1
|
Xie J, Rong X, Jiang X, Zhao Y, Ding T, Yan J, Li S, Qin W, Chen M, Liu Y. Facile fabrication of ethyl cellulose/gelatin fibers incorporated with copper-based metal-organic frameworks as humidity-triggered release of carvacrol for blueberry preservation. Food Chem 2025; 483:144070. [PMID: 40250298 DOI: 10.1016/j.foodchem.2025.144070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/20/2025]
Abstract
In this study, the copper-based metal-organic frameworks (F-HKUST) were successfully synthesized. They were designed as loading carriers for carvacrol (CAR). To improve the stability and achieve a humidity-triggered release of CAR, fiber membranes consisting of ethyl cellulose (EC) and gelatin (GN) were constructed, which contain F-HKUST loaded CAR. The inhibitory effects of CAR on major postharvest pathogenic blueberry fungi were investigated. The results indicated that CAR could be better grafted onto F-HKUST with an adsorption energy of -149.74 kcal/mol and that the release of CAR could be controlled by the changes of external environment humidity. Due to the addition of F-HKUST loaded CAR, the antifungal and antioxidant properties (7.59 ± 1.64 to 44.89 ± 3.71 %) were improved. After 12 d of storage at 24 ± 1 °C, the blueberries preserved in the GN/EC/CAR/4 %F-HKUST maintained good quality and related enzyme activity. Therefore, GN/EC/CAR/F-HKUST has a significant effect on the quality of postharvest blueberries.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Xingyu Rong
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Xiaoqian Jiang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Yuping Zhao
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Tianhua Ding
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China.
| |
Collapse
|
2
|
Song F, Verheust Y, Sampers I, Raes K. The stability of isothiocyanates in broccoli extract: Oxidation from erucin to sulforaphane was discovered. Food Chem 2025; 480:143872. [PMID: 40120311 DOI: 10.1016/j.foodchem.2025.143872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The health-beneficial effects of Brassica vegetables are attributed to glucosinolates-derived isothiocyanates (ITCs) whose yield is always underestimated due to their reactivity and volatility. In this work, the distribution and stability of four ITCs, including allyl ITC (AITC), phenethyl ITC (PEITC), erucin (ERN), and sulforaphane (SFN), incorporated in water and broccoli extract were described. All ITCs were mainly distributed in the aqueous phase (> 99 %). AITC and PEITC exhibited similar stability in water and broccoli extract. However, an oxidation of ERN to SFN was observed in the broccoli extract, so a rapid decrease in ERN was observed while SFN experienced an increase before the decline. Except for ERN, all three ITCs become more labile when the pH increases from 3.4 to 8.4. Both oxygen and acid conditions promote the oxidation of ERN. Those results contribute to a better understanding of the stability and detection of ITCs in broccoli extract.
Collapse
Affiliation(s)
- Fanfen Song
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
3
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
4
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
Liu Y, Jiang Y, Heinke L. Photoswitchable Radical State in Nanoporous Metal-Organic Framework Films with Embedded Hexaarylbiimidazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:474-479. [PMID: 38149797 DOI: 10.1021/acs.langmuir.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photoresponsive materials enable dynamic remote control of their fundamental properties. The incorporation of photochromic molecules in nanoporous metal-organic frameworks (MOFs) provides a unique opportunity to tailor the material properties, including the interaction between the MOF host and guest molecules in the pores. Here, a MOF film of type HKUST-1 with embedded hexaarylbiimidazole (HABI), undergoing reversible light-induced reactions between the stable dimer state and the metastable radical state, is presented. The switching between the dimer and radical form is shown by infrared, UV-vis, and electron paramagnetic resonance (EPR) spectroscopy. By transient uptake experiments with ethanol and methanol as probe molecules, we show that the dimer-radical switching impacts the host-guest interaction and, in particular, modifies the uptake amount and diffusion coefficient of the guest molecules. For ethanol, the diffusion slows down by 75%. This research presents the first MOF material with photoswitchable (meta)stable dimer and radical molecules, and it contributes to the advancement of photoresponsive nanoporous materials.
