1
|
Sozoniuk M, Petrova M, Mishev K, Miladinova-Georgieva K, Geneva M. Identification and validation of reference genes with stable expression under elicitor treatments of the medicinal plant Arnica montana L. BMC PLANT BIOLOGY 2025; 25:546. [PMID: 40287638 PMCID: PMC12032789 DOI: 10.1186/s12870-025-06557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND In view of enhancing secondary metabolites biosynthesis in Arnica montana through elicitation, comprehensive studies are needed to fully understand the molecular background of biosynthetic pathways in this species. Analysis of transcriptional changes via RT-qPCR technique might shed light on the molecular mechanisms underlying plant reaction to elicitors. This study aimed to identify reference genes which are stably expressed in Arnica under methyl jasmonate, salicylic acid, and yeast extract treatment to provide the basis for current and future gene expression studies in this important medicinal plant. RESULTS The expression stability of nine candidate reference genes was evaluated using four widely used algorithms (geNorm, NormFinder, BestKeeper, and ΔCt method). A comprehensive analysis of the obtained results showed that the most stably expressed pair of genes under elicitation conditions was ATP-synthase and ACT. The PP2A and TUBb were the pair of least stable candidates as they presented substantial variation in transcript levels in response to elicitor agents. For validation purposes, the transcriptional profile of PAL, 4CL and HQT genes was analyzed. Substantial induction of two of these biosynthetic genes was confirmed after methyl jasmonate treatment. CONCLUSIONS The ATP-synthase in combination with ACT were identified as the best endogenous controls for RT-qPCR data normalization in elicitation studies of A. montana. The research outcomes shed light on transcriptional changes associated with arnica's response to elicitation and contribute to the understanding of secondary metabolism regulation in medicinal plants.
Collapse
Affiliation(s)
- Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, Lublin, 20 - 950, Poland.
| | - Maria Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Kamelia Miladinova-Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| |
Collapse
|
2
|
Rasheed H, Deng B, Ahmad D, Bao J. Genetic Diversity and Genome-Wide Association Study of Total Phenolics, Flavonoids, and Antioxidant Properties in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2024; 25:12795. [PMID: 39684503 DOI: 10.3390/ijms252312795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic diversity of nutritional quality traits is crucial for potato breeding efforts to develop better varieties for the diverse market demands. In this study, the genetic diversity of 104 potato genotypes was estimated based on nutritional quality traits such as color parameters, total phenolic content, total flavonoid content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis-(3-ethylbezothiazoline-6-sulphonic acid) radical scavenging potential across two environments. The results indicated that environment II, Hangzhou 2020, exhibited higher bioactive compounds and antioxidant properties than environment I, Hangzhou 2019. The colored potato accessions exhibited higher levels of total phenolic content, total flavonoid content, DPPH, and ABTS activities than the white potato accessions, indicating the superiority of the colored to white potato accessions. The genome sequencing identified 1,101,368 high-quality single-nucleotide polymorphisms (SNPs), and 141,656 insertion/deletions (Indels). A population structure analysis revealed that genotypes can be divided into two subpopulations. Genome-wide association studies (GWAS) identified 128 significant SNPs associated with potato's color, total phenolic content, total flavonoid content, and antioxidant properties. Thus, the study provides new opportunities for strategic breeding and marker-assisted selection of ideal varieties and favorable alleles to enhance bioactive compounds and health-beneficial properties.
Collapse
Affiliation(s)
- Haroon Rasheed
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Dong QJ, Xu XY, Fan CX, Xiao JP. Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes. Genomics 2024; 116:110883. [PMID: 38857813 DOI: 10.1016/j.ygeno.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.
Collapse
Affiliation(s)
- Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Xiao-Yu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Cai-Xia Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China.
| |
Collapse
|
4
|
Joneidi S, Alizadeh SR, Ebrahimzadeh MA. Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review. Mini Rev Med Chem 2024; 24:748-766. [PMID: 37608658 DOI: 10.2174/1389557523666230822095959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/15/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Phenolic acids have recently gained considerable attention because of their numerous practical, biological, and pharmacological benefits. Various polyphenolic compounds are widely distributed in plant sources. Flavonoids and phenolic acids are the two main polyphenolic compounds that many plants contain abundant polyphenols. Chlorogenic acid, one of the most abundant phenolic acids, has various biological activities, but it is chemically unstable and degrades into other compounds or different enzymatic processes. METHODS In this review, we have studied many publications about CA and its derivatives. CA derivatives were classified into three categories in terms of structure and determined each part's effects on the body. The biological evaluations, structure-activity relationship, and mechanism of action of CA derivatives were investigated. The search databases for this review were ScienceDirect, Scopus, Pub- Med and google scholar. RESULTS Many studies have reported that CA derivatives have demonstrated several biological effects, including anti-oxidant, anti-inflammatory, anti-microbes, anti-mutation, anti-carcinogenic, anti-viral, anti-hypercholesterolemia, anti-hypertensive, anti-bacterial, and hypoglycemic actions. The synthesis of new stable CA derivatives can enhance its metabolic stability and biological activity. CONCLUSION The present study represented different synthetic methods and biological activities of CA derivatives. These compounds showed high antioxidant activity across a wide range of biological effects. Our goal was to help other researchers design and develop stable analogs of CA for the improvement of its metabolic stability and the promotion of its biological activity.
