1
|
Liu W, Lei L, Ma F, Zhan M, Zhu J, Khan MZH, Liu X. A Dioscorea opposita Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects. ACS Biomater Sci Eng 2025; 11:415-428. [PMID: 39743314 DOI: 10.1021/acsbiomaterials.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with Dioscorea opposita polysaccharide (DOP)─calcium carbonate (CaCO3) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects. The hydrogel defined as PL-PVA/DOP-CaCO3 was designed via the borate ester bonds between polylysine-phenylboronic acids (PL-PBA) and dihydroxyl groups of poly(vinyl alcohol) (PVA). DOP modified on the surface of CaCO3 microspheres can simultaneously act with PBA to dope into the PL-PVA hydrogel and maintain glucose sensitivity. The mechanical and swelling properties of the hybrid hydrogels were reinforced by the incorporated microspheres. Meanwhile, the hyperglycemia was also regulated by the released insulin and DOP. The in vitro results indicated that the PL-PVA/DOP-CaCO3 hydrogel had good biocompatibility and inflammatory activity and could promote fibroblast proliferation and migration. In vivo experiments demonstrated that the INS@PL-PVA/DOP-CaCO3 hydrogel can significantly promote wound healing in diabetic rats by glucose-responsive regulation of hyperglycemia, inhibiting inflammation, improving angiogenesis, and accelerating the secretion of endothelial cells and proliferation of fibroblasts on wound tissues. The results bring new insights into the field of glucose-responsive hydrogels, showing their potential as drug delivery systems of macromolecular therapeutics to treat diabetic skin wounds.
Collapse
Affiliation(s)
- Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Mengke Zhan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Jiang S, Xie H, Zuo Y, Sun J, Wu D, Shu X. Structural and functional properties of polysaccharides extracted from three Dioscorea species. Int J Biol Macromol 2024; 281:136469. [PMID: 39396596 DOI: 10.1016/j.ijbiomac.2024.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dioscorea has a history spanning over 2000 years for both medicinal and edible purposes in China. It contains rich polysaccharides, which are frequently utilized as thickening and stabilizing agents in the food industry. However, there has been relatively little focus on polysaccharides from common Dioscorea species besides D. opposita, such as D. alata and D. esculenta. In this study, non-starch crude polysaccharides were isolated from D. opposita (BD), D. alata (WC), and D. esculenta (GZ). Their structures, physicochemical compositions, and functional properties were characterized and compared. The results indicated three polysaccharides all exhibited characteristic peaks of polysaccharides and possessed triple-helix structures. The Glc (36.78-83.90 %), Man (6.71-26.68 %), and GalA (8.54-10.22 %) were identified as the primary monosaccharide components. In terms of functionality, three polysaccharide solutions demonstrated non-Newtonian flow characteristics and displayed commendable thermal stability. It is worth noting that the antioxidant and emulsifying properties of polysaccharides isolated from D. opposita (BD) and D. alata (WC) were superior to those of D. esculenta (GZ), making them more suitable for use as antioxidants and stabilizers. By comparing polysaccharides derived from different Dioscorea species, this study provides valuable insights into the food, cosmetic, and pharmaceutical industries based on the unique properties of these different polysaccharides.