Collapse
Affiliation(s)
- Yidong Liu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yunzhe Jiang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
8
|
Patil PB, Patel JK. Chemopreventive aspects, investigational anticancer applications and current perspectives on allyl isothiocyanate (AITC): a review. Mol Cell Biochem 2023; 478:2763-2777. [PMID: 36929336 DOI: 10.1007/s11010-023-04697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Allyl isothiocyanates (AITC) have gained recognition in recent years as effective chemotherapeutic and epigenetic modulators. The chemopreventive properties and toxicological perspectives of AITCs from the last few decades were taken into account by a number of investigations. Their active therapeutic relevance was hindered by a number of factors, including instability under typical physiological conditions and low bioavailability due to low aqueous solubility. In this review, we highlighted the chemopreventive attributes of AITC in relation to its molecular mechanisms and metabolic fate for cancer. Moreover, we emphasized on investigational anticancer activities and various strategies for delivery of AITC in different types of cancer. Considering cellular interactions, we shed light on the toxicological properties of AITCs to address further issues regarding their assessment in therapeutic development. This review identifies knowledge gaps with various contemporary approaches involving most recent studies and may pave the way for a better understanding for the development of novel AITC therapeutics.
Collapse
Affiliation(s)
- Prashant Bhagwan Patil
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, 384315, Gujarat, India.
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, MH, India.
| | - Jayvadan Kantilal Patel
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, 384315, Gujarat, India
- Formulation Scientist, Aavis Pharmaceuticals, Hoschton, 30548, Georgia, United States
| |
Collapse
|
9
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
11
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Fu Y, Yang D, Chen Y, Shi J, Zhang X, Hao Y, Zhang Z, Sun Y, Zhang J. MOF-Based Active Packaging Materials for Extending Post-Harvest Shelf-Life of Fruits and Vegetables. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3406. [PMID: 37176288 PMCID: PMC10180191 DOI: 10.3390/ma16093406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Active packaging that can extend the shelf-life of fresh fruits and vegetables after picking can assure food quality and avoid food waste. Such packaging can prevent the growth of microbial and bacterial pathogens or delay the production of ethylene, which accelerates the ripening of fruits and vegetables after harvesting. Proposed technologies include packaging that enables the degradation of ethylene, modified atmosphere packaging, and bioactive packaging. Packaging that can efficiently adsorb/desorb ethylene, and thus control its concentration, is particularly promising. However, there are still large challenges around toxicity, low selectivity, and consumer acceptability. Metal-organic framework (MOF) materials are porous, have a specific surface area, and have excellent gas adsorption/desorption performance. They can encapsulate and release ethylene and are thus good candidates for use in ethylene-adjusting packaging. This review focuses on MOF-based active-packaging materials and their applications in post-harvest fruit and vegetable packaging. The fabrication and characterization of MOF-based materials and the ethylene adsorption/desorption mechanism of MOF-based packaging and its role in fruit and vegetable preservation are described. The design of MOF-based packaging and its applications are reviewed. Finally, the potential future uses of MOF-based active materials in fresh food packaging are considered.