Collapse
Affiliation(s)
- Shima Joneidi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Jimenez-Champi D, Romero-Orejon FL, Moran-Reyes A, Muñoz AM, Ramos-Escudero F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA - JOURNAL OF FOOD 2023; 21:418-432. [DOI: 10.1080/19476337.2023.2213746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 01/05/2025]
Affiliation(s)
- Diana Jimenez-Champi
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Frank L. Romero-Orejon
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Angie Moran-Reyes
- Facultad de Nutrición y Alimentación, Escuela Profesional de Nutrición y Dietética, Universidad Femenina del Sagrado Corazón (UNIFE), Lima, Perú
| | - Ana María Muñoz
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Lima, Perú
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima, Perú
| |
Collapse
|
6
|
Nahuelcura J, Ortega T, Peña F, Berríos D, Valdebenito A, Contreras B, Santander C, Cornejo P, Ruiz A. Antioxidant Response, Phenolic Compounds and Yield of Solanum tuberosum Tubers Inoculated with Arbuscular Mycorrhizal Fungi and Growing under Water Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4171. [PMID: 38140498 PMCID: PMC10747638 DOI: 10.3390/plants12244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Solanum tuberosum (potato) is one of the most common crops worldwide; however, it is sensitive to water stress, which necessitates the identification of alternative tools to improve their production. Here, we evaluated the inoculation of two arbuscular mycorrhizal fungi (AMF) strains, Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26), and the MIX (CC + HMC26) in yield and phenolic and antioxidant response using chromatographic and spectroscopic methods in potato crops, at increasing levels of water stress, namely, with 100% (0), 70% (S1), and 40% (S2) soil humidity. Two caffeoylquinic acid isomers were detected and their levels showed a tendency to increase under stress together with the AMF inoculation, reaching up to 19.2 mg kg-1 of 5-caffeoylquinic acid and 7.4 mg kg-1 of caffeoylquinic acid isomer when CC was inoculated, and potato plants grew at the highest water starvation condition (S2). Regarding antioxidant activities, a differentiated response was detected depending on the AMF strain, highlighting the effect of HMC26 on Trolox equivalent antioxidant capacity (TEAC) method and CC in cupric reducing antioxidant capacity (CUPRAC) method, reaching up to 1.5 μmol g-1 of TEAC in plants inoculated with HMC26 and 0.9 μmol g-1 of CUPRAC in plants inoculated with CC, both in potato tubers of plants growing under the S2 stress condition. Meanwhile, the use of AMF did not influence the number and biomass of the tubers, but significant changes in the biochemical properties of tubers were observed. The results suggest that specific AMF adaptations to water stress must be considered when inoculation procedures are planned to improve the yield and quality of tubers in potato crops.
Collapse
Affiliation(s)
- Javiera Nahuelcura
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Tiare Ortega
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Fabiola Peña
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Región de la Araucanía, Temuco 4811230, Chile
| | - Daniela Berríos
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Región de la Araucanía, Temuco 4811230, Chile
| | - Analía Valdebenito
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Boris Contreras
- Novaseed Ltda., Loteo Pozo de Ripio s/n, Parque Ivian II, Puerto Varas 5550000, Chile;
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| |
Collapse
|
7
|
Lanteri ML, Silveyra MX, Morán MM, Boutet S, Solis-Gozar DD, Perreau F, Andreu AB. Metabolite profiling and cytotoxic activity of Andean potatoes: Polyamines and glycoalkaloids as potential anticancer agents in human neuroblastoma cells in vitro. Food Res Int 2023; 168:112705. [PMID: 37120188 DOI: 10.1016/j.foodres.2023.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 05/01/2023]
Abstract
Andean potatoes (Solanum tuberosum L. ssp. andigena) are a good source of dietary antioxidant polyphenols. We have previously demonstrated that polyphenol extracts from Andean potato tubers exerted a dose-dependent cytotoxic effect in human neuroblastoma SH-SY5Y cells, being skin extracts more potent than flesh ones. In order to gain insight into the bioactivities of potato phenolics, we investigated the composition and the in vitro cytotoxic activity of total extracts and fractions of skin and flesh tubers of three Andean potato cultivars (Santa María, Waicha, and Moradita). Potato total extracts were subjected to liquid-liquid fractionation using ethyl acetate solvent in organic and aqueous fractions. We analyzed both fractions by HPLC-DAD, HPLC-ESI-MS/MS, and HPLC-HRMS. Results corroborated the expected composition of each fraction. Organic fractions were rich in hydroxycinnamic acids (principally chlorogenic acid isomers), whereas aqueous fractions contained mainly polyamines conjugated with phenolic acids, glycoalkaloids, and flavonoids. Aqueous fractions were cytotoxic against SH-SY5Y cells and even more potent than their respective total extracts. Treatment with a combination of both fractions showed a similar cytotoxic response to the corresponding extract. According to correlation studies, it is tempting to speculate that polyamines and glycoalkaloids are crucial in inducing cell death. Our findings indicate that the activity of Andean potato extracts is a combination of various compounds and contribute to the revalorization of potato as a functional food.
