1
|
Li Y, Guo S, Zou H, Chen Y. Structure difference of Jack bean urease and Helicobacter pylori urease on binding interactions with quercetin. Int J Biol Macromol 2025; 307:141705. [PMID: 40058424 DOI: 10.1016/j.ijbiomac.2025.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Urease catalyzes the hydrolysis of urea to carbamate and ammonia, leading to nitrogen loss, environmental pollution, and health issues, so numerous compounds have been screened for urease inhibition using Jack bean urease (JBU) and H. pylori urease (HPU) without consideration their structure difference. Previous studies have shown that the same inhibitor can exhibit distinct inhibitory effects on JBU and HPU, but limited papers focus on the effects mechanism. In this study, we systematically investigated the thermodynamic and kinetic properties of JBU and HPU binding with quercetin, focusing on the structural effects on both commonly studied ureases. The results revealed that quercetin inhibited both JBU and HPU activities, with IC50 values of 16.76 ± 0.77 μM and 36.17 ± 0.73 μM, respectively. Inhibition was identified as noncompetitive for JBU and mixed-competitive for HPU. Quercetin interacted with both JBU and HPU with quenching rate constants (Kq) of 3.72 ± 0.18 × 1013 M-1 s-1 for JBU and 0.28 ± 0.04 × 1013 M-1 s-1 for HPU. Molecular docking revealed that quercetin mainly bound to the flap region of JBU, inhibiting its function, and the JBU-quercetin complex had high binding stability and low binding free energy.
Collapse
Affiliation(s)
- Yanni Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Shuai Guo
- Department of Emergency, First Peoples Hospital of NingYang, Taian, Shandong, China
| | - Hui Zou
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China.
| | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China.
| |
Collapse
|
2
|
Mahmoudpour M, Karimzadeh Z, Zaheri M, Yekta R, Andishmand H, Ezzati Nazhad Dolatabadi J. Exploring the interactions between bovine serum albumin and sodium propionate through multi-spectroscopic and molecular docking analyses. Int J Biol Macromol 2025; 306:141723. [PMID: 40044014 DOI: 10.1016/j.ijbiomac.2025.141723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
To investigate the influence of sodium propionate (SP) on bovine serum albumin (BSA), it is important to study its thermodynamic properties, binding mode, and its impact on the conformation of it. Herein, the interactions between BSA and SP were examined using various spectroscopic methods and molecular docking analyses. The Stern-Volmer plot revealed that the SP can efficiently quench the BSA intensity through a mechanism of hybrid quenching. Fluorescence quenching of BSA emission intensity in existence of SP implies that the microenvironment around the fluorophores (Trp residues) is altered. The calculated thermodynamic parameters suggests that the SP interacts with BSA through hydrogen bonds and van der Waals interactions. According to the results, the most significant change in synchronous fluorescence of BSA occurred in the vicinity of the Trp microenvironment residues rather than the Tyr residues. The results of site-competitive replacement studies determined that SP can be bound to site I and II in the BSA molecule. FT-IR spectroscopy results showed that the secondary structure of the BSA undergoes changes after interacting with SP. Using molecular docking analysis, the binding energy of SP toward BSA was -6.26 kJ mol-1, indicating a favorable binding affinity to the protein.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Miandoab Schools of Medical Sciences, Miandoab, Iran
| | - Zahra Karimzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Zaheri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yekta
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
3
|
Wang N, Liu Y, Yang C, Du J, Yu D, He P, Xu H, Li L, Zhao P, Li Y. Molecular insights into vasicine and butyrylcholinesterase interactions: A complimentary biophysical, multi-spectroscopic, and computational study. Int J Biol Macromol 2025; 292:139253. [PMID: 39733876 DOI: 10.1016/j.ijbiomac.2024.139253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Butyrylcholinesterase (BChE) plays a pivotal role in regulating acetylcholine (ACh) levels during the progression of Alzheimer's disease (AD), so emerged as an attractive target in AD treatment. Vasicine, a naturally occurring pyrroloquinazoline alkaloid, was identified as a natural BChE inhibitor (IC50 = 1.47 ± 0.37 μM) from Traditional Chinese Medicine database. No any detailed research concerning the binding behavior of BChE with small molecule. As the first case, the inhibitory mechanism of vasicine on BChE was investigated using multi-spectroscopic methods (including fluorescence quenching, ANS fluorescence probe, three-dimensional fluorescence, time-resolved fluorescence, circular dichroism), isothermal titration calorimetry, surface plasmon resonance, and computational approaches. As a reversible and mixed inhibitor, vasicine displayed moderate affinity for BChE with an affinity constant KD of 2.111 μM, its binding process was characterized as a spontaneous exothermic reaction with reduced entropy, primarily driven by hydrogen bonding interactions. Vasicine quenched the fluorescence of BChE through both static and dynamic quenching mechanisms, leading to an increase in the α-helix content and surface hydrophobicity of BChE. Furthermore, the fluctuation of the skeleton atoms in the vasicine-BChE complex system remained stable, indicating good stability within the simulated physiological environment. In addition, vasicine exerted good safety for PC12 cells. Above findings provide molecular insights into the inhibitory mechanism of vasicine against BChE for the first time, and offer valuable information for future structure modification and therapeutic applications of vasicine as a BChE inhibitor.
Collapse
Affiliation(s)
- Na Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiana Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dehong Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pei He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haiqi Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Puchen Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Tan C, Zhu J, Shi C, Zhang X, Lu S, Wang S, Guo C, Ning C, Xue Y. Interactions with peanut protein isolate regulate the bioaccessibility of cyanidin-3-O-glucoside: Multispectral analysis, simulated digestion, and molecular dynamic simulation. Food Chem 2025; 464:141586. [PMID: 39396476 DOI: 10.1016/j.foodchem.2024.141586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Anthocyanins are susceptible to degradation owing to environmental factors. Combining them with proteins can improve their stability; however, the interaction mechanism is difficult to elucidate. This study used multispectral and molecular dynamics simulations and molecular docking methods to investigate the interaction mechanism between peanut protein isolate (PPI) and cyanidin-3-O-glucoside (C3G). The UV absorption peak and PPI turbidity increased, while the fluorescence intensity decreased with greater C3G content. Protein secondary structure changes suggested that PPI and C3G coexisted in spontaneous covalent and non-covalent interactions via static quenching. The complex structures were stable over time and C3G stably bound to the peanut globulin Ara h 3 cavity through hydrogen bonding and hydrophobic interactions. Furthermore, PPI enhanced the C3G antioxidant activity and bioaccessibility by increasing its retention rate during in-vitro simulated digestion. This study elucidates the binding mechanism of PPI and C3G and provides insight into applications of the complex in food development.