Collapse
Affiliation(s)
- Shuo Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xie
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Youming Zuo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Dianxing Wu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
3
|
An L, Liu H, Li M, Ma J, Zheng L, Zhou J, Zhang J, Yuan Y, Wu X. Unveiling the impact of harvest time on Dioscorea opposita Thunb. cv. Tiegun maturity by NMR-based metabolomics and LC-MS/MS analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6342-6349. [PMID: 38415792 DOI: 10.1002/jsfa.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Dioscorea opposita Thunb. cv. Tiegun maturity (DM) is an important factor influencing its quality. However, there are few studies on the impact of harvest time on its maturation. In the present study, a NMR-based metabolomics approach was applied to investigate the dynamic metabolic changes of D. opposita Thunb. cv. Tiegun at six different harvest stages: stage 1 (S1), stage 2 (S2), Stage 3 (S3), stage 4 (S4), stage 5 (S5) and stage 6 (S6). RESULTS Principal component analysis showed distinct segregation of samples obtained from S1, S2 and S3 compared to those derived from S4, S5 and S6. Interestingly, these samples from the two periods were obtained before and after frost, indicating that frost descent might be important for DM. Eight differential metabolites responsible for good separation of different groups were identified by the principal component analysis loading plot and partial least squares-discriminant analysis. In addition, quantitative analysis of these metabolites using liquid chromatography-tandem mass spectrometry determined the effects of harvest time on these metabolite contents, two of which, sucrose and allantoin, were considered as potential biomarkers to determine DM. CONCLUSION The present study demonstrated that NMR-based metabolomics approach could serve as a powerful tool to identify differential metabolites during harvesting processes, also offering a fresh insight into understanding the DM and the potential mechanism of quality formation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li An
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Hao Liu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng Li
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Jingwei Ma
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Lufei Zheng
- Institute of Quality Standards and Testing Technology for Agro-products of CAAS, Beijing, China
| | - Juan Zhou
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Junfeng Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Yongliang Yuan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Zhang L, Wang S, Zhang W, Chang G, Guo L, Li X, Gao W. Prospects of yam (Dioscorea) polysaccharides: Structural features, bioactivities and applications. Food Chem 2024; 446:138897. [PMID: 38430768 DOI: 10.1016/j.foodchem.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.
Collapse
Affiliation(s)
- Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
5
|
Khol M, Ma F, Lei L, Liu W, Liu X. A Frontier Review of Nutraceutical Chinese Yam. Foods 2024; 13:1426. [PMID: 38790726 PMCID: PMC11119861 DOI: 10.3390/foods13101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Yams are the edible subterranean rhizomes, or tubers, of plants from the genus Dioscorea. There are approximately 600 species of yam plants in the world, with more than 90 of these growing in East Asia. One particular species, Dioscorea opposita Thunb., is highly praised as "the Chinese yam". This distinction arises from millennia of storied history, both as a nutritional food source and as a principal ingredient in traditional Chinese medicine. Among the many cultivars of Dioscorea opposita Thunb., Huai Shanyao has been widely regarded as the best. This review surveyed the historical background, physiochemical composition, applications as food and medicine, and research prospects for the Chinese yam. Modern science is finally beginning to confirm the remarkable health benefits of this yam plant, long-known to the Chinese people. Chinese yam promises anti-diabetic, anti-oxidative, anti-inflammatory, immunomodulatory, anti-hyperlipidemic, anti-hypertensive, anti-cancer, and combination treatment applications, both as a functional food and as medicine.
Collapse
Affiliation(s)
- Matthew Khol
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
- School of Pharmacy, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| | - Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Wang R, Liu W, Liu L, Ma F, Li Q, Zhao P, Ma W, Cen J, Liu X. Characterization, in vitro digestibility, antioxidant activity and intestinal peristalsis in zebrafish of Dioscorea opposita polysaccharides. Int J Biol Macromol 2023; 250:126155. [PMID: 37549765 DOI: 10.1016/j.ijbiomac.2023.126155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The soluble crude polysaccharides from Dioscorea opposita (DOP1 and DOP2) were prepared and characterized. DOP1 and DOP2 obtained carbohydrate (65.71% and 70.18%, respectively), uronic acid (63.71% and 24.84%, respectively) and protein (8.09% and 9.51%, respectively) with molecular weight of 49.24 kDa and 21.62 kDa, respectively. DOP samples were mainly composed of mannose, glucose, galacturonic acid, galactose, and glucuronic acid. The digestibility in vitro, antioxidant activity and intestinal peristalsis effect were then investigated. DOP1 and DOP2 were degraded with decreased molecular weights (39.58 kDa and 18.56 kDa respectively), increased reducing sugar contents (from 16.95% to 19.27%; 12.45% to 15.50% respectively) and free monosaccharides (from 0.89% to 1.42%; 0.90% to 1.14% respectively) after gastric digestion. Both DOP1 and DOP2 were resistant to intestinal digestion, suggesting that DOP samples can be considered as a dietary fiber. Additionally, DOP1 and DOP2 exhibited antioxidant activities positively correlated with the concentration and remained the activities after gastrointestinal digestion in vitro. Furthermore, DOP reduced the fluorescence intensity significantly, indicating DOP can promote the intestinal peristalsis of zebrafish larvae (5 pdf) at 500 μg/mL. Therefore, DOP1 and DOP2 have a better functionality as dietary fibers, including antioxidant activity and intestinal peristalsis promotion, which can be developed as functional foods.