Collapse
Affiliation(s)
- María Luciana Lanteri
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, CC 1245, 7600 Mar del Plata, Argentina.
| | - María Ximena Silveyra
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, CC 1245, 7600 Mar del Plata, Argentina
| | - Mónica Mariela Morán
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, CC 1245, 7600 Mar del Plata, Argentina
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Deyvis-Dante Solis-Gozar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - François Perreau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Adriana Balbina Andreu
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
8
|
Xu J, Li Y, Kaur L, Singh J, Zeng F. Functional Food Based on Potato. Foods 2023; 12:foods12112145. [PMID: 37297391 DOI: 10.3390/foods12112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Potato (Solanum tuberosum L.) has gradually become a stable food worldwide since it can be a practical nutritional supplement and antioxidant as well as an energy provider for human beings. Financially and nutritionally, the cultivation and utility of potatoes is worthy of attention from the world. Exploring the functionality and maximizing the utilization of its component parts as well as developing new products based on the potato is still an ongoing issue. To maximize the benefits of potato and induce new high-value products while avoiding unfavorable properties of the crop has been a growing trend in food and medical areas. This review intends to summarize the factors that influence changes in the key functional components of potatoes and to discuss the focus of referenced literature which may require further research efforts. Next, it summarizes the application of the latest commercial products and potential value of components existing in potato. In particular, there are several main tasks for future potato research: preparing starchy foods for special groups of people and developing fiber-rich products to supply dietary fiber intake, manufacturing bio-friendly and specific design films/coatings in the packaging industry, extracting bioactive proteins and potato protease inhibitors with high biological activity, and continuing to build and examine the health benefits of new commercial products based on potato protein. Notably, preservation methods play a key role in the phytochemical content left in foods, and potato performs superiorly to many common vegetables when meeting the demands of daily mineral intake and alleviating mineral deficiencies.
Collapse
Affiliation(s)
- Jian Xu
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Li
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lovedeep Kaur
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Jaspreet Singh
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Behn A, Lizana C, Zapata F, Gonzalez A, Reyes-Díaz M, Fuentes D. Phenolic and anthocyanin content characterization related to genetic diversity analysis of Solanum tuberosum subsp. tuberosum Chilotanum Group in southern Chile. FRONTIERS IN PLANT SCIENCE 2023; 13:1045894. [PMID: 36704150 PMCID: PMC9872146 DOI: 10.3389/fpls.2022.1045894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The potato (Solanum tuberosum L) is one of the four most important crops worldwide in production and consumption. It originated from South America along the Andes, where six hotspots of diversity known as subcenters of origin are described from Venezuela to Chiloe Island in Chile, and where the greatest diversity of potatoes in the world is found. Today, the use of ancestral genetic resources has gained significant relevance, recovering and producing foods with a greater nutrient content and beneficial to human health. Therefore, native potatoes possess a set of characteristics with great potential for use in potato breeding guided primarily to produce better feed, especially potatoes of the Chilotanum Group that are easily crossed with conventional varieties. The primary objective of this study was to evaluate 290 accessions of S. tuberosum subsp tuberosum belonging to the Chilotanum Group using a set of molecular markers and correlate them to its phenotypic traits for future use in breeding programs. For this purpose, 290 accessions were analysed through 22 specific microsatellites described previously, correlating them with flesh and skin colour, total phenolic content, and anthocyanin content. A division into groups considering all the 290 accessions resulted in two clusters using STRUCTURE analysis and seven different genetic clusters using UPGMA. The latter exhibited common phenotypic characteristics as well as anthocyanin content, strongly supporting a correlation between phenotypic traits and the genetic fingerprint. These results will enable breeders to focus on the development of potatoes with high polyphenol and anthocyanin content.
