salmen Espindola
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
31
|
Hu J, Jiang K, Huang C, Zheng J, Zhou H, Ou J, Ou S. Glycine and serine markedly eliminate methylglyoxal in the presence of formaldehyde via the formation of imidazole salts. Food Chem 2022; 369:130952. [PMID: 34474283 DOI: 10.1016/j.foodchem.2021.130952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
l-glycine and l-serine are the building blocks of proteins and exhibit various biological activities. This work found that l-glycine and l-serine show low scavenging capacity for methylglyoxal at moderate conditions (pH 7.0, 37 °C). However, they efficiently eliminate methylglyoxal and formaldehyde when the two aldehydes co-exist, via generation of imidazole salt, a compound formed by one molecule of methylglyoxal and formaldehyde, and two molecules of amino acids. The imidazole salts were identified in biscuits and fried potato crisps. Moreover, the formation of imidazole salts greatly decreased the cytotoxicity of their precursors, methylglyoxal and formaldehydes. This finding suggests that glycine and serine can be used to scavenge these two harmful aldehydes both after intake and during food processing.
Collapse
Affiliation(s)
- Jiaman Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
32
|
Golchinfar Z, Farshi P, Mahmoudzadeh M, Mohammadi M, Tabibiazar M, Smith JS. Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Parastou Farshi
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - J. Scott Smith
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
33
|
Liu D, Cheng Y, Tang Z, Chen J, Xia Y, Xu C, Cao X. Potential mechanisms of methylglyoxal-induced human embryonic kidney cells damage: Regulation of oxidative stress, DNA damage, and apoptosis. Chem Biodivers 2021; 19:e202100829. [PMID: 34962083 DOI: 10.1002/cbdv.202100829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species that can cause cellular damage and is closely related to kidney disease, especially diabetic nephropathy. The toxic effect of MGO (0.5, 1, and 2 mM) on human embryonic kidney (HEK293) cells and its underlying mechanism were explored in this study. Cell viability, apoptosis and the signaling pathways were measured with MTT, fluorescent staining and western blot experiments, the results showed that MGO could induce oxidative stress and cell inflammation, the level of reactive oxygen species (ROS) increased, and p38MAPK, JNK and NF-κB signaling pathways were activated. Meanwhile, MGO also induced DNA damage. The expression of DNA oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) increased, the expression of double-strand break marker γH2AX increased significantly, and ATM/Chk2/p53 DNA damage response signaling pathway was activated. Furthermore, the expression of the receptor for advanced glycation end products (RAGE) also increased. Finally, mitochondrial membrane potential (MMP) decreased, fluorescence intensity of Hoechst33258 increased, and the protein expression ratio of Bax/Bcl-2 increased significantly after the treatment of MGO. These results demonstrated that MGO might induce HEK293 cells damage by regulating oxidative stress, inflammation, DNA damage, and cell apoptosis, which revealed the specific mechanism of MGO-induced damage to HEK293 cells.
Collapse
Affiliation(s)
- Dan Liu
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ye Cheng
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Zhipeng Tang
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Junliang Chen
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ying Xia
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Chengbin Xu
- Liaoning University, School of environment science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Xiangyu Cao
- Liaoning University, School of Life Science, 66 Chongshan Road, Huanggu District, 110036, Shenyang, CHINA
| |
Collapse
|
34
|
Nair DS, Niharika D, Madhavan A, Sharma S, Joshi AKR. Recent updates on antidiabetic and antiobesity potential of carnosic acid. EXCLI JOURNAL 2021; 20:1476-1481. [PMID: 34803556 PMCID: PMC8600157 DOI: 10.17179/excli2021-4259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Diya S Nair
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Digumarthy Niharika
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Aishwariya Madhavan
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Shweta Sharma
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Apurva Kumar Ramesh Joshi
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| |
Collapse
|
35
|