Collapse
Affiliation(s)
- Ruijiao Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Wei Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Qian Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Peng Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wenjing Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| |
Collapse
|
7
|
Guo L, Chang Y, Sun Z, Deng J, Jin Y, Shi M, Zhang J, Miao Z. Effects of Chinese Yam Polysaccharide on Intramuscular Fat and Fatty Acid Composition in Breast and Thigh Muscles of Broilers. Foods 2023; 12:foods12071479. [PMID: 37048300 PMCID: PMC10094610 DOI: 10.3390/foods12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The purpose of this study is to evaluate the influences of Chinese yam polysaccharide (CYP) dietary supplementation on the composition of intramuscular fat (IMF) and fatty acids (FA) in thigh and breast muscles of broilers. Three hundred and sixty healthy one-day-old broilers (the breed of Crossbred chicken is named 817) with gender-balanced and similar body weight (39 ± 1 g) were randomly allocated into four groups (control, CYP1, CYP2, and CYP3 groups). Broilers in the control group were only fed a basal diet, and broilers in CYP1 group were fed the same diets further supplemented with 250 mg/kg CYP, the CYP2 group was fed the same diets further supplemented with 500 mg/kg CYP, and the CYP3 group was fed the same diets further supplemented with 1000 mg/kg CYP, respectively. Each group consisted of three replicates and each replicate consisted of 30 birds. The feeding days were 48 days. The results observed that the CYP2 group (500 mg/kg) can up-regulate the mRNA expression levels of β-catenin in thigh muscle compared to the control group. At the same time, all CYP groups (CYP1, CYP2, and CYP3 groups) can up-regulate mRNA expression of Wnt1 and β-catenin in breast muscle, while mRNA expression of PPARγ and C/EBPα in breast and thigh muscles could be down-regulated (p < 0.05). In summary, 500 mg/kg of CYP dietary supplementation can reduce IMF content and improve the FAs composition, enhancing the nutritional value of chicken meat.
Collapse
Affiliation(s)
- Liping Guo
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhe Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Jin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingyan Shi
- College of Life Science, Luoyang Normal University, Jiqing Road, Luoyang 471022, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: ; Tel.: +86-373-3040718; Fax: +86-373-3040718
| |
Collapse
|
8
|
Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081703. [PMID: 36015329 PMCID: PMC9414761 DOI: 10.3390/pharmaceutics14081703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.