Collapse
Affiliation(s)
- Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Jiahe Zhu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Youlin Xue
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| |
Collapse
|
5
|
Qing M, Zang J, Liu Y, Chi Y, Chi Y. Mechanistic study on the decline of foaming characteristics of egg white under heat stress: Emphasizing apparent phenomena, structure, and intermolecular interactions. Int J Biol Macromol 2024; 281:136446. [PMID: 39389481 DOI: 10.1016/j.ijbiomac.2024.136446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Heat stress is a critical step in the processing of liquid egg white; however, this treatment can severely affect its foaming properties. This study aims to elucidate the mechanisms underlying the decline in foaming properties of liquid egg white during heat stress. The research begins by examining the adverse effects of heat stress on the foaming properties of liquid egg whites, where an increase in apparent viscosity, turbidity, and particle size is initially observed, indicating the formation of aggregates. After heat stress, the binding water capacity of the liquid egg white increases, intermolecular forces strengthen, and the secondary structure transforms towards β-sheet and β-turn configurations, while surface hydrophobicity decreases. Heat stress promotes the transition of liquid egg white into a more stable gel state. Additionally, electrophoresis results show the disappearance of bands for ovomucin subunit, ovotransferrin, and lysozyme, while microscopic observations reveal a rougher surface texture of the samples. In summary, this study provides insights and theoretical basis for understanding the mechanisms behind the decline in foaming properties of liquid egg whites under heat stress.
Collapse
Affiliation(s)
- Mingmin Qing
- College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Jingnan Zang
- College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Yaotong Liu
- College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Singla D, Sharma P, Luxami V, Paul K. In Vitro Cytotoxicity and Mechanistic Investigation of Quinazolin-4(1H)-One Linked Coumarin as a Potent Anticancer Agent. Chem Biol Drug Des 2024; 104:e70011. [PMID: 39496463 DOI: 10.1111/cbdd.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
Quinazolinone-coumarin conjugates synthesized through Late-Stage Functionalization approach are evaluated for their in vitro biological activity for 60 human cancer cell lines representing nine different cancer types. Among the synthesized compounds, eight displayed significant growth inhibitory activity across a spectrum of cancer types, with compound 23 demonstrating particularly notable cytotoxicity. Further investigation involved a five-dose assay of compound 23 against NCI-60 cancer cell lines, revealing its efficacy at different concentrations. Additionally, binding studies elucidated its interaction with Human Serum Albumin (HSA) and DNA. The results indicated a strong binding affinity of 23 with HSA, evidenced by a high binding constant (2.26 × 105 M-1). Moreover, its interaction with DNA occurred via intercalation, specifically between the base pairs of DNA strands, with a binding constant of 5.51 × 104 M-1. This suggests that compound 23 has the ability to bind to both DNA and transport proteins, making it a promising pharmacophore with potential therapeutic applications.
Collapse
Affiliation(s)
- Dinesh Singla
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Palak Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
7
|
Zhao X, Chai Z, Wang J, Hou D, Li B, Zhang L, Huang W. Assessment on malvidin-3-glucoside interaction with TLR4 via multi-spectroscopic analysis and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124460. [PMID: 38761477 DOI: 10.1016/j.saa.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
As one innate immune pattern recognition receptor, Toll-like receptor 4 (TLR4) recently has been considered as a critical player in glucolipid metabolism. Blueberries contain high level of anthocyanins, especially malvidin-3-glucoside (Mv-3-glc), which contribute the anti-inflammatory, hypoglycemic, and hypolipidemic effects. It is speculated that Mv-3-glc is able to possess these functions by binding to TLR4. Here, the noncovalent interactions of Mv-3-glc and TLR4 was explored through multi-techniques including fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy, as well as molecular docking. The results demonstrated that Mv-3-glc was able to quench TLR4 intrinsic fluorescence effectively. A stable complex was formed spontaneously and the reaction was exothermic. The degree of binding of Mv-3-glc to TLR4 showed a strong dependence on the chemical concentration, temperature, and pH values. The negative signs for enthalpy (ΔH = -69.1 ± 10.8 kJ/mol) and entropy (ΔS = -105.0 ± 12.3 J/mol/K) from the interaction of the Mv-3-glc and TLR4 shows that the major driving forces are the hydrogen bonding and van der Waals' force, which is consistent with the molecular docking results. In addition, molecular docking predicted that the active center with specific amino acid residues, Phe126, Ser127, Leu54, Ile153, and Tyr131 was responsible for the site of Mv-3-glc binding to TLR4/myeloid differentiation protein-2 (MD-2). These findings confirmed that Mv-3-glc could bind to TLR4, which would be beneficial to understand the target therapeutic effects of blueberry anthocyanins on TLR4 in regulating glucolipid metabolism.
Collapse
Affiliation(s)
- Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Dongjie Hou
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning 110866, PR China.
| | - Lixia Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
8
|
Esazadeh K, Ezzati Nazhad Dolatabadi J, Andishmand H, Mohammadzadeh‐Aghdash H, Mahmoudpour M, Naemi Kermanshahi M, Roosta Y. Cytotoxic and genotoxic effects of tert-butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Sci Nutr 2024; 12:7004-7016. [PMID: 39479655 PMCID: PMC11521724 DOI: 10.1002/fsn3.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Synthetic food antioxidants such as tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and propyl gallate (PG) have been extensively utilized in different food industries because of their high protectant activities to stop food spoilage and remove foodborne diseases in humans and animals. It would be emphasized that increasing the intake of antioxidants through intracellular may lead to cyto/genotoxicity, and their complex formation with biological molecules eventually accelerate the progress of various diseases like multiple sclerosis, diabetes, neurological disorders, cardiac vascular disease, cancer, etc. Therefore, their toxicity is one of the challenging subjects due to their extensive use in food-related industries. TBHQ, BHA, and PG antioxidants have cytotoxic, genotoxic, and carcinogenic effects if absorbed in high doses through the gastrointestinal tract. Thermodynamic parameters presented that the hydrophobic bind plays a key role in the complexation of the TBHQ, BHA, and PG with albumin. The molecular modeling results showed that subdomain IIA plays a vital role in the interaction of TBHQ and BHA with albumin. To comprehend the mechanisms of the cyto/genotoxicity effects of these food antioxidants and conformational alterations of albumin macromolecule, we aim to overview numerous types of research that evaluated the cyto/genotoxicity effects of these antioxidants using several procedures.