Wang R, Khalifa I, Du X, Li K, Xu Y, Li C. Effects of anthocyanins on β-lactoglobulin glycoxidation: a study of mechanisms and structure-activity relationship. Food Funct 2021; 12:10550-10562. [PMID: 34570142 DOI: 10.1039/d1fo01665b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We elucidated the underlying mechanisms of the anti-glycoxidation effects of five structurally different anthocyanins on glycated-β-lactoglobulin (β-Lg). The results indicated that anthocyanins structurally inhibited the formation of advanced glycation end-products, where petunidin-3-rutinoside-(p-coumaryl)-5-glucoside (Pt-Gl) exerted higher effects than those of others (p < 0.05). Through the three main steps of glycoxidation, anthocyanins trapped intermediate dicarbonyls and blocked some of the glycation sites of β-Lg. UPLC-ESI-Q-TOF-MS characterized that these anthocyanins structurally formed mono- and di-GO/MGO adducts, and Pt-Gl formed adducts with both dicarbonyls. More importantly, Pt-Gl interacted with some of the glycation sites of β-Lg such as Lys100, Lys101, and Arg124. Structurally, it was found that high-molecular weight anthocyanins with coumaric acid acylation seem to be better than others, which was followed by di- and mono-glycoside anthocyanins. Overall, GO/MGO-trapping and β-Lg-anthocyanin binding are revealed as the key mechanisms of the anti-glycoxidation effects of anthocyanins on β-Lg, which could be used as effective glycation inhibitors in protein-rich matrices.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, 13736, Moshtohor, Egypt
| | - Xia Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Products, Ministry of Agriculture, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
36
|
Kong W, Lyu C, Liao H, Du Y. Collagen crosslinking: effect on structure, mechanics and fibrosis progression. Biomed Mater 2021; 16. [PMID: 34587604 DOI: 10.1088/1748-605x/ac2b79] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Biophysical properties of extracellular matrix (ECM), such as matrix stiffness, viscoelasticity and matrix fibrous structure, are emerging as important factors that regulate progression of fibrosis and other chronic diseases. The biophysical properties of the ECM can be rapidly and profoundly regulated by crosslinking reactions in enzymatic or non-enzymatic manners, which further alter the cellular responses and drive disease progression. In-depth understandings of crosslinking reactions will be helpful to reveal the underlying mechanisms of fibrosis progression and put forward new therapeutic targets, whereas related reviews are still devoid. Here, we focus on the main crosslinking mechanisms that commonly exist in a plethora of chronic diseases (e.g. fibrosis, cancer, osteoarthritis) and summarize current understandings including the biochemical reaction, the effect on ECM properties, the influence on cellular behaviors, and related studies in disease model establishment. Potential pharmaceutical interventions targeting the crosslinking process and relevant clinical studies are also introduced. Limitations of pharmaceutical development may be due to the lack of systemic investigations related to the influence on crosslinking mechanism from micro to macro level, which are discussed in the last section. We also propose the unclarified questions regarding crosslinking mechanisms and potential challenges in crosslinking-targeted therapeutics development.
Collapse
Affiliation(s)
- Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
37
|
Ou J. Incorporation of polyphenols in baked products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:207-252. [PMID: 34507643 DOI: 10.1016/bs.afnr.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bakery foods, including breads, cakes, cookies, muffins, rolls, buns, crumpets, pancakes, doughnuts, waffles, and bagels, etc., have been an important diet of humans for thousands of years. As the nutraceuticals with various biological activities, polyphenols, especially polyphenol-enriched products are widely used in bakery foods. The polyphenol-enriched products are mainly from fruits and vegetables, including fruits in whole, juice, puree, jam, and the powder of dried fruits, pomace, and peels. Incorporation of these products not only provide polyphenols, but also supply other nutrients, especially dietary fibers for bakery products. This chapter discussed the thermal stability of different types of polyphenols during baking, and the effect of polyphenols on the sensory attributes of baked foods. Moreover, their role in mitigation of reactive carbonyl species and the subsequent formation of advanced glycation end products, antioxidant and antimicrobial activities have been also discussed. Since polyphenols are subjected to high temperature for dozens of minutes during baking, future works need to focus on the chemical interactions of polyphenols and their oxidized products (quinones) with other food components, and the safety consequence of these interactions.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China.