Collapse
|
9
|
Liu W, Wang X, Zhou D, Fan X, Zhu J, Liu X. A Dioscorea opposita Thunb Polysaccharide-Based Dual-Responsive Hydrogel for Insulin Controlled Release. Int J Mol Sci 2022; 23:ijms23169081. [PMID: 36012342 PMCID: PMC9409491 DOI: 10.3390/ijms23169081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
A novel hydrogel (DOP/PEI-PBA) based on the “three-component” reaction of 2-formylphenylboric acid (2-FPBA), the primary amine group of polyethyleneimine (PEI) and the cis-o-dihydroxy groups of Dioscorea opposita Thunb polysaccharide (DOP) was designed in this work. The hydrogel can be easily prepared by simply mixing the three reactants at room temperature. The hydrogel had dual responsiveness to glucose and pH, and can realize the controllable release of insulin. Moreover, the hydrogel combining insulin and DOP can inhibit the reactive oxygen species (ROS) level and malondialdehyde (MDA) content, and promote glucose consumption as well as the level of superoxide dismutase (SOD), in high-glucose-induced injury in HL-7702 cells, which reflects the synergistic effect of insulin and DOP to protect hepatocytes from oxidative stress at the same time. Further in vitro cytotoxicity studies showed that the hydrogel had good biocompatibility and no obvious toxicity to cells. These indicate that the prepared hydrogel (DOP/PEI-PBA) can be expected to be applied in the clinical treatment of insulin deficiency in diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
10
|
Li Q, Zhao T, Shi J, Xia X, Li J, Liu L, Julian McClements D, Cao Y, Fu Y, Han L, Lin H, Huang J, Chen X. Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis). Food Chem 2022; 395:133625. [DOI: 10.1016/j.foodchem.2022.133625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
|
11
|
Jia X, Wang X, Liu Y, Sun Y, Ma B, Li Z, Xu C. Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Xuanjing Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanshang Liu
- Technical Center of Hebei China Tobacco Industry Co, Ltd, Shijiazhuang, China
| | - Yiyan Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingjie Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
12
|
Structure Characterization of Polysaccharide from Chinese Yam ( Dioscorea opposite Thunb.) and Its Growth-Promoting Effects on Streptococcus thermophilus. Foods 2021; 10:foods10112698. [PMID: 34828979 PMCID: PMC8624800 DOI: 10.3390/foods10112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
To clarify the mechanisms underlying the growth-promoting effects of yam polysaccharide on Streptococcus thermophilus (S. thermophilus), the yam polysaccharide was extracted using a deep eutectic solvents (DESs) method and separated into four fractions by DEAE-cellulose 52. These fractions were used as the alternative carbon source to substitute lactose to compare their growth-promoting effects on S. thermophilus. Furthermore, their molecular weight, monosaccharide and functional groups' composition, microscopic forms and other basic structure characterizations were analyzed. The results showed that all the fractions could significantly promote S. thermophilus growth, and fractions exhibited significantly different growth-promoting effects, whose viable count increased by 6.14, 6.03, 11.48 and 11.29%, respectively, relative to those in the M17 broth medium. Structure-activity relationship analysis revealed that the high growth-promoting activity of yam polysaccharide might be more dependent on the higher molecular weight, the higher galacturonic acid content and its complex spatial configuration, and the existence of β-glycosides would make the yam polysaccharide have a better growth-promoting effect on S. thermophilus.
Collapse
|
13
|
Physicochemical properties and antioxidant activity of Maillard reaction products derived from Dioscorea opposita polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Li Q, Shi J, Du X, McClements DJ, Chen X, Duan M, Liu L, Li J, Shao Y, Cheng Y. Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chem 2021; 357:129714. [PMID: 33865002 DOI: 10.1016/j.foodchem.2021.129714] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A natural antioxidant emulsifier, tea polysaccharide conjugate (TPC), was isolated from Chin brick tea. The impact of TPC on β-carotene stability and bioaccessibility in oil-in-water nanoemulsions was assessed. TPC exhibited strong antioxidant activity and could be used to fabricate stable nanoemulsions (d < 140 nm). The extent of lipid digestion was considerably lower for lipid droplets coated by TPC (68%) than Tween 80 (94%) or whey protein isolate (WPI) (89%), probably because TPC formed interfacial layers that hindered the access of lipases to lipids. The chemical stability of β-carotene in TPC-nanoemulsions was markedly higher than in those formulated with Tween 80 or WPI due to the high antioxidant activity of TPC. The bioaccessibility of β-carotene (20-30%) was independent of emulsifier type. TPC from Chin brick tea can therefore be used as a dual-purpose functional ingredient in emulsified foods.