Collapse
Affiliation(s)
- Karim Esazadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | | | - Mansour Mahmoudpour
- Food and Beverages Safety Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Mohammad Naemi Kermanshahi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Yousef Roosta
- Department of Internal Medicne, School of Medicine, Solid Tumor Research CenterImam Khomeini Hospital, Urmia University of Medical SciencesUrmiaIran
| |
Collapse
|
9
|
Li Y, Zou H, Sun-Waterhouse D, Chen Y. Chlorogenic acid, caffeic acid and luteolin from dandelion as urease inhibitors: insights into the molecular interactions and inhibition mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8079-8088. [PMID: 38877786 DOI: 10.1002/jsfa.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Dandelion contains hundreds of active compounds capable of inhibiting urease activity, but the individual compounds have not yet been fully identified, and their effects and underlying mechanisms are not clear. The present study aimed to screen the urease inhibition active compounds of dandelion by urease inhibitory activity evaluation HPLC-tandem mass spectrometry analysis, their mechanism of urease inhibition by polyphenols was explored using enzyme kinetic studies via Lineweaver-Burk plots. Other investigations included isothermal titration calorimetry and surface plasmon resonance sensing, fluorescence quenching experiments, and single ligand molecular docking and two-ligand simultaneous docking techniques. RESULTS The results indicated that the ethyl acetate fraction of dandelion flower exhibited the greatest inhibition (lowest IC50 0.184 ± 0.007 mg mL-1). Chlorogenic acid, caffeic acid and luteolin could be effective urease inhibitors that acted in a non-competitive inhibition manner. Individually, chlorogenic acid could not only fast bind to urease, but also dissociate rapidly, whereas luteolin might interact with urease with the weakest affinity. The chlorogenic acid-caffeic acid combination exhibited an additive effect in urease inhibition. However, the chlorogenic acid-luteolin and caffeic acid-luteolin combinations exhibited antagonistic effects, with the caffeic acid-luteolin combination showing greater antagonism. CONCLUSION The present study reveals that chlorogenic acid, caffeic acid and luteolin are major bioactive compounds for urease inhibition, indicating the molecular mechanisms. The antagonistic effects were observed between luteolin and chlorogenic acid/caffeic acid, and the interactions of the catalytic site and flap may account for the antagonistic effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China
| | - Hui Zou
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China
| | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Shandong Agricultural University, Taian, China
| |
Collapse
|
10
|
Vasti C, Marengo-Viada C, Giacomelli CE, Rojas R. Fluorescence study of the interaction between albumin and layered double hydroxides. Chem Biol Interact 2024; 394:110974. [PMID: 38522563 DOI: 10.1016/j.cbi.2024.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Layered double hydroxides nanoparticles (LDH-NP) are increasingly studied for biomedical applications. Nevertheless, their interaction with biomolecules such as proteins needs further exploration for an effective application. In this work, the adsorption of bovine serum albumin (BSA) on LDH-NP and the conformation changes of the protein upon adsorption were characterized using fluorescence spectroscopy. First, the quenching of tryptophan residues of BSA by chloride-intercalated LDH-NP was explored and the BSA adsorption capacity of LDH-NP were determined. Then, the structural conformation of the protein was analyzed by fluorescence spectroscopy (including synchronous, polarization and quenching studies) at different surface coverages. Finally, the proclivity of adsorbed BSA molecules to assemble as amyloid fibril was evaluated. Due to the positive charging and low curvature of LDH-NP, BSA molecules were strongly adsorbed, which produced a quenching of the protein fluorescence and a large adsorption capacity. The effect on BSA conformation was dependent on surface coverage (SC): at low values ,t he tryptophan residues were in more hydrophobic environments and more accessible to quenchers than al high ones. At low SC, there is space between the BSA molecules to spread on the surface, which led to a conformation change. Contrarily, the native conformation around tryptophan residues of BSA was preserved at high SC due to the tight packing of the adsorbed protein molecules. As a result, BSA molecules are stabilized against the formation of amyloid fibrils at high SC, while at low SC they present a similar fibrillation than free BSA.
Collapse
Affiliation(s)
- Cecilia Vasti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Corina Marengo-Viada
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Carla E Giacomelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Ricardo Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina.
| |
Collapse
|
11
|
Qian R, Sun C, Bai T, Yan J, Cheng J, Zhang J. Recent advances and challenges in the interaction between myofibrillar proteins and flavor substances. Front Nutr 2024; 11:1378884. [PMID: 38725578 PMCID: PMC11079221 DOI: 10.3389/fnut.2024.1378884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.
Collapse
Affiliation(s)
- Rong Qian
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chang Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Yan
- Sichuan Laochuan East Food Co., Ltd., Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
Chaves OA, Loureiro RJS, Serpa C, Cruz PF, Ferreira ABB, Netto-Ferreira JC. Increasing the polarity of β-lapachone does not affect its binding capacity with bovine plasma protein. Int J Biol Macromol 2024; 263:130279. [PMID: 38401585 DOI: 10.1016/j.ijbiomac.2024.130279] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Despite ortho-quinones showing several biological and pharmacological activities, there is still a lack of biophysical characterization of their interaction with albumin - the main carrier of different endogenous and exogenous compounds in the bloodstream. Thus, the interactive profile between bovine serum albumin (BSA) with β-lapachone (1) and its corresponding synthetic 3-sulfonic acid (2, under physiological pH in the sulphonate form) was performed. There is one main binding site of albumin for both β-lapachones (n ≈ 1) and a static fluorescence quenching mechanism was proposed. The Stern-Volmer constant (KSV) values are 104 M-1, indicating a moderate binding affinity. The enthalpy (-3.41 ± 0.45 and - 8.47 ± 0.37 kJ mol-1, for BSA:1 and BSA:2, respectively) and the corresponding entropy (0.0707 ± 0.0015 and 0.0542 ± 0.0012 kJ mol-1 K-1) values indicate an enthalpically and entropically binding driven. Hydrophobic interactions and hydrogen bonding are the main binding forces. The differences in the polarity of 1 and 2 did not change significantly the affinity to albumin. In addition, the 1,2-naphthoquinones showed a similar binding trend compared with 1,4-naphthoquinones.
Collapse
Affiliation(s)
- Otávio A Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), 21040-361 Rio de Janeiro, RJ, Brazil.
| | - Rui J S Loureiro
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F Cruz
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Aurélio B B Ferreira
- Institute of Chemistry, Department of Organic Chemistry, Federal Rural University of Rio de Janeiro, Rodovia BR-465, Km 7, 23.890-000 Seropédica, RJ, Brazil
| | - José Carlos Netto-Ferreira
- Institute of Chemistry, Department of Organic Chemistry, Federal Rural University of Rio de Janeiro, Rodovia BR-465, Km 7, 23.890-000 Seropédica, RJ, Brazil.
| |
Collapse
|
13
|
Radwan AS, Salim MM, Elkhoudary MM, Hadad GM, Shaldam MA, Belal F, Magdy G. Study of the binding interaction of salmon sperm DNA with nintedanib, a tyrosine kinase inhibitor using multi-spectroscopic, thermodynamic, and in silico approaches. J Biomol Struct Dyn 2024; 42:1170-1180. [PMID: 37079322 DOI: 10.1080/07391102.2023.2202776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
The study of the intermolecular binding interaction of small molecules with DNA can guide the rational drug design with greater efficacy and improved or more selective activity. In the current study, nintedanib's binding interaction with salmon sperm DNA (ssDNA) was thoroughly investigated using UV-vis spectrophotometry, spectrofluorimetry, ionic strength measurements, viscosity measurements, thermodynamics, molecular docking, and molecular dynamic simulation techniques under physiologically simulated conditions (pH 7.4). The obtained experimental results showed that nintedanib and ssDNA had an apparent binding interaction. Nintedanib's binding constant (Kb) with ssDNA, as determined using the Benesi-Hildebrand plot, was 7.9 × 104 M-1 at 298 K, indicating a moderate binding affinity. The primary binding contact forces were hydrophobic and hydrogen bonding interactions, as verified by the enthalpy and entropy changes (ΔH0 and ΔS0), which were - 16.25 kJ.mol-1 and 39.30 J mol-1 K-1, respectively. According to the results of UV-vis spectrophotometry, viscosity assays, and competitive binding interactions with ethidium bromide or rhodamine B, the binding mode of nintedanib to ssDNA was minor groove. Molecular docking and molecular dynamic simulation studies showed that nintedanib fitted into the B-DNA minor groove's AT-rich region with high stability. This study can contribute to further understanding of nintedanib's molecular mechanisms and pharmacological effects.