Collapse
Affiliation(s)
- Anita Behn
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lizana
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Zapata
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alvaro Gonzalez
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Derie Fuentes
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
- Centro de Biotecnología de Sistemas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
10
|
Xiao J, Xu X, Li M, Wu X, Guo H. Regulatory network characterization of anthocyanin metabolites in purple sweetpotato via joint transcriptomics and metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1030236. [PMID: 36844045 PMCID: PMC9951203 DOI: 10.3389/fpls.2023.1030236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/25/2023] [Indexed: 05/14/2023]
Abstract
INTRODUCTION Sweet potato is an important staple food crop in the world and contains abundant secondary metabolites in its underground tuberous roots. The large accumulation of several categories of secondary metabolites result in colorful pigmentation of the roots. Anthocyanin, is a typical flavonoid compound present in purple sweet potatoes and it contributes to the antioxidant activity. METHODS In this study, we developed joint omics research via by combing the transcriptomic and metabolomic analysis to explore the molecular mechanisms underlying the anthocyanin biosynthesis in purple sweet potato. Four experimental materials with different pigmentation phenotypes, 1143-1 (white root flesh), HS (orange root flesh), Dianziganshu No.88 (DZ88, purple root flesh), and Dianziganshu No.54 (DZ54, dark purple root flesh) were comparably studied. RESULTS AND DISCUSSION We identified 38 differentially accumulated pigment metabolites and 1214 differentially expressed genes from a total of 418 metabolites and 50893 genes detected. There were 14 kinds of anthocyanin detected in DZ88 and DZ54, with glycosylated cyanidin and peonidin as the major components. The significantly enhanced expression levels of multiple structural genes involved in the central anthocyanin metabolic network, such as chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase/leucocyanidin oxygenase (ANS), and glutathione S-transferase (GST) were manifested to be the primary reason why the purple sweet potatoes had a much higher accumulation of anthocyanin. Moreover, the competition or redistribution of the intermediate substrates (i.e. dihydrokaempferol and dihydroquercetin) between the downstream production of anthocyanin products and the flavonoid derivatization (i.e. quercetin and kaempferol) under the regulation of the flavonol synthesis (FLS) gene, might play a crucial role in the metabolite flux repartitioning, which further led to the discrepant pigmentary performances in the purple and non-purple materials. Furthermore, the substantial production of chlorogenic acid, another prominent high-value antioxidant, in DZ88 and DZ54 seemed to be an interrelated but independent pathway differentiated from the anthocyanin biosynthesis. Collectively, these data from the transcriptomic and metabolomic analysis of four kinds of sweet potatoes provide insight to understand the molecular mechanisms of the coloring mechanism in purple sweet potatoes.
Collapse
|
11
|
Ștefănescu R, Laczkó-Zöld E, Ősz BE, Vari CE. An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics 2022; 15:pharmaceutics15010016. [PMID: 36678645 PMCID: PMC9861616 DOI: 10.3390/pharmaceutics15010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bilberry leaves are used in many countries in traditional medicine for treating a wide variety of diseases. Due to the high therapeutic potential of Vaccinium myrtillus (VM) leaves, this review aims to present the latest knowledge on the phytochemical profile, as well as the therapeutic effects of this herbal drug. The review was conducted according to the Prisma guidelines, and the scientific databases were searched using combinations of the following keywords: "Vaccinium myrtillus", "leaves", "bilberry". Recent research was focused on the influence of abiotic factors on the phytochemical composition, and it seems that there are significant differences between the herbal drugs collected from different countries. The phytochemical composition is correlated with the broad spectrum of pharmacological effects. The paper outlines the potent antimicrobial activity of VM extracts against multidrug-resistant bacterial strains, and also the pathways that are modulated by the unique "cocktail" of phytoconstituents in different metabolic alterations. Reviewing the research articles published in the last 10 years, it seems that bilberry leaves have been slightly forgotten, although their phytochemical and pharmacological characteristics are unique.