| |
Collapse
|
38
|
Velichkova S, Foubert K, Pieters L. Natural Products as a Source of Inspiration for Novel Inhibitors of Advanced Glycation Endproducts (AGEs) Formation. PLANTA MEDICA 2021; 87:780-801. [PMID: 34341977 DOI: 10.1055/a-1527-7611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein glycation, a post-translational modification found in biological systems, is often associated with a core defect in glucose metabolism. In particular, advanced glycation endproducts are complex heterogeneous sugar-derived protein modifications implicated in the progression of pathological conditions such as atherosclerosis, diabetic complications, skin diseases, rheumatism, hypertension, and neurodegenerative diseases. Undoubtedly, there is the need to expand the knowledge about antiglycation agents that can offer a therapeutic approach in preventing and treating health issues of high social and economic importance. Although various compounds have been under consideration, little data from clinical trials are available, and there is a lack of approved and registered antiglycation agents. Next to the search for novel synthetic advanced glycation endproduct inhibitors, more and more the efforts of scientists are focusing on researching antiglycation compounds from natural origin. The main purpose of this review is to provide a thorough overview of the state of scientific knowledge in the field of natural products from plant origin (e.g., extracts and pure compounds) as inhibitors of advanced glycation endproduct formation in the period between 1990 and 2019. Moreover, the objectives of the summary also include basic chemistry of AGEs formation and classification, pathophysiological significance of AGEs, mechanisms for inhibiting AGEs formation, and examples of several synthetic anti-AGEs drugs.
Collapse
Affiliation(s)
- Stefaniya Velichkova
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
|
40
|
Khanam A, Ahmad S, Husain A, Rehman S, Farooqui A, Yusuf MA. Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants. Curr Protein Pept Sci 2021; 21:899-915. [PMID: 32039678 DOI: 10.2174/1389203721666200210103304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
Abstract
The non-enzymatic interaction of sugar and protein resulting in the formation of advanced glycation end products responsible for cell signaling alterations ultimately leads to the human chronic disorders such as diabetes mellitus, cardiovascular diseases, cancer, etc. Studies suggest that AGEs upon interaction with receptors for advanced glycation end products (RAGE) result in the production of pro-inflammatory molecules and free radicals that exert altered gene expression effect. To date, many studies unveiled the potent role of synthetic and natural agents in inhibiting the glycation reaction at a lesser or greater extent. This review focuses on the hazards of glycation reaction and its inhibition by natural antioxidants, including polyphenols.
Collapse
Affiliation(s)
- Afreen Khanam
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Saheem Ahmad
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Arbab Husain
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, India
| |
Collapse
|
41
|
Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants (Basel) 2021; 10:antiox10030424. [PMID: 33802107 PMCID: PMC7999557 DOI: 10.3390/antiox10030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The advanced glycation end-products (AGEs) arise from non-enzymatic reactions of sugar with protein side chains, some of which are oxido-reductive in nature. Enhanced production of AGEs plays an important role in the pathogenesis of diabetic complications as well as in natural aging, renal failure, oxidative stress, and chronic inflammation. The aim of this work is to study antiglycation effects of polyphenol compounds extracted by hazelnut skin that represents an example of polyphenols-rich food industry by-product, on AGEs formation. AGEs derived from incubation of bovine serum albumin (BSA) and methylglyoxal (MGO) were characterized by fluorescence. The phenolics identification and total polyphenol content in hazelnut skin extracts were analyzed by HPLC-MS and the Folin–Ciocalteu method, respectively. Antioxidant efficacy was evaluated by monitoring total antioxidant activity to assess the ABTS radical scavenging activity of samples by TEAC assay and oxygen radical absorbance capacity (ORAC) assay, expressed as millimoles of Trolox equivalents per gram of sample. Data here presented suggest that phenolic compounds in hazelnut skin have an inhibitory effect on the BSA-AGEs model in vitro, and this effect is concentration-dependent. The putative role of the hazelnut skin antioxidative properties for hindering AGEs formation is also discussed. Because of AGEs contribution to the pathogenesis of several chronic diseases, foods enriched, or supplements containing natural bioactive molecules able to inhibit their production could be an interesting new strategy for supporting therapeutic approaches with a positive effect on human health.