Collapse
Affiliation(s)
- Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M Salim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ghada M Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
14
|
Domínguez-Gutiérrez GA, Perraud-Gaime I, Escalona-Buendía H, Durand N, Champion-Martínez EI, Fernández-Soto RR, Saucedo-Castañeda G, Rodríguez-Serrano G. Inhibition of Aspergillus carbonarius growth and Ochratoxin A production using lactic acid bacteria cultivated in an optimized medium. Int J Food Microbiol 2023; 404:110320. [PMID: 37490784 DOI: 10.1016/j.ijfoodmicro.2023.110320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
The Gram-positive bacteria lactic acid bacteria (LAB) are used in the food industry but are also known for inhibiting certain food spoilage microorganisms, especially fungi. Sources of nitrogen (N) for culture media are generally organic and expensive. Many attempts have been made to formulate economical culture media with alternative N sources obtained from agricultural and industrial byproducts. This study describes the design and optimization of an inexpensive culture medium for Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) MZ809351 strain B31. The culture medium was optimized using statistical experimental designs to identify the factors with the most significant effects on biomass concentration to reduce the overall cost, aiming to obtain a biomass concentration similar to that obtained with the reference LAB culture medium (de Man, Rogosa and Sharpe; MRS). Sodium acetate and magnesium sulfate were the most significant factors (p < 0.005), and their contents were reduced by 22 % and 40 %, respectively, without affecting biomass concentration. Malt germ extract (MGE) was used as an alternative nitrogen source to replace meat extract (ME) and proteose peptone (PP). Through these experiments, the composition of a culture medium that is less expensive than MRS broth was defined, which produced a biomass concentration (3.8 g/L) similar to that obtained with MRS medium. The inhibitory effects of two LAB strains isolated from the Ivory Coast and Mexico on the growth and production of ochratoxin A (OTA) in an ochratoxigenic fungus was tested. The minimum cellular concentration of the LAB to prevent the development of Aspergillus carbonarius Ac 089 and the production of OTA was determined in a model assay in Petri dishes. The conditions to inhibit the germination of A. carbonarius Ac 089 and the production of OTA were found. Using the optimized medium and a ratio of 2 × 104 LAB/spore (1 × 108 CFU/mL) strain B7 (L. plantarum MZ809351) and 2 × 103 LAB/spore (1 × 107 CFU/mL) strain B31 (L. plantarum MN922335) completely inhibited the growth of the fungus. A ratio of 2 × 105 LAB/spore (1 × 109 CFU/mL) was required to inhibit OTA production with strains B7 and B31. This study indicates the potential of cultivating LAB in an optimized and inexpensive culture medium for use as a biological control agent against ochratoxigenic fungi in food.
Collapse
Affiliation(s)
- G A Domínguez-Gutiérrez
- Department of Biotechnology, Metropolitan Autonomous University, ZC, 09310, Iztapalapa, Mexico City, Mexico
| | - I Perraud-Gaime
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - H Escalona-Buendía
- Department of Biotechnology, Metropolitan Autonomous University, ZC, 09310, Iztapalapa, Mexico City, Mexico
| | - N Durand
- UMR Qualisud, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Reunion, Univ. Montpellier, 34398 Montpellier, France
| | - E I Champion-Martínez
- Department of Food Processes, Technological University of the Center of Veracruz, Cuitlahuac, 94910 Veracruz, Mexico
| | - R R Fernández-Soto
- Department of Biotechnology, Metropolitan Autonomous University, ZC, 09310, Iztapalapa, Mexico City, Mexico
| | - G Saucedo-Castañeda
- Department of Biotechnology, Metropolitan Autonomous University, ZC, 09310, Iztapalapa, Mexico City, Mexico
| | - G Rodríguez-Serrano
- Department of Biotechnology, Metropolitan Autonomous University, ZC, 09310, Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
15
|
Qashqoosh MTA, Alahdal FAM, Manea YK, Zubair S, Khan RH, Khan AM, Naqvi S. Binding ability of roxatidine acetate and roxatidine acetate supported chitosan nanoparticles towards bovine serum albumin: characterization, spectroscopic and molecular docking studies. J Biomol Struct Dyn 2023; 41:106-124. [PMID: 34821213 DOI: 10.1080/07391102.2021.2004234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen T A Qashqoosh
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Faiza A M Alahdal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, Hodeidah University, Al Hudaydah, Yemen
| | - Yahiya Kadaf Manea
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Swaleha Zubair
- Department of Computer science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amjad Mumtaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
16
|
Bawa R, Deswal N, Kumar A, Kumar R. Scrutinzing the Interaction of Bovine Serum Albumin and Human Hemoglobin with Isatin-triazole Functionalized Rhodamine through Spectroscopic and In-silico Approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Parveen S, Ali MS, Al-Lohedan HA, Tabassum S. Interaction of Carrier Protein with Potential Metallic Drug Candidate N-Glycoside 'GATPT': Validation by Multi-Spectroscopic and Molecular Docking Approaches. Molecules 2021; 26:6641. [PMID: 34771048 PMCID: PMC8587009 DOI: 10.3390/molecules26216641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Lysozyme is often used as a model protein to study interaction with drug molecules and to understand biological processes which help in illuminating the therapeutic effectiveness of the drug. In the present work, in vitro interaction studies of 1-{(2-hydroxyethyl)amino}-2-amino-1,2-dideoxy-d-glucose triphenyl tin (IV) (GATPT) complex with lysozyme were carried out by employing various biophysical methods such as absorption, fluorescence, and circular dichroism (CD) spectroscopies. The experimental results revealed efficient binding affinity of GATPT with lysozyme with intrinsic binding (Kb) and binding constant (K) values in the order of 105 M-1. The number of binding sites and thermodynamic parameters ΔG, ΔH, and ΔS at four different temperatures were also calculated and the interaction of GATPT with lysozyme was found to be enthalpy and entropy driven. The CD spectra revealed alterations in the population of α-helical content within the secondary structure of lysozyme in presence of GATPT complex. The morphological analysis of the complex with lysozyme and lysozyme-DNA condensates was carried out by employing confocal and SEM studies. Furthermore, the molecular docking studies confirmed the interaction of GATPT within the larger hydrophobic pocket of the lysozyme via several non-covalent interactions.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohd. Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
18
|
Investigation of the interaction between Chrysoeriol and xanthine oxidase using computational and in vitro approaches. Int J Biol Macromol 2021; 190:463-473. [PMID: 34506859 DOI: 10.1016/j.ijbiomac.2021.08.231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023]
Abstract
Xanthine oxidase (XO) plays a vital role in inducing hyperuricemia and increasing the level of superoxide free radicals in blood, and is proved as an important target for gout. Chrysoeriol (CHE) is a natural flavone with potent XO inhibitory activity (IC50 = 2.487 ± 0.213 μM), however, the mechanism of interaction is still unclear. Therefore, a comprehensive analysis of the interaction between CHE and XO was accomplished by enzyme kinetics, isothermal titration calorimetry (ITC), multi-spectroscopic methods, molecular simulation and ADMET. The results showed that CHE acted as a rapid reversible and competitive-type XO inhibitor and its binding to XO was driven by hydrogen bonding and hydrophobic interaction. Moreover, CHE exhibited a strong fluorescence quenching effect through a static quenching procedure and induced conformational changes of XO. Its binding pattern with XO was revealed by docking study and the binding affinity to XO was enhanced by the interactions with key amino acid residues in the active pocket of XO. Further, CHE showed good stability and pharmacokinetic behavior properties in molecule dynamic simulation and ADMET prediction. Overall, this study shed some light on the mechanism of interaction between CHE and XO, also provided some valuable information concerning the future therapeutic application of CHE as natural XO inhibitor.