Collapse
Affiliation(s)
- Ruxandra Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Correspondence: or
| | - Eszter Laczkó-Zöld
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
12
|
Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Martínez MJ, Andreu AB, Barbini L. Cytotoxic activity of
Solanum tuberosum
polyphenolic extracts in human hepatocarcinoma cells is mediated by apoptosis and autophagy. J Food Sci 2022; 87:5303-5316. [DOI: 10.1111/1750-3841.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Affiliation(s)
- María Julia Martínez
- Instituto Investigaciones Biológicas, UE CONICET‐UNMDP, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 Mar del Plata Argentina
- Department of Molecular and Cellular Pharmacology University of Miami Miami USA
| | - Adriana Balbina Andreu
- Instituto Investigaciones Biológicas, UE CONICET‐UNMDP, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 Mar del Plata Argentina
| | - Luciana Barbini
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 2nd floor Mar del Plata Argentina
| |
Collapse
|
14
|
Wada KC, Inagaki N, Sakai H, Yamashita H, Nakai Y, Fujimoto Z, Yonemaru J, Itoh H. Genetic effects of Red Lettuce Leaf genes on red coloration in leaf lettuce under artificial lighting conditions. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:179-192. [PMID: 37283610 PMCID: PMC10168059 DOI: 10.1002/pei3.10089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/08/2023]
Abstract
Some cultivars of lettuce accumulate anthocyanins, which act as functional food ingredients. Leaf lettuce has been known to be erratic in exhibiting red color when grown under artificial light, and there is a need for cultivars that more stably exhibit red color in artificial light cultivation. In this study, we aimed to dissect the genetic architecture for red coloring in various leaf lettuce cultivars grown under artificial light. We investigated the genotype of Red Lettuce Leaf (RLL) genes in 133 leaf lettuce strains, some of which were obtained from publicly available resequencing data. By studying the allelic combination of RLL genes, we further analyzed the contribution of these genes to producing red coloring in leaf lettuce. From the quantification of phenolic compounds and corresponding transcriptome data, we revealed that gene expression level-dependent regulation of RLL1 (bHLH) and RLL2 (MYB) is the underlying mechanism conferring high anthocyanin accumulation in red leaf lettuce under artificial light cultivation. Our data suggest that different combinations of RLL genotypes cause quantitative differences in anthocyanin accumulation among cultivars, and some genotype combinations are more effective at producing red coloration even under artificial lighting.
Collapse
Affiliation(s)
- Kaede C. Wada
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Noritoshi Inagaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroaki Sakai
- Bioinformatics Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroto Yamashita
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yusuke Nakai
- Greenhouse Vegetable Production Group, Division of Field Crop and Vegetable Research, Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research OrganizationKurumeJapan
| | - Zui Fujimoto
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Jun‐ichi Yonemaru
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hironori Itoh
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
15
|
Bao Y, Nie T, Wang D, Chen Q. Anthocyanin regulatory networks in Solanum tuberosum L. leaves elucidated via integrated metabolomics, transcriptomics, and StAN1 overexpression. BMC PLANT BIOLOGY 2022; 22:228. [PMID: 35508980 PMCID: PMC9066749 DOI: 10.1186/s12870-022-03557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/22/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Anthocyanins, which account for color variation and remove reactive oxygen species, are widely synthesized in plant tissues and organs. Using targeted metabolomics and nanopore full-length transcriptomics, including differential gene expression analysis, we aimed to reveal potato leaf anthocyanin biosynthetic pathways in different colored potato varieties. RESULTS Metabolomics analysis revealed 17 anthocyanins. Their levels varied significantly between the different colored varieties, explaining the leaf color differences. The leaves of the Purple Rose2 (PurpleR2) variety contained more petunidin 3-O-glucoside and malvidin 3-O-glucoside than the leaves of other varieties, whereas leaves of Red Rose3 (RedR3) contained more pelargonidin 3-O-glucoside than the leaves of other varieties. In total, 114 genes with significantly different expression were identified in the leaves of the three potato varieties. These included structural anthocyanin synthesis-regulating genes such as F3H, CHS, CHI, DFR, and anthocyanidin synthase and transcription factors belonging to multiple families such as C3H, MYB, ERF, NAC, bHLH, and WRKY. We selected an MYB family transcription factor to construct overexpression tobacco plants; overexpression of this factor promoted anthocyanin accumulation, turning the leaves purple and increasing their malvidin 3-o-glucoside and petunidin 3-o-glucoside content. CONCLUSIONS This study elucidates the effects of anthocyanin-related metabolites on potato leaves and identifies anthocyanin metabolic network candidate genes.
Collapse
Affiliation(s)
- Yanru Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tengkun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Browning inhibition of seabuckthorn leaf extract on fresh-cut potato sticks during cold storage. Food Chem 2022; 389:133076. [PMID: 35489264 DOI: 10.1016/j.foodchem.2022.133076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 01/12/2023]
Abstract
Seabuckthorn extract is rich in bioactive compounds and well known for its health benefits. The study investigated the effect of seabuckthorn leaf extract on browning of fresh-cut potatoes. The results showed that seabuckthorn leaf extract significantly inhibited the browning of fresh-cut potatoes compared with seabuckthorn fruit extract. Catechin, hypericin, gallic acid, casuarinin and isorhamnetin were main components in seabuckthorn leaf extract. Further research revealed that seabuckthorn leaf extract competitively inhibited polyphenol oxidase (PPO) with IC50 value of 0.7 mg/mL. Molecular docking indicated that gallic acid stably bound to the active site of PPO, while isorhamnetin had low affinity on PPO. These results also demonstrated that seabuckthorn leaf extract inhibited browning of fresh-cut potatoes by reducing activities of peroxidase and phenylalanine ammonia-lyase, decreasing contents of phenolics and elevating antioxidant capacity. In addition, synergistic anti-browning effect was found with casuarinin, isorhamnetin, gallic acid and pedunculagin.