Collapse
|
42
|
Ni M, Song X, Pan J, Gong D, Zhang G. Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2462-2476. [PMID: 33600185 DOI: 10.1021/acs.jafc.0c08052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the antiglycation potential and mechanisms of vitexin were explored in vitro by multispectroscopy, microscope imaging, high-resolution mass spectrometry, and computational simulations. Vitexin was found to show much stronger antiglycation effects than aminoguanidine. The inhibition against the fluorescent advanced glycation end products was more than 80% at 500 μM vitexin in both bovine serum albumin (BSA)-fructose and BSA-methylglyoxal (MGO) models. Treated with 100 and 200 μM vitexin for 24 h, the contents of MGO were reduced to 4.97 and 0.2%, respectively, and only one vitexin-mono-MGO adduct was formed. LC-Orbitrap-MS/MS analysis showed that vitexin altered the glycated sites and reduced the glycation degree of some sites. The mechanisms of vitexin against protein glycation were mainly through BSA structural protection, MGO trapping, and alteration of glycation sites induced by interaction with BSA. These findings provided valuable information about the functional development of vitexin as a potential antiglycation agent.
Collapse
Affiliation(s)
- Mengting Ni
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xin Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
43
|
Thingore C, Kshirsagar V, Juvekar A. Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using Rosmarinic acid in mice. Metab Brain Dis 2021; 36:299-313. [PMID: 33068223 DOI: 10.1007/s11011-020-00629-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Oxidative stress plays a pivotal part in the manifestation of neuroinflammation, which further leads to neurodegenerative diseases like Alzheimer's disease (AD). Systemic administration of lipopolysaccharide (LPS) induces neuroinflammation resulting in memory impairment (MI) and cognitive decline. In this study, we evaluated whether prophylactic administration of Rosmarinic acid (RA), a naturally occurring compound, exerts a neuroprotective effect in LPS-induced MI and cognitive decline. Herein, Swiss albino mice were pre-treated with RA (0.5 mg/kg and 1 mg/kg i.p.) for 28 days and were intermittently exposed to LPS (0.25 mg/kg i.p.) for 7 days. LPS caused poor memory retention and increased cognitive decline in Morris water maze (MWM) and Y maze paradigms respectively. Additionally, LPS increased oxidative stress which was denoted by a decrease in superoxide dismutase (SOD) activity, decrease in reduced glutathione (GSH) levels, and increased lipid peroxidation in the brain. Imbalance in the cholinergic system was analyzed by measuring the acetylcholinesterase (AChE) activity. Pre-treatment with RA improved memory and behavioral disturbances by alleviating oxidative stress and AChE activity. LPS augmented levels of tumor necrosis factor (TNF-α), interleukin (IL)-6, caspase-3, and c-Jun. Pre-treatment with RA revitalized the elevated levels of proinflammatory cytokines and apoptotic proteins. In conclusion, this study showcases the amelioration of MI by RA in LPS-challenged memory and cognitive decline, which could be credited to its anti-oxidant effect, inhibitory effect on both proinflammatory cytokines and apoptotic regulators, and reduction in AChE activity.
Collapse
Affiliation(s)
- Chetan Thingore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Viplav Kshirsagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Archana Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India.
| |
Collapse
|
44
|
Tang Y, Zhao Y, Wang P, Sang S. Simultaneous Determination of Multiple Reactive Carbonyl Species in High Fat Diet-Induced Metabolic Disordered Mice and the Inhibitory Effects of Rosemary on Carbonyl Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1123-1131. [PMID: 33464893 DOI: 10.1021/acs.jafc.0c07748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As potential endogenous biomarkers, reactive carbonyl species (RCS) have gained abundant attention for monitoring oxidative and carbonyl stress. However, there is no accurate method to evaluate multiple RCS in biological samples. In this study, a 2,4-dinitrophenylhydrazine (DNPH) derivatization-based LC-MS method was developed and validated to quantitate eight RCS: malondialdehyde (MDA), acrolein (ACR), 4-hydroxy-2-nonenal (4-HNE), 4-oxo-2-nonenal (4-ONE), methylglyoxal (MGO), glyoxal (GO), 3-deoxyglucosone (3-DG), and 2-keto-d-glucose (2-Keto). Subsequently, the method was applied to assess the RCS in low fat (LF), high fat (HF), and HF plus rosemary extract (RE) diet-fed mouse samples. The quantitative results on RCS levels indicated that the HF diet significantly increased the total RCS levels in mouse urine, plasma, and kidney with an average rate of 280.69%, 153.87%, and 61.30%, respectively. The RE administration significantly inhibited the elevated RCS levels induced by the HF diet, especially for MDA, 4-ONE, 4-HNE, and 2-Keto in mouse plasma, and ACR and 2-Keto in mouse kidney. This is the first study to simultaneously measure eight RCS in biological samples and demonstrate that RE was able to eliminate the accumulation of the HF diet-induced RCS.
