1
|
Yu X, Yang C, Zhang L. A novel tomato pulp with high cis-lycopene content and bioaccessibility through plant-derived sulfur-containing compounds in a simulated food system. Food Res Int 2025; 204:115915. [PMID: 39986764 DOI: 10.1016/j.foodres.2025.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
Cis (Z)-lycopene exhibits higher bioavailability and tissue accumulation efficiency compared with all-trans (E)-lycopene. A simulated food system was developed to convert all-E-lycopene to its Z-isomers during processing. This system consisted of an aqueous phase containing plant-derived sulfur-containing compounds and a medium-chain triglyceride (MCT) oil phase with dissolved all-E-lycopene. The study aimed to evaluate the effects of sulfur-containing compounds from different plant sources and heat treatments on lycopene isomerization and degradation. The results indicated that, compared with shiitake extract, leek extract, glucoraphanin, wasabi extract, and horseradish, allicin, alliin, and sulforaphane significantly promoted the Z-lycopene content under the optimal heat treatment conditions. The Z-lycopene content increased from 4.91 % to 77.1 %, 68.91 %, and 75.84 % in the allicin, alliin, and sulforaphane groups, respectively. Additionally, except for the shiitake extract group, the addition of other sulfur-containing compounds did not significantly affect lycopene degradation compared with thermal treatment alone (p > 0.05). For better quantitative analysis in food systems, alliin was used as a reference. The application of this method demonstrated that in screened alliin-rich garlic juice (21.20 mg/g) mixed with tomato pulp and MCT oil system, the percentage of total-Z-lycopene increased from 12.14 % to 59.57 %. The bioaccessibility of total-Z-lycopene significantly improved with the addition of garlic juice (p < 0.01). Among all isomers, the bioaccessibility of 9-Z-lycopene and 5-Z-lycopene showed the most significant increase (p < 0.01). This novel tomato pulp system enables the effective utilization of lycopene during processing.
Collapse
Affiliation(s)
- Xiuli Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Liu P, Wu P, Bi J, Jiang Y, Gao R, Weng R, Zhao T, Yuan X, Chen J, Hao H, Wang Y. Putative Transformation Mechanism of γ-l-Glutamyl-S-Allyl-l-Cysteine during the Processing of Black Garlic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2999-3007. [PMID: 39865660 DOI: 10.1021/acs.jafc.4c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established. In addition to GSAC and fructose, a total of 6 products were identified and confirmed. Findings indicate that thermal decomposition and enzymatic hydrolysis are the two primary pathways through which GSAC is transformed, whereas the Maillard reaction between fructose and GSAC is unlikely to occur. GSAC can be converted into S-allylcysteine and glutamic acid through thermal processing and the action of γ-glutamyl transpeptidase. Notably, the majority of Glu transformed into pyroglutamic acid via intramolecular dehydration at 75 °C, whereas in enzymatic hydrolysis simulation systems, it is converted into glutamine. Additionally, alliin, S-allylcysteine, and S-allylmercaptocysteine were detected, suggesting new pathways for the production of these compounds during the processing of black garlic.
Collapse
Affiliation(s)
- Pingxiang Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Peng Wu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Jingxiu Bi
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yuying Jiang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Rui Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Rui Weng
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tong Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Xuexia Yuan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Jing Chen
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Cooperatives, Jinan 250100, Shandong, China
| | - Haining Hao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| |
Collapse
|
3
|
Luo D, Tian B, Li J, Zhang W, Bi S, Fu B, Jing Y. Mechanisms underlying the formation of main volatile odor sulfur compounds in foods during thermal processing. Compr Rev Food Sci Food Saf 2024; 23:e13389. [PMID: 39031671 DOI: 10.1111/1541-4337.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.