Collapse
|
17
|
Alarcón S, Tereucán G, Cornejo P, Contreras B, Ruiz A. Metabolic and antioxidant effects of inoculation with arbuscular mycorrhizal fungi in crops of flesh-coloured Solanum tuberosum treated with fungicides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2270-2280. [PMID: 34625964 DOI: 10.1002/jsfa.11565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Solanum tuberosum tubers have higher content of phenolic compounds such as hydroxycinnamic acid derivatives (HCAD) and anthocyanins in coloured genotypes. The use of fungicides for crops is common, but there are few studies regarding the interaction of fungicides and arbuscular mycorrhizal fungi (AMF). Here, the AMF-plant interactions and the metabolic responses of three potato genotypes with different tuber colorations (VR808, CB2011-509 and CB2011-104) inoculated with Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26) or Funneliformis mosseae (HMC7) were studied together with the use of the fungicides MONCUT (M) and ReflectXtra (R). Mycorrhizal traits, phenolic compound profiles and antioxidant activity (AA) were evaluated. RESULTS Despite only two HCADs being identified, with 5-caffeolquinic acid the most abundant, four anthocyanins were detected only in purple potato genotypes. The anthocyanin and HCAD profiles, as well as AA, showed that the CB2011-104 genotype had better characteristics than the other genotypes, while VR808 and CB509 showed similar responses. The responses were dependent on the specific combinations of genotype, fungicide and the AMF strain, and generally showed better responses when colonized by AMFs. CONCLUSION The three potato genotypes had differential responses depending on the inoculated AMFs and the fungicide applied before sowing, where the optimal combinations for antioxidant response, mycorrhization degree and performance were HMC26/R for VR808, HMC7/M for CB2011-509 and HMC26/M for CB2011-104. Our results suggest the existence of functional compatibility that can be registered as beneficial effects even at the genotypic level of the host regarding a specific AMF strain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tereucán
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Boris Contreras
- Novaseed Ltda. and Papas Arcoiris Ltda., Puerto Varas, Chile
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Rasheed H, Ahmad D, Bao J. Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants (Basel) 2022; 11:antiox11040603. [PMID: 35453288 PMCID: PMC9030900 DOI: 10.3390/antiox11040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/07/2023] Open
Abstract
Polyphenol is one of the most essential phytochemicals with various health benefits. Potato (Solanum tuberosum L.) is known as a potential source of polyphenols, and also has health benefits in which phenolic acids, such as chlorogenic, ferulic acid, caffeic acid, and flavonoids, such as anthocyanins, sustainably play the most significant role. Almost every polyphenol contributes to various biological activities. In this review, we collected comprehensive information concerning the diversity of polyphenols in potatoes, and the effects of post-harvest processing and different cooking methods on the bioavailability of polyphenols. To achieve maximum health benefits, the selection of potato cultivars is necessary by choosing their colors, but various cooking methods are also very important in obtaining the maximum concentration of polyphenolic compounds. The health properties including major biological activities of polyphenols, such as antioxidant activity, anticarcinogenic activity, anti-inflammatory activity, anti-obesity activity, and antidiabetic activity, have also been summarized. All these biological activities of polyphenols in potatoes might be helpful for breeders in the design of new varieties with many health benefits, and are expected to play a vital role in both pharmaceutical and nutraceutical industries.