Collapse
Affiliation(s)
- Yabo Fu
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Dan Yang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yiyang Chen
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jiazi Shi
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xinlin Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuwei Hao
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhipeng Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yunjin Sun
- Beijing Laboratory of Food Quality and Safety, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
13
|
Yang R, Liu B, Yu F, Li H, Zhuang Y. Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application. Int J Biol Macromol 2023; 234:123712. [PMID: 36796565 DOI: 10.1016/j.ijbiomac.2023.123712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Cellulose paper packaging materials have gained considerable attention as substitutes for petroleum-based plastics owing to their biodegradability, renewability, flexibility, and good mechanical strength. However, high hydrophilicity and the absence of essential antibacterial activity limit their application in food packaging. In this study, a facile and energy-saving method was developed to improve the hydrophobicity of cellulose paper and endow it with a long-acting antibacterial effect by integrating cellulose paper substrate with metal-organic frameworks (MOFs). A dense and homogenous coating of regular hexagonal ZnMOF-74 nanorods was in-situ formed on a paper surface by layer-by-layer assembly followed by low-surface-energy polydimethylsiloxane (PDMS) modification to prepare a superhydrophobic PDMS@(ZnMOF-74)5@paper. Excellent anti-fouling, self-cleaning, and antibacterial adhesion performances were obtained for this superhydrophobic paper. In addition, active carvacrol was loaded into the pores of ZnMOF-74 nanorods on PDMS@(ZnMOF-74)5@paper to combine antibacterial adhesion together with bactericidal ability, ultimately resulting in a completely "bacteria-free" surface and sustained antibacterial performance. The resultant superhydrophobic papers not only showed overall migration values within the limit of 10 mg/dm2 but also good stability against various harsh mechanical, environmental, and chemical treatments. This work gave insights into the potential of in-situ-developed MOFs-dopped coating as a functionally modified platform for preparing active superhydrophobic paper-based packaging.
Collapse
Affiliation(s)
- Rao Yang
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fuyou Yu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
14
|
ZIF-8 base-aptamer "gate-lock" probes enable the visualization of a cascade response between deoxynivalenol and cytochrome c inside living cells. Mikrochim Acta 2022; 190:39. [PMID: 36585487 DOI: 10.1007/s00604-022-05619-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) base-aptamer "gate-lock" biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes. The gate was subsequently opened to release methylene blue (MB) and Rhodamine 6G (Rh6G), and their fluorescence (emission of MB at 700 nm and Rh6G at 550 nm) significantly recovered within 6 h. Cell imaging successfully monitored the exposure of DON and the biological process of cyt c discharge triggered by the activation of the DON-induced apoptosis pathway. In addition, the response between DON and cyt c was observed during the apoptosis process, which is of high significance for the comprehensive and systematic development of mycotoxins cytotoxicity.
Collapse
|
15
|
Pan X, Junejo SA, Tan CP, Zhang B, Fu X, Huang Q. Effect of potassium salts on the structure of γ-cyclodextrin MOF and the encapsulation properties with thymol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6387-6396. [PMID: 35556247 DOI: 10.1002/jsfa.12004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Thymol is a natural essential oil with strong volatility, low solubility, poor dispersion, strong irritation, and an unpleasant smell, which often requires appropriate porous materials to encapsulate thymol during the application process. However, the encapsulation efficiency of thymol in inclusion complexes is low, and new methods of encapsulation need to be developed. In the present study, the encapsulation capacity, storage stability, and antibacterial activity of thymol were investigated using γ-cyclodextrin (γ-CD) metal-organic frameworks (MOFs) by cocrystallization and high-temperature adsorption methods. The effect of different potassium salts (i.e. KOH, KCl, and KAc) on the structure and complexation of γ-CD-MOFs was also analyzed. RESULTS Compared with γ-CD, the thymol encapsulation capacity of γ-CD-MOFs was increased by two- to three-fold, with the encapsulation content following the order: KAc-γ-CD-MOF (293.8 mg g-1 ) > KOH-γ-CD-MOF (287.7 mg g-1 ) > KCl-γ-CD-MOF (249.3 mg g-1 ). The anions in the solution participate in the coordination and influence the symmetry relationship between atoms and ions. This explains the differences in both the three-dimensional γ-CD-MOF structure and the thymol encapsulation amount, as well as the high storage stability of thymol. CONCLUSION The in vitro release kinetics and antibacterial experiments showed that the inclusion complexes prepared by γ-CD-MOFs had higher stability, sustainability, and antibacterial activity, which suggests that it is an excellent complex material for industrial and agricultural applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaodan Pan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