Collapse
Affiliation(s)
- Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Binqiang Tian
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jingxin Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Iobbi V, Parisi V, Lanteri AP, Maggi N, Giacomini M, Drava G, Minuto G, Minuto A, Tommasi ND, Bisio A. NMR Metabolite Profiling for the Characterization of Vessalico Garlic Ecotype and Bioactivity against Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2024; 13:1170. [PMID: 38732385 PMCID: PMC11085173 DOI: 10.3390/plants13091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The Italian garlic ecotype "Vessalico" possesses distinct characteristics compared to its French parent cultivars Messidor and Messidrôme, used for sowing, as well as other ecotypes in neighboring regions. However, due to the lack of a standardized seed supply method and cultivation protocol among farmers in the Vessalico area, a need to identify garlic products that align with the Vessalico ecotype arises. In this study, an NMR-based approach followed by multivariate analysis to analyze the chemical composition of Vessalico garlic sourced from 17 different farms, along with its two French parent cultivars, was employed. Self-organizing maps allowed to identify a homogeneous subset of representative samples of the Vessalico ecotype. Through the OPLS-DA model, the most discriminant metabolites based on values of VIP (Variable Influence on Projections) were selected. Among them, S-allylcysteine emerged as a potential marker for distinguishing the Vessalico garlic from the French parent cultivars by NMR screening. Additionally, to promote sustainable agricultural practices, the potential of Vessalico garlic extracts and its main components as agrochemicals against Xanthomonas campestris pv. campestris, responsible for black rot disease, was explored. The crude extract exhibited a MIC of 125 μg/mL, and allicin demonstrated the highest activity among the tested compounds (MIC value of 31.25 μg/mL).
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Anna Paola Lanteri
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Norbert Maggi
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, via Opera Pia 13, 16145 Genova, Italy; (N.M.); (M.G.)
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, via Opera Pia 13, 16145 Genova, Italy; (N.M.); (M.G.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| | - Giovanni Minuto
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Andrea Minuto
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| |
Collapse
|
5
|
Utama GL, Rahmi Z, Sari MP, Hanidah II. Psychochemical changes and functional properties of organosulfur and polysaccharide compounds of black garlic ( Allium sativum L.). Curr Res Food Sci 2024; 8:100717. [PMID: 38559380 PMCID: PMC10978486 DOI: 10.1016/j.crfs.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Background Black garlic is one of the functional food products made from garlic which is processed through aging to improve sensory value and nutritional quality. Aging conditions has a major impact on the psychochemical and functional properties changes of black garlic which is closely related to organosulfur compounds and polysaccharides as the largest component in garlic. Scope and approach The method used in this research is a systematic review with the aim of research to determine the relationship between reactions during aging and changes in organosulfur, polysaccharides and non-enzymatic browning product compounds as well as the function of black garlic by focusing on certain aspects of aging including temperature, humidity, time, microorganism activity, and pre-treatment application. Key findings and conclusions Maillard reaction and polysaccharide degradation are still be the dominant reactions and play an important role in black garlic production. High hydrostatic pressure pretreatment could maintains the quality of black garlic so that the black garlic has the same taste characteristics as black garlic in general. Antioxidant properties in black garlic shown increase during thermal treatment. In addition, it is known that the activity of microorganisms plays a role and being potential to increase the quality value of black garlic as well as the antimicrobial activity.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, 40132, Indonesia
| | - Zahida Rahmi
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Meli Puspita Sari
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - In-in Hanidah
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
6
|
Moreno-Ortega A, Pereira-Caro G, Ludwig IA, Motilva MJ, Moreno-Rojas JM. Bioavailability of Organosulfur Compounds after the Ingestion of Black Garlic by Healthy Humans. Antioxidants (Basel) 2023; 12:antiox12040925. [PMID: 37107300 PMCID: PMC10135770 DOI: 10.3390/antiox12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The consumption of black garlic has been related to a decreased risk of many human diseases due to the presence of phytochemicals such as organosulfur compounds (OSCs). However, information on the metabolization of these compounds in humans is limited. By means of ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), this study aims to determine the OSCs and their metabolites excreted in urine 24 h after an acute intake of 20 g of black garlic by healthy humans. Thirty-three OSCs were identified and quantified, methiin (17,954 ± 6040 nmol), isoalliin (15,001 ± 9241 nmol), S-(2-carboxypropyl)-L-cysteine (8804 ± 7220 nmol) and S-propyl-L-cysteine (deoxypropiin) (7035 ± 1392 nmol) being the main ones. Also detected were the metabolites N-acetyl-S-allyl-L-cysteine (NASAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NASACS) and N-acetyl-S-(2-carboxypropyl)-L-cysteine (NACPC), derived from S-allyl-L-cysteine (SAC), alliin and S-(2-carboxypropyl)-L-cysteine, respectively. These compounds are potentially N-acetylated in the liver and kidney. The total excretion of OSCs 24 h after the ingestion of black garlic was 64,312 ± 26,584 nmol. A tentative metabolic pathway has been proposed for OSCs in humans.