Collapse
|
19
|
Zhang X, Meng W, Chen Y, Peng Y. Browning inhibition of plant extracts on fresh‐cut fruits and vegetables ‐A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyan Zhang
- College of Food Science and Engineering Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Grain Process Technology and Engineering Technology Center in Shandong Province, Shandong Agricultural University, Taian China
| | - Wenbo Meng
- College of Food Science and Engineering Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Grain Process Technology and Engineering Technology Center in Shandong Province, Shandong Agricultural University, Taian China
| | - Yilun Chen
- College of Food Science and Engineering Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Grain Process Technology and Engineering Technology Center in Shandong Province, Shandong Agricultural University, Taian China
| | - Yong Peng
- College of Food Science and Engineering Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Grain Process Technology and Engineering Technology Center in Shandong Province, Shandong Agricultural University, Taian China
| |
Collapse
|
20
|
Zhang SQ, Tian D, Hu CY, Meng YH. Chlorogenic Acid Ameliorates High-Fat and High-Fructose Diet-Induced Cognitive Impairment via Mediating the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2600-2615. [PMID: 35188379 DOI: 10.1021/acs.jafc.1c07479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorogenic acid (CGA) displays cognition-improving properties, but the underlying mechanisms remain unclear. Herein, CGA supplementation (150 mg/kg body weight) for 14 weeks significantly prevented obesity and insulin resistance, cognitive-behavioral disturbances, and synaptic dysfunction induced by a high-fat and high-fructose diet (HFFD). Moreover, CGA supplementation enhanced the expression of genes enriched in the neuroactive ligand-receptor interaction pathway and reduced inflammatory factor expressions. Furthermore, CGA treatment increased gut microbiota diversity and the level of bacterial genera producing SCFAs. CGA also decreased the concentration of energy metabolism substrates, while it increased phosphorylcholine. Finally, we observed a significant correlation among synaptic transmission genes, gut microbiota, and neurotransmission in the CGA supplementation group by targeted multiomics analysis. Together, our results supported that the alteration of gut microbiota and metabolite composition is the underlying mechanism of CGA improving cognitive function. CGA is also a promising intervention strategy to prevent HFFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Shu Qing Zhang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| |
Collapse
|
21
|
Evaluation of the anti-browning effect of quercetin on cut potatoes during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
D’Amelia V, Sarais G, Fais G, Dessì D, Giannini V, Garramone R, Carputo D, Melito S. Biochemical Characterization and Effects of Cooking Methods on Main Phytochemicals of Red and Purple Potato Tubers, a Natural Functional Food. Foods 2022; 11:foods11030384. [PMID: 35159533 PMCID: PMC8834363 DOI: 10.3390/foods11030384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potato is a staple food crop and an important source of dietary energy. Its tubers contain several essential amino acids, vitamins, minerals and phytochemicals that contribute to the nutritional value of this important product. Recently, scientific interest has focused on purple and red potatoes that, due to the presence of anthocyanins, may be considered as natural powerful functional food. The aim of this study was to evaluate the characteristics of pigmented varieties, the types of anthocyanins accumulated and the level of both beneficial phytochemicals (vitamin C and chlorogenic acids, CGAs) and anti-nutritional compounds (glycoalkaloids) following various cooking methods. The analyses described the presence of a mix of several acylated anthocyanins in pigmented tubers along with high level of CGA. The amount of antioxidants was differently affected by heat treatments according to the type of molecule and the cooking methods used. In some cases, the beneficial compounds were made more available by heat treatments for the analytical detection as compared to raw materials. Data reported here describe both the agronomic properties of these pigmented varieties and the effects of food processing methods on bioactive molecules contained in this natural functional food. They may provide useful information for breeders aiming to develop new varieties that could include desirable agronomical and industrial processing traits.
Collapse
Affiliation(s)
- Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Giorgia Sarais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
- Correspondence:
| | - Giacomo Fais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Debora Dessì
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Vittoria Giannini
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Sara Melito
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| |
Collapse
|
23
|
Pigmented Potatoes: A Potential Panacea for Food and Nutrition Security and Health? Foods 2022; 11:foods11020175. [PMID: 35053906 PMCID: PMC8774573 DOI: 10.3390/foods11020175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Although there are over 4000 potato cultivars in the world, only a few have been commercialized due to their marketability and shelf-life. Most noncommercialized cultivars are pigmented and found in remote regions of the world. White-fleshed potatoes are well known for their energy-enhancing complex carbohydrates; however, pigmented cultivars are potentially high in health-promoting polyphenolic compounds. Therefore, we reveal the comprehensive compositions of pigmented cultivars and associated potential health benefits, including their potential role in ameliorating hunger, food, and nutrition insecurity, and their prospects. The underutilization of such resources is a direct threat to plant-biodiversity and local traditions and cultures.
Collapse
|
24
|
Yang H, Liao Q, Ma L, Luo W, Xiong X, Luo Y, Yang X, Du C, He Y, Li X, Gao D, Xue X, Shang Y. Features and genetic basis of chlorogenic acid formation in diploid potatoes. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100039. [PMID: 35415656 PMCID: PMC8991830 DOI: 10.1016/j.fochms.2021.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
A diversity panel of lines was used to study the CGA formation in diploid potatoes. Decreased tuber CGA level was observed in the domesticated diploid potatoes. Potential factors affecting the CGA level in diploid potatoes were revealed.
The concentration of chlorogenic acids (CGAs), is tightly associated with the appearance, taste, and nutrient content of potato tubers. Manipulation of tuber CGA concentrations allows for the breeding of quality traits in potatoes. Currently, a hybrid potato breeding system that aims to convert tetraploid potato into a diploid seed crop represents a new development in potato breeding. Unfortunately, however, a systematic study of CGA formation is very limited in diploid potatoes. Here, using a diverse panel of diploid potatoes, including 40 ancestors and 374 landraces, we analyzed the influence of location, environment, genetic basis, as well as expression of enzymes, in affecting the CGA concentrations in diploid lines. We revealed a selection of the decreased CGA level of tuber flesh in the domestication of diploid potatoes. Moreover, we identified 18 SNPs associated with tuber CGA levels using re-sequenced genome data. This study provides a basis for the breeding of high-quality potato by taking into consideration customer preferences.