Collapse
|
19
|
Barros MR, da Silva LP, Menezes TM, Garcia YS, Neves JL. Efficient tyrosinase nano-inhibitor based on carbon dots behaving as a gathering of hydrophobic cores and key chemical group. Colloids Surf B Biointerfaces 2021; 207:112006. [PMID: 34343910 DOI: 10.1016/j.colsurfb.2021.112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Small organic molecules have been extensively applied to achieve enzymatic inhibition. Although numerous efforts have been made to deliver efficient inhibitors, small inhibitors applications are hindered by many drawbacks. Moreover, reporters comprising nanoparticle inhibitory activity against enzymes are very scarce in the literature. In this scenario, carbon nanodots (CDs) emerge as promising candidates for efficient enzyme inhibition due to their unique properties. Here, CDs specific molecular characteristics (core composition and chemical surface groups) have been investigated to produce a more potent enzyme inhibition. Mushroom tyrosinase (mTyr) has been adopted as an enzymatic prototype. The CDs revealed a high affinity to mTyr (Ka ≈ 106 M-1), mainly through hydrophobic forces and followed by slight mTyr structural alteration. CDs competitively inhibit mTyr, with low inhibition constant (KI = 517.7 ± 17.0 nM), which is up 70 fold smaller then the commercial inhibitor (kojic acid) and the starch nanoparticles previously reported. The results expose that the CDs act as a hydrophobic agglomerate with carboxyl groups on its surface, mimicking characteristics found on small molecule inhibitors (but with superior performance). All these results highlight the CD excellent potential as an efficient low toxic Tyr inhibitor, opening the prospect of using these nanoparticles in the cosmetic and food industries.
Collapse
Affiliation(s)
- Marcela Rodrigues Barros
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Lucas Pereira da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Thais Meira Menezes
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Yarima Sanchez Garcia
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Centro de estudos avanzados de Cuba, CEA, Valle Grande, La Lisa 17100, La Habana, Cuba.
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
20
|
Javaheri-Ghezeldizaj F, Jafari A, Mahmoudpour M, Moghadaszadeh M, Yekta R, Ezzati Nazhad Dolatabadi J. Binding process evaluation of bovine serum albumin and Lawsonia inermis (henna) through spectroscopic and molecular docking approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Magdy G, Belal F, Abdel Hakiem AF, Abdel-Megied AM. Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. Int J Biol Macromol 2021; 182:1852-1862. [PMID: 34062156 DOI: 10.1016/j.ijbiomac.2021.05.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
In the current work, the binding interaction of cabozantinib with salmon sperm DNA (SS-DNA) was studied under simulated physiological conditions (pH 7.4) using fluorescence emission spectroscopy, UV-Vis absorption spectroscopy, viscosity measurement, ionic strength measurement, FT-IR spectroscopy, and molecular modeling methods. The obtained experimental data demonstrated an apparent binding interaction of cabozantinib with SS-DNA. The binding constant (Kb) of cabozantinib with SS-DNA evaluated from the Benesi-Hildebrand plot was equal to 5.79 × 105 at 298 K. The entropy and enthalpy changes (∆S0 and ∆H0) in the binding interaction of SS-DNA with cabozantinib were 44.13 J mol-1 K-1 and -19.72 KJ mol-1, respectively, demonstrating that the basic binding interaction forces are hydrophobic and hydrogen bonding interactions. Results from UV-Vis absorption spectroscopy, competitive binding interaction with rhodamine B or ethidium bromide, and viscosity measurements revealed that cabozantinib binds to SS-DNA via minor groove binding. The molecular docking results revealed that cabozantinib fits into the AT-rich region of the B-DNA minor groove and the binding site of cabozantinib was 4 base pairs long. Moreover, cabozantinib has eight active torsions, implying a high degree of flexibility in its structure, which played a significant role in the formation of a stable cabozantinib-DNA complex.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt.
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, P.O. Box 35516, Egypt
| | - Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt
| | - Ahmed M Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wu S, Sun Y, Chen D, Liu H, Li Z, Chen M, Wang C, Cheng L, Guo Q, Peng X. The noncovalent conjugations of human serum albumin (HSA) with MS/AK and the effect on anti-oxidant capacity as well as anti-glycation activity of Monascus yellow pigments. Food Funct 2021; 12:3692-3704. [PMID: 33900309 DOI: 10.1039/d0fo03025b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monascin (MS) and ankaflavin (AK), as typical yellow lipid-soluble pigments identified from Monascus-fermented products, have been confirmed to possess diverse biological activities such as anti-oxidation, reversing diabetes, and anti-atherosclerosis, and have received increasing attention in recent years. Certainly Monascus-fermented product with a high content of MS/AK is also a concern. The current work explored interactions between MS/AK and human serum albumin (HSA) as well as their influence on the anti-oxidant properties of MS/AK. Moreover, the anti-glycation potential of Monascus-fermented products rich in MS and AK (denoted as Mps) was assessed. The results showed that the fluorescence emission of HSA was quenched by MS/AK through a static quenching mechanism, and MS-HSA and AK-HSA complexes were mainly formed by van der Waals forces and hydrophobic interactions, but AK showed a higher binding affinity than MS. Although the DPPH radical-scavenging abilities of MS-HSA and AK-HSA complexes declined, Mps significantly reduced the formation of fructosamine, α-dicarbonyl compounds and advanced glycation end products (AGEs) in the in vitro glycation model (HSA-glucose). Notably, approximately 80% of fluorescent-AGEs were suppressed by Mps at a concentration of 0.95 mg mL-1, while aminoguanidine (AG, a reference standard) caused only 65% decrease at the same concentration. Although radical scavenging and metal chelating activities could justify the observed anti-glycation activity of Mps, in-depth research on the structures of other functional compounds present in Mps except MS/AK and reaction mechanisms should be performed. Overall, the present study proved that Mps would be promising sources of food-based anti-glycation agents because of their superior inhibitory effect on AGEs.
Collapse
Affiliation(s)
- Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raza M, Jiang Y, Ahmad B, Rahman AU, Raza S, Khan A, Tahir K, Hassan S, Khan S, Yuan Q. Biophysical investigation of interactions between sorbic acid and human serum albumin through spectroscopic and computational approaches. NEW J CHEM 2021. [DOI: 10.1039/d0nj06276f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work provides an effective strategy to analyze the SA-induced microenvironmental changes in the HSA macromolecule, and also highlights the medicinal importance of SA.