Collapse
Affiliation(s)
- Alicia Moreno-Ortega
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Agrotecnio Center, XaRTA-TPV, Food Technology Department, Escola Tècnica Superior d'Enginyeria Agrària, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Catalonia, Spain
| | - María-José Motilva
- Agrotecnio Center, XaRTA-TPV, Food Technology Department, Escola Tècnica Superior d'Enginyeria Agrària, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Catalonia, Spain
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
7
|
Cinar A, Altuntas S, Demircan H, Dundar AN, Taner G, Oral RA. Encapsulated black garlic: Comparison with black garlic extract in terms of physicochemical properties, biological activities, production efficiency and storage stability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kang MJ, Kang JR, Woo MS, Kang D, Shin JH. Alterations in the Physicochemical Properties and Antioxidant Activity during Aging of Stored Raw Garlic. Foods 2022; 11:foods11101390. [PMID: 35626958 PMCID: PMC9140653 DOI: 10.3390/foods11101390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/19/2023] Open
Abstract
Garlic, a once-a-year crop, is mass-produced in a single event. Most of the garlic harvested during the year, unless consumed or processed immediately, should be stored. Stored raw garlic (SRG) can be used to make black garlic (BG) via aging, and storage may affect the properties and quality of the BG compared with the use of raw garlic that has not been stored. This study was performed to identify the effect of long-term storage of raw garlic on the quality of BG products. SRG was aged for 21 days at 40–86 °C for BG production. Moisture content and pH gradually decreased with the aging period. Total phenolic, total flavonoid, and fructose contents were significantly increased during the aging period. Compared with non-stored raw garlic (NSRG), alliin and S-allylcysteine (SAC) contents were 1.7-fold and 5.9-fold higher in SRG, respectively, and γ-glutamyl-S-allylcysteine (γ-GSAC) content was 2.8-fold lower in SRG. The contents of alliin and γ-GSAC reduced as the aging period of SRG and NSRG progressed. However, the SAC content of NSRG increased with aging, but the SAC content of SRG decreased or increased slightly with extended aging. The antioxidant activity was also higher in BG made from NSRG rather than SRG. These results show that the SAC content is relatively low in BG manufactured from SRG compared with NSRG. Our findings suggest that it is necessary to establish an aging method suitable for SRG in BG production with high SAC content, a representative indicator of BG.
Collapse
Affiliation(s)
- Min-Jung Kang
- Namhae Garlic Research Institute, Namhae 52430, Korea; (M.-J.K.); (J.-R.K.)
| | - Jae-Ran Kang
- Namhae Garlic Research Institute, Namhae 52430, Korea; (M.-J.K.); (J.-R.K.)
| | - Min Seok Woo
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Dawon Kang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
- Correspondence: (D.K.); (J.-H.S.); Tel.: +82-10-772-8044 (D.K.)
| | - Jung-Hye Shin
- Namhae Garlic Research Institute, Namhae 52430, Korea; (M.-J.K.); (J.-R.K.)