Collapse
Affiliation(s)
- Qian Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Jinglan Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaolin Du
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | | | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengran Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lu Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yundong Shao
- Zhejiang Skyherb Biotechnology Inc., Anji, Zhejiang 313300, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Anji, Zhejiang 313300, China
| |
Collapse
|
15
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 2020; 242:116388. [PMID: 32564856 DOI: 10.1016/j.carbpol.2020.116388] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Many bioactive food ingredients were encapsulated in different forms to improve their stability and bioavailability. Emulsions have showed excellent properties in encapsulation, controlled release, and targeted delivery of bioactives. Polysaccharides are widely available and have different structures with different advantages including non-toxic, easily digested, biocompatible and can keep stable over a wide range of pH and temperatures. In this review, the most common polysaccharides and polysaccharide based complexes as emulsifiers to stabilize emulsions in recent ten years are described. The close relationships between the types and structures of polysaccharides and their emulsifying capacities are discussed. In addition, the absorption and bioavailability of bioactive food components loaded in polysaccharide stabilized emulsions are summarized. The main goal of the review is to emphasize the important roles of polysaccharides in stabilizing emulsions. Moreover, speculations regarded to some issues for the further exploration and possible onward developments of polysaccharides stabilized emulsions are also discussed.
Collapse
Affiliation(s)
- Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
16
|
Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. Int J Biol Macromol 2020; 147:109-116. [DOI: 10.1016/j.ijbiomac.2020.01.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
17
|
Emulsifying and structural properties of polysaccharides extracted from Chinese yam by an enzyme-assisted method. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chem 2019; 284:118-124. [DOI: 10.1016/j.foodchem.2019.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/27/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
|
19
|
Li H, Wang Z, Sun X, Pan C, Gao X, Liu W. Chemical and rheological properties of proteoglycans from Sarcandra glabra (Thunb.) Nakai. Int J Biol Macromol 2019; 132:641-650. [PMID: 30940591 DOI: 10.1016/j.ijbiomac.2019.03.228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
Two proteoglycans (HPP and LPP) with different ratios of protein/polysaccharide were extracted from S. glabra. The chemical compositions, relative average molecular weights, monosaccharide compositions, FT-IR spectra, and rheological properties of the two proteoglycans were determined. The results exhibited that the two proteoglycans had pseudoplastic fluids properties and displayed shear-thinning behavior. The apparent viscosity of the two proteoglycans both increased with increasing concentrations. The temperature had different effects on the viscosity of the two proteoglycans. As temperature increased from 25 to 85 °C, the viscosity of LPP descended while the HPP's viscosity rose first and then dropped slightly. The effects of CaCl2 addition on the two samples were like that of the temperature. The viscosities of HPP and LPP had different tolerances to acidity and alkalinity. HPP solution was more sensitive to pH changes due to its high protein content. The addition of sucrose increased the viscosities of samples. The modulus G' and G″ of HPP and LPP were increased with the increase of oscillation frequency, while the crossover points of G' and G″ values decreased with the increasing concentrations of HPP and LPP. The above data presented that the two proteoglycans could be promising candidates for food industries and pharmacological applications.
Collapse
Affiliation(s)
- Huan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zichen Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuyang Sun
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Ma F, Wang R, Zhu J, Zhang Y, Wang Y, Hu W, Bell AE, Liu X. Characterisation comparison of polysaccharides from Dioscorea opposita Thunb. growing in sandy soil, loessial soil and continuous cropping. Int J Biol Macromol 2018; 126:776-785. [PMID: 30599157 DOI: 10.1016/j.ijbiomac.2018.12.259] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Abstract
This study compared the characterisations of polysaccharides from Chinese yam (Dioscorea opposita Thunb.) growing in sandy soil (SSCY), loessial soil (LSCY) and second-year continuous cropping (CCCY). SSCY contained the highest total polysaccharides (36.55%) and 80.19% glucose, CCCY from sandy soil obtained 24.55% polysaccharides with 43.66% glucose, whereas LSCY contained 27.54% total polysaccharides and 7.94% glucose. The results indicated that Dioscorea opposita from sandy soil may obtain higher level of glucose. CCCY increased the galacturonic acids in yams from 7.03% to 26.19%, which may have been caused by the decrease in soil pH due to continuous cropping. The starches of SSCY and CCCY from sandy soil belongs to C-type, whereas the starch of LSCY from loessial soil has the A-type pattern. The results suggested that the two types of soil and continuous cropping change the compounds and contents of yams, which provide valuable evidences for cropping management and allelopathy effects.