16
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
17
|
|
18
|
Xu Y, Chen L, Zhang Y, Huang Y, Cao J, Jiang W. Antimicrobial and controlled release properties of nanocomposite film containing thymol and carvacrol loaded UiO-66-NH2 for active food packaging. Food Chem 2022; 404:134427. [DOI: 10.1016/j.foodchem.2022.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
19
|
Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. Int J Biol Macromol 2022; 214:181-191. [PMID: 35700848 DOI: 10.1016/j.ijbiomac.2022.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
The spoilage of fruit is one of the most important causes of fruit waste. High humidity by fresh fruit respiration leads to bacterial reproduction, which is the key factor of products corruption. Herein, a biological multifunctional film (Cur-HKUST-1@CMS/PVA) for fruits preservation with a high moisture environment was developed by cross-linking carboxymethyl starch (CMS)/polyvinyl alcohol (PVA) with MOF-199 (HKUST-1), and loaded with curcumin. The hydrophilic CMS facilitates water adsorption and moisture can stimulate curcumin release from HKUST-1. HKUST-1 not only acts as curcumin carriers but also forms synergistic antibacterial with curcumin to improve the antibacterial activity of the composites. XRD and SEM demonstrated that moisture disrupts the structure of HKUST-1 and releases curcumin and the results showed that the release of curcumin increased from 25.11 % to 58.32 % after moisture stimulation. In addition, Cur-HKUST-1@CMS/PVA had excellent antibacterial activity and antioxidant ability. As validation, the film can keep pitaya and avocado freshness at least 4 days longer than the control, confirming the effectiveness of Cur-HKUST-1@CMS/PVA in preventing fruit decay. Consequently, Cur-HKUST-1@CMS/PVA is a promising active packaging material for improve the shelf life of perishable fruits.
Collapse
|
21
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
22
|
Caamaño K, Heras-Mozos R, Calbo J, Díaz JC, Waerenborgh JC, Vieira BJC, Hernández-Muñoz P, Gavara R, Giménez-Marqués M. Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10758-10768. [PMID: 35179870 PMCID: PMC8895383 DOI: 10.1021/acsami.1c21555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.
Collapse
Affiliation(s)
- Katia Caamaño
- Instituto
de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José
Beltrán 2, 46980 Paterna, Spain
| | - Raquel Heras-Mozos
- Instituto
de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino
7, 46980 Paterna, Spain
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José
Beltrán 2, 46980 Paterna, Spain
| | - Jesús Cases Díaz
- Instituto
de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José
Beltrán 2, 46980 Paterna, Spain
| | - João C. Waerenborgh
- C2TN,
DECN, Instituto Superior Técnico, Universidade de Lisboa, EN10, P-2695-066 Bobadela
LRS, Portugal
| | - Bruno J. C. Vieira
- C2TN,
DECN, Instituto Superior Técnico, Universidade de Lisboa, EN10, P-2695-066 Bobadela
LRS, Portugal
| | - Pilar Hernández-Muñoz
- Instituto
de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino
7, 46980 Paterna, Spain
| | - Rafael Gavara
- Instituto
de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino
7, 46980 Paterna, Spain
| | - Mónica Giménez-Marqués
- Instituto
de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José
Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
23
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
24
|
Sultana A, Kathuria A, Gaikwad KK. Metal-organic frameworks for active food packaging. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1479-1495. [PMID: 35035339 PMCID: PMC8748186 DOI: 10.1007/s10311-022-01387-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 05/07/2023]
Abstract
Food wastage is a major concern for sustainable health and agriculture. To reduce food waste, classical preservation techniques such as drying, pasteurization, freeze-drying, fermentation, and microwave are available. Nonetheless, these techniques display shortcomings such as alteration of food and taste. Such shortcomings may be solved by active food packaging, which involves the incorporation of active agents into the packaging material. Recently, metal-organic frameworks, a class of porous hybrid supramolecular materials, have been developed as an active agent to extend food shelf life and maintain safety. Here, we review metal-organic frameworks in active packaging as oxygen scavengers, antimicrobials, moisture absorbers, and ethylene scavengers. We present methods of incorporation of metal-organic frameworks into packaging materials and their applications.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ajay Kathuria