- Correspondence: (D.K.); (J.-H.S.); Tel.: +82-10-772-8044 (D.K.)
| |
Collapse
|
9
|
Thermal and kinetic integrated models applied for Aspergillus fumigatus inactivation during ohmic and conventional juice pasteurization. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Liu C, Lu L, Yang C, Niu C, Wang J, Zheng F, Li Q. Effects of thermal treatment on alliin and its related sulfides during black garlic processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Yudhistira B, Punthi F, Lin JA, Sulaimana AS, Chang CK, Hsieh CW. S-Allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value-added product development. Compr Rev Food Sci Food Saf 2022; 21:2665-2687. [PMID: 35355410 DOI: 10.1111/1541-4337.12937] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 01/20/2023]
Abstract
S-allyl cysteine (SAC), which is the most abundant bioactive compound in black garlic (BG; Allium sativum), has been shown to have antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neuroprotective, and hepatoprotective activities. Sulfur compounds are the most distinctive bioactive elements in garlic. Previous studies have provided evidence that the concentration of SAC in fresh garlic is in the range of 19.0-1736.3 μg/g. Meanwhile, for processed garlic, such as frozen and thawed garlic, pickled garlic, fermented garlic extract, and BG, the SAC content increased to up to 8021.2 μg/g. BG is an SAC-containing product, with heat treatment being used in nearly all methods of BG production. Therefore, strategies to increase the SAC level in garlic are of great interest; however, further knowledge is required about the effect of processing factors and mechanistic changes. This review explains the formation of SAC in garlic, introduces its biological effects, and summarizes the recent advances in processing methods that can affect SAC levels in garlic, including heat treatment, enzymatic treatment, freezing, fermentation, ultrasonic treatment, and high hydrostatic pressure. Thus, the aim of this review was to summarize the outcomes of treatment aimed at maintaining or increasing SAC levels in BG. Therefore, publications from scientific databases in this field of study were examined. The effects of processing methods on SAC compounds were evaluated on the basis of the SAC content. This review provides information on the processing approaches that can assist food manufacturers in the development of value-added garlic products.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret Univeristy, Surakarta City, Central Java, Indonesia
| | - Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | | | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan, Republic of China
| |
Collapse
|
12
|
Zhao R, Zou H, Zhao R, Li N, Zheng Z, Qiao X. Effect of amino acids on formation of pigment precursors in garlic discoloration using UPLC–ESI-Q-TOF-MS analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ohmic heating pretreatment accelerates black garlic processing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Fujikawa M, Tamura H. Effect of Germination Treatment on the Water-soluble Sulfur Content of Black Garlic. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mamoru Fujikawa
- Kagawa Prefectural Industrial Technology Center Fermentation & Food Research Branch
| | - Hirotoshi Tamura
- United Graduate School of Agricultural Sciences, Ehime University
| |
Collapse
|
15
|
Afzaal M, Saeed F, Rasheed R, Hussain M, Aamir M, Hussain S, Mohamed AA, Alamri MS, Anjum FM. Nutritional, biological, and therapeutic properties of black garlic: a critical review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1967386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Aamir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Shahzad Hussain
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Abdellatif A. Mohamed
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Mohamed S. Alamri
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Faqir M. Anjum
- Administration Department, University of the Gambia, Serrekunda, Gambia
| |
Collapse
|
16
|
Ahmed T, Wang CK. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021; 26:5028. [PMID: 34443625 PMCID: PMC8401630 DOI: 10.3390/molecules26165028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60-90 °C) and humidity (70-90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl cysteine, S-allyl-mercapto cysteine), 5-hydroxymethylfurfural, organosulfur compounds, polyphenol, volatile compounds, and products of other Millard reactions compared to fresh garlic after the thermal processing. Recent studies have demonstrated that BG and its bioactive compounds possess a wide range of biological activities and pharmacological properties that preserve and show better efficacy in preventing different types of diseases. Most of these benefits can be attributed to its anti-oxidation, anti-inflammation, anti-obesity, hepatoprotection, hypolipidemia, anti-cancer, anti-allergy, immunomodulation, nephroprotection, cardiovascular protection, and neuroprotection. Substantial studies have been conducted on BG and its components against different common human diseases in the last few decades. Still, a lot of research is ongoing to find out the therapeutic effects of BG. Thus, in this review, we summarized the pre-clinical and clinical studies of BG and its bioactive compounds on human health along with diverse bioactivity, a related mode of action, and also future challenges.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