Collapse
Affiliation(s)
- Muslim Raza
- Institute of Synthetic Biology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
- China
| | - Yang Jiang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Bashir Ahmad
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Ata ur Rahman
- Institute of chemical sciences
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Saleem Raza
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre
- University of Nizwa
- Nizwa 616
- Sultanate of Oman
| | - Kamran Tahir
- Institute of Chemical Sciences
- Gomal University
- D. I. Khan
- Pakistan
| | - Said Hassan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Saifullah Khan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| |
Collapse
|
25
|
Thermodynamic analysis of albumin interaction with monosodium glutamate food additive: Insights from multi-spectroscopic and molecular docking approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Muthu SA, Jadav HC, Srivastava S, Pissurlenkar RRS, Ahmad B. The reorganization of conformations, stability and aggregation of serum albumin isomers through the interaction of glycopeptide antibiotic teicoplanin: A thermodynamic and spectroscopy study. Int J Biol Macromol 2020; 163:66-78. [PMID: 32615213 DOI: 10.1016/j.ijbiomac.2020.06.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
The drugs-protein binding study is of growing importance for drug-repurposing against amyloidosis. In this work, we study the binding of teicoplanin (TPN), a glycopeptide antibiotic, with bovine serum albumin (BSA) in its neutral (N), physiological (P) and basic (B) forms, which exist at pH 6, pH 7.4 and pH 9, respectively. The binding and thermodynamic parameters of TPN binding were determined by isothermal titration calorimetry (ITC) and fluorescence quench titration methods. Two binding sites were observed for N and P forms, whereas B form showed only one binding site. ITC and molecular docking results indicated that TPN-BSA complex formation is stabilized by hydrogen bonds, salt bridges and hydrophobic interaction. The red-edge excitation shift (REES) study indicated an ordered compact and spatial arrangement of the TPN bound protein molecule. TPN was found to affect the secondary and tertiary structures of B form only. The TPN binding was observed to marginally stabilize BSA isomers. TPN was also found to inhibit BSA aggregation as monitored by Rayleigh light scattering and thioflavin T binding assay. The current in vitro study will open a new path to explore the possible use of TPN as potential drugs to treat amyloidosis.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory (PAL), JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Helly Chetan Jadav
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India
| | - Sadhavi Srivastava
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India; Department of Biotechnology, Central University of South Bihar, Gaya 824236, India
| | - Raghuvir R S Pissurlenkar
- Department of Pharmaceutical and Medicinal Chemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa 403001, India
| | - Basir Ahmad
- Protein Assembly Laboratory (PAL), JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
27
|
Ghosh D, Karmakar P. Insight into anti-oxidative carbohydrate polymers from medicinal plants: Structure-activity relationships, mechanism of actions and interactions with bovine serum albumin. Int J Biol Macromol 2020; 166:1022-1034. [PMID: 33166557 DOI: 10.1016/j.ijbiomac.2020.10.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Recently, research associated with natural anti-oxidants leads to the chemical characterization of many compounds possessing strong anti-oxidant activity. Among these anti-oxidants, naturally occurring carbohydrate polymers containing pectic arabinogalactans esterified with phenolic acids in monomeric and dimeric forms are noteworthy. The presence of highly branched arabinogalactan type II side chains and sugar linked phenolic acid residues have been resolved as important parameters. The anti-oxidant activity of these compounds depend on their ability to convert free radicals into stable by-products and themselves oxidized to more stable and less reactive resonance stabilized radicals. Moreover, these carbohydrate polymers form water soluble stable complexes with protein. Such findings support their applications in a diversity of fields including food industry and pharmacy. This review highlights experimental evidences supporting that the carbohydrate polymers containing phenolic polysaccharides may become promising drug candidate for the prevention of aging and age related diseases.
Collapse
Affiliation(s)
- Debjani Ghosh
- Bhatar Girls' High School, Bhatar, Purba Bardhaman, West Bengal, India.
| | - Parnajyoti Karmakar
- Government General Degree College at Kalna-I, Medgachi, Muragacha, Purba Bardhaman, West Bengal, India
| |
Collapse
|
28
|
Hájovská P, Chytil M, Kalina M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int J Biol Macromol 2020; 161:738-745. [DOI: 10.1016/j.ijbiomac.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
29
|
Arumugam V, Rajamanikandan R, Ilanchelian M, Xu H, Moodley KG, Gao Y. Spectroscopic and thermodynamic studies on binding behaviour of an ionic liquid, 2′,3′-Epoxypropyl-N-methyl-2-oxopyrrolidinium acetate, with bovine serum albumin (BSA). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Mohammadzadeh-Asl S, Aghanejad A, Yekta R, de la Guardia M, Ezzati Nazhad Dolatabadi J, Keshtkar A. Kinetic and thermodynamic insights into interaction of erlotinib with epidermal growth factor receptor: Surface plasmon resonance and molecular docking approaches. Int J Biol Macromol 2020; 163:954-958. [PMID: 32653374 DOI: 10.1016/j.ijbiomac.2020.07.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in cell proliferation at non-small cell lung cancer (NSCLC). Therefore, targeted therapy of cancer via this kind of receptor is highly interested. Small molecule drugs such as erlotinib and gefitinib inhibit EGFR tyrosine kinase and thus suppress cell proliferation. At this paper, erlotinib interaction with EGFR on the cell surface was studied via surface plasmon resonance (SPR) and molecular docking methods. Kinetic parameters indicated that erlotinib affinity toward EGFR was increased through increment of temperature. The thermodynamic analysis showed that van der Waals and hydrogen binding forces play a major role in the interaction of erlotinib with EGFR. Docking results showed that Domain II in EGFR has role in the interaction with erlotinib. Besides, the binding energy for this interaction was -10.7 kcal/mol, which is suitable for binding of erlotinib to Domain II in EGFR.
Collapse
Affiliation(s)
- Saeideh Mohammadzadeh-Asl
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yekta
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | - Ahmad Keshtkar
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Javaheri-Ghezeldizaj F, Mahmoudpour M, Yekta R, Ezzati Nazhad Dolatabadi J. Albumin binding study to sodium lactate food additive using spectroscopic and molecular docking approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Multi-spectroscopic, thermodynamic and molecular dockimg insights into interaction of bovine serum albumin with calcium lactate. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Singh N, Kumar N, Rathee G, Sood D, Singh A, Tomar V, Dass SK, Chandra R. Privileged Scaffold Chalcone: Synthesis, Characterization and Its Mechanistic Interaction Studies with BSA Employing Spectroscopic and Chemoinformatics Approaches. ACS OMEGA 2020; 5:2267-2279. [PMID: 32064388 PMCID: PMC7016911 DOI: 10.1021/acsomega.9b03479] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 05/28/2023]
Abstract
Chalcone, a privileged structure, is considered as an effective template in the field of medicinal chemistry for potent drug discovery. In the present study, a privileged template chalcone was designed, synthesized, and characterized by various spectroscopic techniques (NMR, high-resolution mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV spectroscopy, and single-crystal X-ray diffraction). The mechanism of binding of chalcone with bovine serum albumin (BSA) was determined by multispectroscopic techniques and computational methods. Steady-state fluorescence spectroscopy suggests that the intrinsic fluorescence of BSA was quenched upon the addition of chalcone by the combined dynamic and static quenching mechanism. Time-resolved spectroscopy confirms complex formation. FT-IR and circular dichroism spectroscopy suggested the presence of chalcone in the BSA molecule microenvironment and also the possibility of rearrangement of the native structure of BSA. Moreover, molecular docking studies confirm the moderate binding of chalcone with BSA and the molecular dynamics simulation analysis shows the stability of the BSA-drug complex system with minimal deformability fluctuations and potential interaction by the covariance matrix. Moreover, pharmacodynamics and pharmacological analysis show good results through Lipinski rules, with no toxicity profile and high gastrointestinal absorptions by boiled egg permeation assays. This study elucidates the mechanistic profile of the privileged chalcone scaffold to be used in therapeutic applications.