- Industrial of Technology and Packaging, California Polytechnic State University, San Luis Obispo, CA 93407 USA
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
25
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
26
|
Zaitoon A, Luo X, Lim LT. Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: A review. Compr Rev Food Sci Food Saf 2021; 21:541-579. [PMID: 34913248 DOI: 10.1111/1541-4337.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
Gaseous and volatile active compounds are versatile to enhance safety and preserve quality of agri-food products during storage and distribution. However, the use of these compounds is limited by their high vapor pressure and/or chemical instability, especially in active packaging (AP) applications. Various approaches for stabilizing and controlling the release of active gaseous/volatile compounds have been developed, including encapsulation (e.g., into supramolecular matrices, polymer-based films, electrospun nonwovens) and triggered release systems involving precursor technology, thereby allowing their safe and effective use in AP applications. In this review, encapsulation technologies of gases (e.g., CO2 , ClO2 , SO2 , ethylene, 1-methylcyclopropene) and volatiles (e.g., ethanol, ethyl formate, essential oils and their constituents) into different solid matrices, polymeric films, and electrospun nonwovens are reviewed, especially with regard to encapsulation mechanisms and controlled release properties. Recent developments on utilizing precursor compounds of bioactive gases/volatiles to enhance their storage stability and better control their release profiles are discussed. The potential applications of these controlled release systems in AP of agri-food products are presented as well.
Collapse
Affiliation(s)
- Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Agricultural and Biosystems Engineering, Alexandria University, Alexandria, 21545, Egypt
| | - Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, China
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
27
|
Lv M, Sun DW, Huang L, Pu H. Precision release systems of food bioactive compounds based on metal-organic frameworks: synthesis, mechanisms and recent applications. Crit Rev Food Sci Nutr 2021; 62:3991-4009. [PMID: 34817301 DOI: 10.1080/10408398.2021.2004086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Controlled release (CR) systems have become a powerful platform for accurate and effective delivery of bioactive compounds (BCs). Metal-organic frameworks (MOFs) are one of the best BCs-loaded carriers for CR systems. In the review, the principles and methods of the design and synthesis of MOFs-CR systems are summarized in detail, the encapsulation of BCs by MOFs and CR mechanisms are explored, and their biological toxicity and biocompatibility are highlighted and applications in the food industry are discussed. In addition, current challenges in this field and possible future development directions are also presented. MOFs have been proven to encapsulate BCs effectively, including gaseous and solid molecules, and control the release of BCs through spontaneous diffusion or stimulus-response. The solubility, stability and biocompatibility of BCs encapsulated by MOFs are greatly improved, which expands their applications in foods. The effective CR of BCs by MOFs-CR systems is beneficial to assist in maintaining or even improving the quality and safety of food, reduce the BCs usage while increasing the bioavailability. Low- or non-biotoxic MOFs, especially bio-MOFs, show greater application prospects in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
28
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Zhang X, Guo M, Ismail BB, He Q, Jin TZ, Liu D. Informative and corrective responsive packaging: Advances in farm-to-fork monitoring and remediation of food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5258-5282. [PMID: 34318596 DOI: 10.1111/1541-4337.12807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Microbial growth and fluctuations in environmental conditions have been shown to cause microbial contamination and deterioration of food. Thus, it is paramount to develop reliable strategies to effectively prevent the sale and consumption of contaminated or spoiled food. Responsive packaging systems are designed to react to specific stimuli in the food or environment, such as microorganisms or temperature, then implement an informational or corrective response. Informative responsive packaging is aimed at continuously monitoring the changes in food or environmental conditions and conveys this information to the users in real time. Meanwhile, packaging systems with the capacity to control contamination or deterioration are also of great interest. Encouragingly, corrective responsive packaging attempting to mitigate the adverse effects of condition fluctuations on food has been investigated. This packaging exerts its effects through the triggered release of active agents by environmental stimuli. In this review, informative and corrective responsive packaging is conceptualized clearly and concisely. The mechanism and characteristics of each type of packaging are discussed in depth. This review also summarized the latest research progress of responsive packaging and objectively appraised their advantages. Evidently, the mechanism through which packaging systems respond to microbial contamination and associated environmental factors was also highlighted. Moreover, risk concerns, related legislation, and consumer perspective in the application of responsive packaging are discussed as well. Broadly, this comprehensive review covering the latest information on responsive packaging aims to provide a timely reference for scientific research and offer guidance for presenting their applications in food industry.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