Collapse
Affiliation(s)
- Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
45
|
Liu J, Yang Z, Hao Y, Wang Z, Han L, Li M, Zhang N, Chen H, Liu Y, Li H, Wang J. Effect of alkylresorcinols on the formation of Nε-(carboxymethyl)lysine and sensory profile of wheat bread. Food Sci Nutr 2021; 9:489-498. [PMID: 33473310 PMCID: PMC7802564 DOI: 10.1002/fsn3.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Alkylresorcinols (ARs) are important bioactive components in wheat bran which have been used as biomarkers for whole grain wheat consumption. In this study, the impact of ARs on the formation of Nε-(carboxymethyl)lysine (CML), the main component of dietary advanced glycation end products which could induce chronic disease was analyzed. Moreover, the influence of the addition of ARs on the sensory profiles of wheat bread was evaluated. ARs supplementation (0.03%, 0.1%, and 0.3% w/w) could significantly decrease the formation of CML by 21.70%, 35.11%, and 42.18%, respectively, compared with the control. Moreover, ARs-supplemented bread achieved a higher score in overall acceptability and buttery-like aroma through sensory evaluation. The volatile compounds in bread supplemented with ARs were characterized by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), among which acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-phenylethanol, and 2-methylbutanal were confirmed as the main volatile compounds through determination of odor activity value. In addition, ARs supplementation had no negative impact on the chewiness, hardness, and springiness of bread. These findings demonstrated that ARs could be applied as potential food additives to improve the quality and sensory profile of bread.
Collapse
Affiliation(s)
- Jie Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Zihui Yang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yiming Hao
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ziyuan Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Lin Han
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Meng Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ning Zhang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Haitao Chen
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Hongyan Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| |
Collapse
|
46
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021; 107:201-212. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Ben Khedher MR, Hafsa J, Haddad M, Hammami M. Inhibition of Protein Glycation by Combined Antioxidant and Antiglycation Constituents from a Phenolic Fraction of Sage (Salvia officinalis L.). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:505-511. [PMID: 32740712 DOI: 10.1007/s11130-020-00838-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disturbed advanced glycation end products (AGEs)-oxidative stress axis is strongly linked to vascular complications observed in diabetes and other metabolic conditions. Salvia officinalis L. (sage) is a medicinal plant used as an ingredient in foods and beverages and displays a wide range of biological and pharmacological activities including anti-diabetic effects. However, no study has assessed its anti-glycative potential. The aim of this study is to determine the phenolic compounds associated with the anti-glycation and antioxidant potential of sage methanol extract (SME). SME shows similar effects to aminoguanidine on fluorescent AGEs inhibition. It protects albumin damage from glycation (52.9 vs. 50.3%, respectively) by preventing the loss of protein thiol groups (50.0 vs. 44.3%, respectively) and by reducing protein carbonyl accumulation (67.4 vs. 70.5%, respectively). Moreover, linear regression and multivariate analysis support the efficient contribution of SME antioxidant capacity, as judged by DPPH, TBARS and iron chelating tests, in AGEs suppression. Furthermore, HPLC analysis revealed the presence of verbascoside as a novel phenolic constituent identified in sage leaves and suggests that the protective activity is mostly assigned to the presence of rosmarinic acid, resveratrol, quercetin, rutin and luteolin-7-O-glucoside. Likewise, the screening of SME phenolic content supports the contribution of various antioxidant substances to the observed effects. Therefore, a polyphenol enriched sage extract was able to inhibit the formation of AGEs and protein glycation. Our data unveils the promising properties of sage and its bioactive principles in the management of AGEs-mediated vascular complications observed in diabetes and other metabolic disorders.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- Research Laboratory LR12ES05 'Nutrition - Functional Food & Vascular Health' Department of Biochemistry, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada.