Collapse
Affiliation(s)
- Nidhi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Neeraj Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Garima Rathee
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Vartika Tomar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Sujata K. Dass
- BLK
Super Speciality Hospital, Pusa Road, Delhi, New Delhi 110005, India
| | - Ramesh Chandra
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
34
|
Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chem 2020; 315:126228. [PMID: 31991257 DOI: 10.1016/j.foodchem.2020.126228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 11/21/2022]
Abstract
Monascin (MS) is a yellow lipid-soluble azaphilonoid pigment identified from Monascus-fermented products with promising biological activities. This work studied interactions between MS and bovine serum albumin (BSA) as well as their influences on the antioxidant activity of MS. Experimental results demonstrated that the fluorescence emission of BSA was quenched by MS via static quenching mechanism and the formed BSA-MS complex was mainly maintained by hydrophobic and hydrogen bond interactions. Meanwhile, the probable binding pocket of MS located near site I of BSA and the corresponding conformational and structural alterations of BSA were determined. Furthermore, the molecular modeling approach was performed to understand the visual representation of binding mode between BSA and MS. It was noticeable that the BSA-MS complex exhibited reduced DPPH radical-scavenging ability, which might be attributed to the restraining effect of BSA on the relevant reaction pathways involved in antioxidation by MS.
Collapse
|
35
|
Bozkurt E, Gul HI. Deciphering binding mechanism between bovine serum albumin and new pyrazoline compound K4. LUMINESCENCE 2019; 35:534-541. [DOI: 10.1002/bio.3762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 12/10/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ebru Bozkurt
- Programme of Occupational Health and Safety, Erzurum Vocational Training SchoolAtaturk University Erzurum Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| |
Collapse
|
36
|
Chen H, Zhu C, Chen F, Xu J, Jiang X, Wu Z, Ding X, Fan GC, Shen Y, Ye Y. Profiling the interaction of Al(III)-GFLX complex, a potential pollution risk, with bovine serum albumin. Food Chem Toxicol 2019; 136:111058. [PMID: 31881243 DOI: 10.1016/j.fct.2019.111058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Fluoroquinolone antibiotics (FQs), a new class of pollutants that seriously threaten human health through environmental and food residues, have aroused wide public concern. However, little attention has been paid to the potential toxicity of FQs' metal complex. Here, we firstly explore the proof-of-concept study of FQs' metal complex to bind bovine serum albumin (BSA) using systematical spectroscopic approaches. In detail, we have found that the complex of Al3+ with gatifloxacin (Al(III)-GFLX complex) can effectively bind to BSA via electrostatic interaction in PBS buffer (pH = 7.4, 1×), resulting in the formation of Al(III)-GFLX-BSA complex. The negative value of ΔG shows that the binding of Al(III)-GFLX complex to BSA is a spontaneous process. Circular dichroism spectra verify that Al(III)-GFLX complex effectively triggers the conformation changes of BSA's secondary structure. It has been proved that the interaction of small molecule with serum albumin has a significant effect on their in vivo biological effects such as absorption, distribution, metabolism, and excretion, and etc. Therefore, the results of this paper may offer a valuable theoretical basis for establishing safety standards of FQs' metal complex to ensure food and environmental health.
Collapse
Affiliation(s)
- Hua Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunlei Zhu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingjing Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiuting Jiang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaowei Ding
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Yingwang Ye
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
37
|
Ma YJ, Wu JH, Li X, Xu XB, Wang ZY, Wu C, Du M, Song L. Effect of alkyl distribution in pyrazine on pyrazine flavor release in bovine serum albumin solution. RSC Adv 2019; 9:36951-36959. [PMID: 35539035 PMCID: PMC9075160 DOI: 10.1039/c9ra06720e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 01/13/2023] Open
Abstract
The flavor release mechanism related to the interaction of aroma compounds with proteins is still unclear. In this study, the interaction of protein with pyrazine homologues, such as 2-methylpyrazine (MP), 2,5-dimethylpyrazine (DP), 2,3,5-trimethylpyrazine (TRP) and 2,3,5,6-tetramethylpyrazine (TEP), was investigated to elucidate the effect of alkyl distribution in a pyrazine ring on its flavor release in bovine serum albumin (BSA) solution (pH 7.4). The results of SPME-GC-MS indicated that methyl distribution in a pyrazine ring significantly affected its release from BSA solution. The pyrazines released from BSA solution with an increasing order of MP, DP, TRP and TEP. The inhibition mechanism of alkyl-pyrazine release was further elucidated by the interaction between alkyl-pyrazines and BSA using multiple spectroscopic methods. The non-covalent interaction between alkyl-pyrazines and BSA was confirmed as the main interaction force by the value of the bimolecular quenching constant (K q > 2 × 1010 L mol-1 s-1). A decrease in the hydrophobicity of the microenvironment between the alkyl-pyrazine and BSA was detected by synchronous fluorescence spectra, which revealed that alkyl-pyrazines were mainly bound on the sites of tyrosine and tryptophan in BSA. The UV-vis absorption spectra and circular dichromatic (CD) spectrum revealed that alkyl-pyrazines could induce polarity and conformation change of BSA. The above results indicated that the structure of the flavor homologues can affect their release in food matrices.
Collapse
Affiliation(s)
- Yun-Jiao Ma
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Jian-Hai Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Xian-Bing Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Zhen-Yu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Chao Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Ming Du
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| | - Liang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University Dalian 116034 China +86 411 86323262 +86 411 86323453 +86 411 86332275 +86 15942804820
| |
Collapse
|
38
|
Shen Y, Zhu C, Wang Y, Xu J, Xue R, Ji F, Wu Y, Wu Z, Zhang W, Zheng Z, Ye Y. Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food Chem Toxicol 2019; 135:110933. [PMID: 31682930 DOI: 10.1016/j.fct.2019.110933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Chelerythrine (CHE), a benzophenanthridine alkaloid, is usually used as a nutritional and functional additive in variety of health foods. However, it should be paid enough attention because of its potential toxicity to human health. In this work, the binding mechanism of CHE with bovine serum albumin (BSA) was systematically investigated with spectroscopic approaches. The results showed that the mixture of BSA with CHE could spontaneously cause the formation of BSA-CHE complex through electrostatic interaction under simulative physiological conditions (0.01 mol L-1 Tris-HCl, 0.015 mol L-1 NaCl, pH = 7.4). Site marker competitive displacement experiments exhibited that CHE was primarily bound to the hydrophobic pocket of the site II (subdomain IIIA) of BSA. It has been reported that the binding of small functional molecules to serum albumins remarkably impacts their absorption, distribution, metabolism, conformation, and excretion features. Therefore, this study might be helpful for human to have an in-depth understanding of the biological effect of CHE in vivo and guide human to take it safely and reasonably.