17
|
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, Liu SQ, Huang D. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chem 2021; 364:130424. [PMID: 34182363 DOI: 10.1016/j.foodchem.2021.130424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the degradation of moringin (4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-l-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N'-bis{4-[(α-l-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-l-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-l-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Romy Dorothea Maria Vos
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Molan Zhang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
18
|
Li J, Dadmohammadi Y, Abbaspourrad A. Flavor components, precursors, formation mechanisms, production and characterization methods: garlic, onion, and chili pepper flavors. Crit Rev Food Sci Nutr 2021; 62:8265-8287. [PMID: 34028311 DOI: 10.1080/10408398.2021.1926906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
There is an enormous demand in the food industry to shift toward natural flavors. However, most flavor molecules are significantly unstable outside their original sources. Moreover, limited studies are focused on the flavor formation mechanisms, regeneration methods, and stability, which could help facilitate this replacement by establishing a link between food processing conditions and flavor generation.This scoping review summarizes major findings related to the identification of garlic, onion, and chili pepper flavors and their precursor molecules, formation mechanisms, generation of flavors and precursors, characterization methods, and precursor stability under thermal food processing conditions. The findings confirmed that the allium flavors could be generated by alliin and isoalliin precursors through thermal processing. Also, the literature lacks detailed knowledge about chili pepper flavor's precursors, and only capsaicinoids have been reported as a thermally stable chili pepper flavor.Although numerous studies have focused on this area, there is still a lack of detailed applicable knowledge. Future investigations can be framed into (1) Development of efficient methods to generate flavors during food processing; (2) Improvement of flavors' stability; (3) Understanding the interactions of flavors and their precursors with other food ingredients and additives; and (4) Characterization of the organoleptic properties of flavors.
Collapse
Affiliation(s)
- Jieying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Yue L, Cheng J, Zhang H, Yuan L, Hua J, Dong H, Li YY, Zhou J. Inhibition of N-Vanillylnonanamide in anaerobic digestion of lipids in food waste: Microorganisms damage and blocked electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123098. [PMID: 32937719 DOI: 10.1016/j.jhazmat.2020.123098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
To study the inhibited degradation metabolism and anaerobic digestion of typical lipids in food waste, an artificially produced capsaicin, N-Vanillylnonanamide, a typical soluble component in waste lipids, was added to a glycerol trioleate anaerobic digestion system. The microorganisms damage and blocked electron transfer caused by N-Vanillylnonanamide during anaerobic digestion were further clarified. Scanning electron microscopy and transmission electron microscopy images demonstrated that N-Vanillylnonanamide (≥4 wt%) structurally damaged microorganisms via cell membrane breakage, which impair their function. N-Vanillylnonanamide inhibited the activities of the key enzyme CoA, AK, F420, and CoM, which are relevant for both degradation metabolism and anaerobic digestion. 16S rRNA analysis showed that dominant bacterial and archaeal communities markedly decreased after anaerobic digestion of glycerol trioleate with N-Vanillylnonanamide (≥4 wt%). For example, the proportion of Methanosarcina decreased from 30 % to 6 %. Current-voltage curves indicated that the electron transfer rate in the community of microorganisms decreased by 99 % from 4.67 × 10-2 to 5.66 × 10-4 s-1 in response to N-Vanillylnonanamide (40 wt%). The methane yield during anaerobic digestion of glycerol trioleate decreased by 84.0 % from 780.21-142.10 mL/g-total volatile solids with N-Vanillylnonanamide (40 wt%).