32
|
Min T, Sun X, Zhou L, Du H, Zhu Z, Wen Y. Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal-organic framework for antibacterial food packaging. Carbohydr Polym 2021; 270:118391. [PMID: 34364632 DOI: 10.1016/j.carbpol.2021.118391] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/26/2021] [Indexed: 01/01/2023]
Abstract
Pathogenic microorganisms posed perniciousness for postharvest fruits and vegetables, as well as brought potential risks for human health. In this work, pullulan/polyvinyl alcohol (PUL/PVA) nanofibers incorporated with thymol-loaded porphyrin metal-organic framework nanoparticles (THY@PCN-224 NPs) were developed for antibacterial food packaging. PCN-224 MOFs not only act as thymol loading carriers but also highly produce singlet oxygen (1O2) with bactericidal activity. PUL/PVA nanofiber was a promising sustainable substrate because of its good flexibility, biocompatibility and biodegradability. The loading capacity of PCN-224 for thymol was about 20%. The THY@PCN/PUL/PVA nanofibers exhibited synergistic antibacterial activities against E. coli (~99%) and S. aureus (~98%) under light irradiation. The cell viability assays and fruit preservation study demonstrated good biosafety of the polymeric film. The results suggested that this novel nanofiber has potential application prospects for food packaging.
Collapse
Affiliation(s)
- Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoli Sun
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhu Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
33
|
Colussi R, Ferreira da Silva WM, Biduski B, Mello El Halal SL, da Rosa Zavareze E, Guerra Dias AR. Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Li R, Chen T, Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS NANO 2021; 15:3808-3848. [PMID: 33629585 DOI: 10.1021/acsnano.0c09617] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To address the serious threat of bacterial infection to public health, great efforts have been devoted to the development of antimicrobial agents for inhibiting bacterial growth, preventing biofilm formation, and sterilization. Very recently, metal-organic frameworks (MOFs) have emerged as promising materials for various antimicrobial applications owing to their different functions including the controlled/stimulated decomposition of components with bactericidal activity, strong interactions with bacterial membranes, and formation of photogenerated reactive oxygen species (ROS) as well as high loading and sustained releasing capacities for other antimicrobial materials. This review focuses on recent advances in the design, synthesis, and antimicrobial applications of MOF-based materials, which are classified by their roles as component-releasing (metal ions, ligands, or both), photocatalytic, and chelation antimicrobial agents as well as carriers or/and synergistic antimicrobial agents of other functional materials (antibiotics, enzymes, metals/metal oxides, carbon materials, etc.). The constituents, fundamental antimicrobial mechanisms, and evaluation of antimicrobial activities of these materials are highlighted to present the design principles of efficient MOF-based antimicrobial materials. The prospects and challenges in this research field are proposed.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Tongtong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| |
Collapse
|
35
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
36
|
Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing, and recent developments in encapsulating essential oils. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Curcumin-loaded nanoMOFs@CMFP: A biological preserving paste with antibacterial properties and long-acting, controllable release. Food Chem 2021; 337:127987. [DOI: 10.1016/j.foodchem.2020.127987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/30/2023]
|
39
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
40
|
Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Encapsulation of menthol into cyclodextrin metal-organic frameworks: Preparation, structure characterization and evaluation of complexing capacity. Food Chem 2020; 338:127839. [PMID: 32822901 DOI: 10.1016/j.foodchem.2020.127839] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022]
Abstract