Collapse
Affiliation(s)
- Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunlei Zhu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingjing Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruyu Xue
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuyun Ji
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yiwei Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yingwang Ye
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
39
|
Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Spectral and molecular modelling studies of sulfadoxine interaction with bovine serum albumin. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Mohammadzadeh-Aghdash H, Akbari N, Esazadeh K, Ezzati Nazhad Dolatabadi J. Molecular and technical aspects on the interaction of serum albumin with multifunctional food preservatives. Food Chem 2019; 293:491-498. [DOI: 10.1016/j.foodchem.2019.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
42
|
Lang Y, Li E, Meng X, Tian J, Ran X, Zhang Y, Zang Z, Wang W, Li B. Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis. Food Res Int 2019; 122:487-495. [DOI: 10.1016/j.foodres.2019.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
|
43
|
Karimi Z, Mirza Alizadeh A, Ezzati Nazhad Dolatabadi J, Dehghan P. Nigella sativaand its Derivatives as Food Toxicity Protectant Agents. Adv Pharm Bull 2019; 9:22-37. [PMID: 31011555 PMCID: PMC6468232 DOI: 10.15171/apb.2019.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Exposure to food toxins generate multiple adverse health effects. Heavy metals, antibiotics residue, mycotoxins, pesticides and some food additives are examples of the most important food toxins. The common mechanism of toxicity and carcinogenicity effects of food toxins is the generation of oxidative stress that leads to DNA damages. Moreover, based on epidemiologic evidence unhealthy eating habits and food toxicities are associated with cancers occurrence. Therefore, application of bioactive food additives as harmless or safe components in food industry is expensive. Nigella sativa L. is a broadly used herb-drug for various diseases all over the world and has been used as preservative and food additive. Based on various studies N. sativa has shown various pharmacological activities including therapeutic efficacy against different human diseases and antioxidant anti-inflammatory effects against environmental toxins. N. sativa decreases the adverse health effects induced by mentioned food toxins via modulating the action of antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase catalase and act as reactive oxygen species (ROS) scavengers in different organs. Besides, N. sativa and thymoquinone (TQ) have protective effects on food products through removal and inhibition of various toxic compounds. Therefore, in the present review we will describe all protective effects of N. sativa and its main constituents, TQ, against food induced toxicities.
Collapse
Affiliation(s)
- Zahra Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/ National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Parvin Dehghan
- Department of Food Science and Technology, Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Singh IR, Mitra S. Interaction of chlorpropamide with serum albumin: Effect on advanced glycated end (AGE) product fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:569-577. [PMID: 30189383 DOI: 10.1016/j.saa.2018.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Carrier proteins like bovine or human serum albumin (BSA and HSA, respectively) are prone to glycation as compared to the other available proteins. In this study, reducing sugars such as l-arabinose (ara), d-(-) galactose (gal) and d-(-) fructose (fru) were used to create model glycated serum albumins and binding ability of these with well-known antidiabetic drug chlorpropamide (CPM) was monitored. Fluorescence quenching experiment revealed that interaction of CPM with native as well as glycated albumins undergoes through a ground state complex formation. CPM binds strongly to glycated HSA with arabinose (gHSAara) as compared to other glycated systems and to the native proteins. CPM interacts through Van der Waals and hydrogen bonding interaction to glycated BSA by d-(-) fructose (gBSAfru) and also with native HSA; whereas, it's interaction with BSA and others glycated systems like gBSAara, gBSAgal and gHSAara occurs primarily through hydrophobic interaction. CPM showed an enhancement in the production of the advanced glycated end products (AGE) in all the glycated proteins. The difference in the binding capability of CPM to differently glycated albumins could be a major model to understand the drug carrying capacity of the glycated serum albumins.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
45
|
Cheng D, Wang X, Tang J, Zhang X, Wang C, Li H. Characterization of the binding mechanism and conformational changes of bovine serum albumin upon interaction with aluminum-maltol: a spectroscopic and molecular docking study. Metallomics 2019; 11:1625-1634. [DOI: 10.1039/c9mt00088g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widespread use of aluminum in the treatment of drinking water, food, agriculture and pharmaceuticals has greatly increased the risk of human exposure to excess aluminum, which is a serious health hazard to human beings.
Collapse
Affiliation(s)
- Dai Cheng
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Xinyu Zhang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - He Li
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
46
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy MA, Rehman MT, AlAjmi MF, Alsenaidy AM, Husain FM, Khan RH. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Dehghan P, Mohammadi A, Mohammadzadeh-Aghdash H, Ezzati Nazhad Dolatabadi J. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Meti MD, Xu Y, Xie J, Chen Y, Wu Z, Liu J, Han Q, He Z, Hu Z, Xu H. Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin. Mol Biol Rep 2018; 45:1637-1646. [DOI: 10.1007/s11033-018-4306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
|
49
|
Sohrabi Y, Mohammadzadeh-Aghdash H, Baghbani E, Dehghan P, Ezzati Nazhad Dolatabadi J. Cytotoxicity and Genotoxicity Assessment of Ascorbyl Palmitate (AP) Food Additive. Adv Pharm Bull 2018; 8:341-346. [PMID: 30023336 PMCID: PMC6046424 DOI: 10.15171/apb.2018.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/17/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: Ascorbyl palmitate (AP) is a widely used food additive in food industry. In this study, AP was evaluated for potential cyto-genotoxicity on Human Umbilical Vein Endothelial Cells (HUVECs). Methods: MTT assay and flow cytometry analysis was used for cytotoxicity evaluation, while genotoxicity was carried out using DAPI staining assays and real time PCR. Results: The growth of HUVECs was decreased upon treatment with AP in dose-and time-dependent manner. Early/late apoptosis percentage in HUVECs treated with this additive was detected using flow cytometry analysis. Also morphology of DAPI stained HUVECs clearly showed chromatin fragmentation. Furthermore, real time PCR results showed that AP induces apoptosis by up-regulation of caspase-3, 9 and down-regulation of Bcl-2 ratio. Conclusion: The present results indicated that AP has capability to induce apoptosis in HUVECs and its better to make a thorough analysis about its extensive application in food industry.
Collapse
Affiliation(s)
- Yousef Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mohammadzadeh-Aghdash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
50
|
Taghipour P, Zakariazadeh M, Sharifi M, Ezzati Nazhad Dolatabadi J, Barzegar A. Bovine serum albumin binding study to erlotinib using surface plasmon resonance and molecular docking methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:11-15. [PMID: 29679689 DOI: 10.1016/j.jphotobiol.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Bovine serum albumin (BSA) is the most abundant protein in the blood circulation and it is commonly used for drug delivery in blood. Therefore, we aim to study BSA interaction with erlotinib as an anticancer drug using surface plasmon resonance (SPR) and molecular modeling methods under physiological conditions (pH = 7.4). BSA immobilized on carboxymethyl dextran hydrogel Au chip (CMD) after activation with N-hydroxysuccinimide and N-ethyl-N-(3-diethylaminopropyl) carbodiimide and then the erlotinib binding to BSA at different concentrations was evaluated. Increasing of erlotinib concentration led to dose-response sensorgrams of BSA. The amount of equilibrium constant (KD) at 25 °C (4.25 × 10-9) showed the high affinity of erlotinib to BSA. Thermodynamic parameters were attained at four different temperatures. The positive value of enthalpy and entropy showed that hydrophobic forces play major role in the interaction of erlotinib with BSA. Besides, the positive value of Gibbs free energy demonstrated that the interaction of erlotinib with BSA was nonspontaneous and enthalpy driven and the complexion of drug were dependent on endothermic process. According to the molecular docking study, the most favorable binding sites of erlotinib on the BSA were subdomain IIIA and IB. Moreover, molecular docking study results showed that hydrogen binding has a role in intermolecular force that stabilize erlotinib-BSA complex.
Collapse
Affiliation(s)
- Parvin Taghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Zakariazadeh
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Maryam Sharifi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Ezzati Nazhad Dolatabadi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.
| |
Collapse
|