Collapse
Affiliation(s)
- Fanyi Ma
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Ruijiao Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Yun Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Yong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Weiping Hu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Alan E Bell
- Department of Food and Nutritional Science, University of Reading, Whitenights, Reading RG6 6AP, UK
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, College of Chemistry and Chemical Engineering, Institute of Environmental and Analytical Sciences, Pharmaceutical College, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Zhu Y, Yang L, Zhang C, Tian Y, Zhang F, Li X. Structural and functional analyses of three purified polysaccharides isolated from Chinese Huaishan-yams. Int J Biol Macromol 2018; 120:693-701. [DOI: 10.1016/j.ijbiomac.2018.08.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 01/16/2023]
|
22
|
Zhang ZH, Fan ST, Huang DF, Yu Q, Liu XZ, Li C, Wang S, Xiong T, Nie SP, Xie MY. Effect of Lactobacillus plantarum NCU116 Fermentation on Asparagus officinalis Polysaccharide: Characterization, Antioxidative, and Immunoregulatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10703-10711. [PMID: 30251849 DOI: 10.1021/acs.jafc.8b03220] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lactic acid fermentation represents a novel method to produce bioactive functional ingredients, including polysaccharides. In this work, a selected lactic acid bacteria strain NCU116 was used to ferment Asparagus officinalis (asparagus) pulps. Two polysaccharides were subsequently separated from both unprocessed and fermented asparagus pulps, namely, asparagus polysaccharide (AOP) and fermented-AOP (F-AOP). The physicochemical and bioactive properties of AOP and F-AOP were characterized and investigated. High-performance anion-exchange chromatography showed that fermentation increased the proportions of rhamnose, galacturonic acid, and glucuronic acid in polysaccharides by 46.70, 114.09, and 12.75‰, respectively. High-performance size-exclusion chromatography revealed that fermentation decreased the average molecular weight from 181.3 kDa (AOP) to 152.8 kDa (F-AOP). Moreover, the fermentation reduced the particle size and changed the rheology property. In vitro, F-AOP displayed superior free radical scavenging properties compared to AOP, using 2,2-diphenyl-1-picryhydrazyl, hydroxyl, and superoxide anion radical scavenging assays. In vivo, F-AOP administration dose-dependently promoted a gradual shift from Th17-dominant acute inflammatory response (IL-17 and RORγt) to Th1-dominant defensive immune response (IFN-γ and T-bet). These results indicated that the Lactobacillus plantarum NCU116 fermentation was practical and useful to obtain promising bioactive polysaccharides.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Song-Tao Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Dan-Fei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Xiao-Zhen Liu
- Dongguan University of Technology , Dongguan 523808 , China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Sunan Wang
- Canadian Food and Wine Institute , Niagara College , 135 Taylor Road , Niagara-on-the-Lake , Ontario L0S 1J0 , Canada
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| |
Collapse
|
23
|
Wang X, Zhang Y, Liu Z, Zhao M, Liu P. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae. Molecules 2017; 22:molecules22111866. [PMID: 29088064 PMCID: PMC6150556 DOI: 10.3390/molecules22111866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions—CPP1, CPP2, and CPP3, (CPPs)—were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yifei Zhang
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhikai Liu
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Liu
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|