Cyclodextrin (CD)-metal-organic frameworks (MOFs) are developed as a new type of food-acceptable multi-porous material, which shows a great potential for controlled volatile compound release. This study aimed to synthesize CD-MOFs from potassium nitrate, crystallized with α-cyclodextrin (α-CD), β-CD or γ-CD, and their complex capacities were further evaluated using menthol encapsulation. Compared with CD, all the CD-MOFs had highly ordered crystal structures and more regular shapes. β-CD-MOF showed better thermal stability, with an initial thermal degradation temperature of 253 °C, higher than the other two CD-MOFs. The CD-MOFs were used for menthol encapsulation and the resulting menthol concentration within the inclusion complexes (ICs) was determined. The menthol concentration in ICs followed the order: β-CD-MOF > β-CD > γ-CD-MOF > γ-CD > α-CD ≥ α-CD-MOF. The menthol content and encapsulation efficiency of β-CD-MOF were 21.76% (w/w) and 22.54% (w/w) respectively, significantly higher than those of other reported solid materials, such as amylose, CD and V-type starch.
Collapse
|
42
|
Jin F, Ding R, Ding K, Han T, Chen X. Preparation of allyl isothiocyanate microencapsulation and its application in pork preservation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang‐zhou Jin
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Rui‐xia Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Ke Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Tao Han
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Xiang‐ning Chen
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| |
Collapse
|
43
|
Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, Yang Z, Yan H, Cui C, Tan W. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. NANO-MICRO LETTERS 2020; 12:103. [PMID: 34138099 PMCID: PMC7770922 DOI: 10.1007/s40820-020-00423-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 05/17/2023]
Abstract
Investigation of metal-organic frameworks (MOFs) for biomedical applications has attracted much attention in recent years. MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure, ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. In this review, the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section. Then, state-of-the-art strategies to functionalize MOFs with therapeutic agents were summarized, including surface adsorption, pore encapsulation, covalent binding, and functional molecules as building blocks. In the third section, the most recent biological applications of MOFs for intracellular delivery of drugs, proteins, and nucleic acids, especially aptamers, were presented. Finally, challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
Collapse
Affiliation(s)
- Yujia Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Liwei Zheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xu Qian
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
| | - Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - He Yan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA.
| |
Collapse
|
44
|
Hybridization of carboxymethyl chitosan with MOFs to construct recyclable, long-acting and intelligent antibacterial agent carrier. Carbohydr Polym 2020; 233:115848. [DOI: 10.1016/j.carbpol.2020.115848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
|
45
|
Mao D, Xie C, Li Z, Hong L, Qu R, Gao Y, He J, Wang J. Adsorption and controlled release of three kinds of flavors on UiO-66. Food Sci Nutr 2020; 8:1914-1922. [PMID: 32328257 PMCID: PMC7174235 DOI: 10.1002/fsn3.1477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Delivery systems for controlled release of fragrances are significantly essential in the flavor and fragrance industry due to a limited life span (premature evaporation and degradation) of fragrance compounds. Recently, several adsorption materials such as porous materials have been developed in delivery systems for targeted fragrance release. In this work, UiO-66, a member of metal-organic framework (MOF) family with high porosity and greater adsorbability, was selected as a prospective alternative to traditional porous adsorbents for controlled release of fragrances. Isophorone, eugenol, and β-ionone with strong aroma are widely used as perfume flavors, soap flavor, cosmetic flavors, and even as a food-flavoring agents, and were chosen as representative fragrances for adsorption and controlled release studies. The adsorption and release behavior of fragrances on UiO-66 was evaluated by high-performance liquid chromatography (HPLC). The UiO-66 with high surface area (1,076 m2/g) achieved effective storage and controlled release for isophorone, eugenol, and β-ionone. The adsorption rates of isophorone, eugenol, and β-ionone can reach 99.4%, 99.9%, and 60.2%, respectively. Additionally, the release of these fragrances from UiO-66 can sustain over 20 days. UiO-66 exhibited higher release rate over eugenol with desorption rates of 95.2% than that of β-ionone (52.6%) and isophorone (49.6%), respectively, suggesting a good adsorption-release selectivity of UiO-66 to different fragrances. This study further confirms the usability of UiO-66 in fragrance release and extends the application of MOF porosity in aroma release.