| | - Jawhar Hafsa
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, 43150, Ben Guerir, Morocco
| | - Mohamed Haddad
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada
| | - Mohamed Hammami
- Research Laboratory LR12ES05 'Nutrition - Functional Food & Vascular Health' Department of Biochemistry, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| |
Collapse
|
48
|
Sobhy R, Shen Q, Abd-Elrahman AA, Khalifa I, Liang H, Li B. In vitro evaluation of anti-methylglyoxal/glyoxal activity of three phytosterols using glycated bovine serum albumin models. Steroids 2020; 161:108678. [PMID: 32565405 DOI: 10.1016/j.steroids.2020.108678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Reactive intermediate dicarbonyls, such as methylglyoxal (MGO) and glyoxal (GO), have received extensive attention recently due to their high reactivity and capability to form advanced glycation end products (AGEs) in foods, which have been implicated in the progression of age-related complaints. We aimed to investigate the effects of three structurally different phytosterols (PS), including stigmasterol (SS), β-sitosterol (βS), and γ-oryzanol (γO), on AGEs-formation by measuring their anti-GO/MGO activity. The glycoxidation-based products, SDS-PAGE intensity, free lysine, protein thiols, fluorescence microscopy clicks, scavenging of dicarbonyl activity, and protein aggregation in bovine serum albumin (BSA) models were therefore measured. The results showed that PS could strongly inhibit fluorescent-AGEs, lysine residues, intermediate di-carbonyls, beside their disaggregation effects in a dose and structure dependent manner. Additionally, γ-oryzanol strongly inhibited AGEs more than the other PS, mostly due to its distinctive structure. Our results will provide a new foundation for development of different structure of PS as natural AGEs-inhibitors.
Collapse
Affiliation(s)
- Remah Sobhy
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Qian Shen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ahmed A Abd-Elrahman
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
49
|
Motta BP, Kaga AK, Oliveira JO, Inacio MD, da Silva CF, de Sousa Junior PT, Brunetti IL, Baviera AM. In vitro inhibition of protein glycation and advanced glycation end products formation by hydroethanolic extract and two fractions of Simaba trichilioides roots. Nat Prod Res 2020; 34:2389-2393. [DOI: 10.1080/14786419.2018.1537276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bruno Pereira Motta
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| | - Anderson Kiyoshi Kaga
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| | - Maiara Destro Inacio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| | | | | | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
50
|
Zhang L, Zhou WN, Tu ZC, Yang SH, Xu L, Yuan T. Influence of Hydroxyl Substitution on the Suppression of Flavonol in Harmful Glycation Product Formation and the Inhibition Mechanism Revealed by Spectroscopy and Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8263-8273. [PMID: 32662984 DOI: 10.1021/acs.jafc.0c03163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quercetin (Que), kaempferol (Kaem), isorhamnetin (Irh), and myricetin (Myri) are typical flavonols that are abundant in plant resources. This research investigated their ability in attenuating harmful glycation product formation and the effect of hydroxyl substitution. The inhibition mechanisms were elucidated by fluorescence spectroscopy and nano-liquid chromatography Orbitrap tandem mass spectrometry. The results indicated that the 3'-OH on the B-ring is critical in alleviating harmful glycation product formation, methylation reduced its inhibition, and the 5'-OH showed much less contribution than the 3'-OH. Que showed the strongest suppression on initial product, 5-hydroxymethylfurfural, and advanced glycation end product formation, with the corresponding percentage inhibitions at 36.58 μM of 81.1, 56.9, and 95.4%. Que and Myri also clearly inhibited fructosamine and acrylaminde production, while no suppression was observed by Irh and Kaem. The number of glycated sites was reduced from ten to seven, five, six, and nine, respectively, when 36.58 μM Que, Myri, Kaem, and Irh was added. Suppressing the conformational changes of ovalbumin induced by glycation, trapping dicarbonyl compounds, altering the microenvironment around tryptophan, and reducing the glycation activity of potential sites were the major inhibition mechanisms. These results suggest that Que and Myri may be promising natural agents for inhibiting harmful glycation and provide theoretical support for the effective screening of natural antiglycation reagents.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Na Zhou
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Si-Hang Yang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Liang Xu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tao Yuan
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|