Collapse
Affiliation(s)
- Liangchen Yue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Haihua Zhang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Luyun Yuan
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Junjie Hua
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haiquan Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Tao Z, Wang D, Yao F, Huang X, Wu Y, Du M, Chen Z, An H, Li X, Yang Q. The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121363. [PMID: 31610350 DOI: 10.1016/j.jhazmat.2019.121363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/10/2023]
Abstract
Thiosulfinates, a natural antibiotic, existed in all parts of Allium, therefore might be accumulated in large amounts in food waste (FW). FW was often added into waste activated sludge (WAS) anaerobic digestion process as a kind of supplement for nutrition balance. However, the impact of thiosulfinates on methane production and the possible approach to mitigate its inhibition on the co-digestion process could be available in few literatures. This work was carried out in a series of batch experiment at pH 7.0 ± 0.2 and 35 ± 1.0 ℃ to promote the further understanding of this process. The experimental results showed that the methane accumulation decreased from 270.6 ± 13.4 to 16.7 ± 7.0 mL/g VSS (volatile suspended solids) when the initial concentration of thiosulfinates increased from 0 to 2.5 μg/g VSS. The activities of functional enzymes (F420 and CoM) were inhibited by 99.06% and 99.82% compared with control group when reactor contained 2.5 μg/g VSS thiosulfinates. Furthermore, different temperature, pH, and combination pretreat were applied to impair the inhibition of thiosulfinate. Compared with no pretreatment group, methane yield was increased by 2.26, 32.18 and 42.2-fold, respectively which group was under pretreatment method of heat (100 ℃), alkali (pH 9) and combination.
Collapse
Affiliation(s)
- Ziletao Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - You Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongxue An
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
21
|
Tao Z, Yang Q, Yao F, Huang X, Wu Y, Du M, Chen S, Liu X, Li X, Wang D. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 297:122428. [PMID: 31786038 DOI: 10.1016/j.biortech.2019.122428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Thiosulfinate, a nature antibiotic, existed in all parts of Allium thereby accumulating in kitchen waste vastly. However, few literatures were available related to its influence on volatile fatty acids (VFA) and hydrogen production when kitchen waste digestion technology was applied. This study aimed to explore the inhibitory effect and the relevant mechanism. Experimental results showed that the hydrogen accumulation decreased from 23.2 ± 0.8 to 8.2 ± 0.1 mL/g VSS (volatile suspended solid) and maximal total VFA yield decreased from 765.7 ± 21.2 to 376.4 ± 21.7 mg COD (chemical oxygen demand)/g VSS when the dosage of thiosulfinate increased from 0 to 12.5 µg/g VSS. The mechanism study indicated, compared with control group, that the butyric acid decreased from 59% to 20.1% of total VFA yield when reactor in present of 12.5 µg/g VSS thiosulfinate. Moreover, the relative activities of functional enzymes were inhibited 73.4% (butyryl-CoA) and 72.7% (NADH), respectively.
Collapse
Affiliation(s)
- Ziletao Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - You Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
22
|
Feng Y, Zhou C, ElGasim A. Yagoub A, Sun Y, Owusu-Ansah P, Yu X, Wang X, Xu X, Zhang J, Ren Z. Improvement of the catalytic infrared drying process and quality characteristics of the dried garlic slices by ultrasound-assisted alcohol pretreatment. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108577] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Doganturk M, Demiray E, Gursoy O, Yilmaz Y. Kinetics of allicin potential loss in garlic slices during convective drying. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- M. Doganturk
- Graduate School of Natural and Applied Sciences, Division of Food Engineering, Burdur Mehmet Akif Ersoy University, Istiklal Campus, 15030, Burdur, Turkey
| | - E. Demiray
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Kinikli, 20070, Denizli, Turkey
| | - O. Gursoy
- Department of Food Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Istiklal Campus, 15030, Burdur, Turkey
| | - Y. Yilmaz
- Department of Food Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Istiklal Campus, 15030, Burdur, Turkey
| |
Collapse
|
25
|
An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 2019; 276:680-691. [DOI: 10.1016/j.foodchem.2018.10.068] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023]
|
26
|
Thermal degradation of agar: Mechanism and toxicity of products. Food Chem 2018; 264:277-283. [DOI: 10.1016/j.foodchem.2018.04.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
|
27
|
Poojary MM, Putnik P, Bursać Kovačević D, Barba FJ, Lorenzo JM, Dias DA, Shpigelman A. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|