Collapse
Affiliation(s)
- Deshou Mao
- Research & Technology Center of Yunnan Industrial of China Tobacco Industry CO., LtdKunmingChina
| | - Congjia Xie
- National Center for International Research on Photoelectric and Energy MaterialsYunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial WastewaterYunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite EnergySchool of Chemical Sciences & TechnologyYunnan UniversityKunmingChina
| | - Zhiyu Li
- Research & Technology Center of Yunnan Industrial of China Tobacco Industry CO., LtdKunmingChina
| | - Liu Hong
- Research & Technology Center of Yunnan Industrial of China Tobacco Industry CO., LtdKunmingChina
| | - Rongfen Qu
- Research & Technology Center of Yunnan Industrial of China Tobacco Industry CO., LtdKunmingChina
| | - You Gao
- National Center for International Research on Photoelectric and Energy MaterialsYunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial WastewaterYunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite EnergySchool of Chemical Sciences & TechnologyYunnan UniversityKunmingChina
| | - Jiao He
- National Center for International Research on Photoelectric and Energy MaterialsYunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial WastewaterYunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite EnergySchool of Chemical Sciences & TechnologyYunnan UniversityKunmingChina
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy MaterialsYunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial WastewaterYunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite EnergySchool of Chemical Sciences & TechnologyYunnan UniversityKunmingChina
| |
Collapse
|
46
|
Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
48
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
49
|
Huang G, Chen J, Tang X, Xiong D, Liu Z, Wu J, Sun WY, Lin B. Facile Method To Prepare a Novel Biological HKUST-1@CMCS with Macroscopic Shape Control for the Long-Acting and Sustained Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10389-10398. [PMID: 30776891 DOI: 10.1021/acsami.8b21424] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a green and versatile method to prepare hierarchically porous Cu3(BTC)2@carboxymethyl chitosan (HKUST-1@CMCS) with a macroscopic shape control and designable performance via the cross-linking of Cu(II) ions with CMCS. Furthermore, atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy analyses showed that the morphology of HKUST-1 could be controlled and changed by tailoring the surface roughness ( Rq) of polymer matrix. For the ball-like, fiberlike, and membrane-like composites, the matrix Rq values were 887, 88.4, and 18.2 nm and the average sizes of HKUST-1 crystals were about 10.2, 5.9, and 1.7 μm, respectively. It was found that the larger the Rq of the polymer matrix, the higher the drug payload. The results of drug release showed that the release percentage of dimethyl fumarate from HKUST-1@CMCS was 66% in 326 h, whereas that of Cu@CMCS was only 12 h. Obviously, the HKUST-1@CMCS had a long-acting and sustained release property compared to that of Cu@CMCS due to its complementary advantages of metal-organic frameworks (MOFs) and polymers. Therefore, this study not only provided an interesting way to make up for the shortcomings of MOFs and natural polymer but also developed a long-acting delivery system for a huge potential application prospect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei-Yin Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| | | |
Collapse
|
50
|
Dutournié P, Bruneau M, Brendlé J, Limousy L, Pluchon S. Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest. CR CHIM 2019. [DOI: 10.1016/j.crci.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|