Collapse
|
25
|
Zhao W, Wang Y, Ma Y, Liang H, Zhao X. Effect of vacuum impregnation on enzymatic browning of fresh‐cut potatoes during refrigerated storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenting Zhao
- Institute of Agri‐food Processing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key laboratory of vegetable postharvest processing, Ministry of Agriculture and rural affairs, Beijing 100097, ChinaBeijing 100097 China
| | - Yue Wang
- Institute of Agri‐food Processing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key laboratory of vegetable postharvest processing, Ministry of Agriculture and rural affairs, Beijing 100097, ChinaBeijing 100097 China
| | - Yue Ma
- Institute of Agri‐food Processing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key laboratory of vegetable postharvest processing, Ministry of Agriculture and rural affairs, Beijing 100097, ChinaBeijing 100097 China
| | - Hao Liang
- Longda Food Group Co. LTD Shandong 265231 China
| | - Xiaoyan Zhao
- Institute of Agri‐food Processing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key laboratory of vegetable postharvest processing, Ministry of Agriculture and rural affairs, Beijing 100097, ChinaBeijing 100097 China
| |
Collapse
|
26
|
Feng JL, Zhang J, Yang J, Zou LP, Fang TT, Xu HL, Cai QN. Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:544-552. [PMID: 33814021 DOI: 10.1017/s0007485321000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.
Collapse
Affiliation(s)
- Jian-Lu Feng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling-Ping Zou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ting-Ting Fang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Huan-Li Xu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- MOA Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qing-Nian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- MOA Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR, Lü S, Hammerschmidt R, Douches D, Yim WC, Santos P, Kosma DK. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:77-99. [PMID: 33860574 DOI: 10.1111/tpj.15275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.
Collapse
Affiliation(s)
- Zachary Wahrenburg
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Elizabeth Benesch
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Catherine Lowe
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Jazmin Jimenez
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ray Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Patricia Santos
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
28
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
29
|
Lin S, Singh RK, Navarre DA. R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis. HORTICULTURE RESEARCH 2021; 8:25. [PMID: 33518700 PMCID: PMC7847999 DOI: 10.1038/s41438-021-00463-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
Flavonols and other phenylpropanoids protect plants from biotic and abiotic stress and are dietarily desirable because of their health-promoting properties. The ability to develop new potatoes (Solanum tuberosum) with optimal types and amounts of phenylpropanoids is limited by lack of knowledge about the regulatory mechanisms. Exogenous sucrose increased flavonols, whereas overexpression of the MYB StAN1 induced sucrolytic gene expression. Heterologous StAN1 protein bound promoter fragments from sucrolytic genes (SUSY1 and INV1). Two additional MYBs and one microRNA were identified that regulated potato flavonols. Overexpression analysis showed MYB12A and C increased amounts of flavonols and other phenylpropanoids. Endogenous flavonol amounts in light-exposed organs were much higher those in the dark. Expression levels of StMYB12A and C were high in flowers but low in tubers. Transient overexpression of miR858 altered potato flavonol metabolism. Endogenous StmiR858 expression was much lower in flowers than leaves and correlated with flavonol amounts in these organs. Collectively, these findings support the hypothesis that sucrose, MYBs, and miRNA control potato phenylpropanoid metabolism in a finely tuned manner that includes a feedback loop between sucrose and StAN1. These findings will aid in the development of potatoes with phenylpropanoid profiles optimized for crop performance and human health.
Collapse
Affiliation(s)
- Sen Lin
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Rajesh K Singh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Duroy A Navarre
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
- USDA-Agricultural Research Service, Prosser, WA, USA.
| |
Collapse
|
30
|
He X, Zheng S, Sheng Y, Miao T, Xu J, Xu W, Huang K, Zhao C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:631-637. [PMID: 32683698 DOI: 10.1002/jsfa.10675] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chlorogenic acid is a type of phenolic acid found in many plants. Chlorogenic acid has an anti-obesity effect with an unclear mechanism. The present study aimed to investigate the regulatory effect of chlorogenic acid on energy balance in high-fat diet (HFD) induced obese C57BL/6J mice administrated 100 mg kg-1 chlorogenic acid for 13 weeks. RESULTS The consumption of chlorogenic acid ameliorated HFD induced obesity. Chlorogenic acid did not change the physical activity but significantly decreased food intake and increased body temperature, thermal dissipation and brown adipose tissue activity. Moreover, chlorogenic acid improved glucose tolerance but had a moderate impact on other blood indices. Additionally, chlorogenic acid failed to restore the microbiota change associated with HFD induced obesity, but modified the gut bacterial composition in a unique way. CONCLUSION Supplementation with chlorogenic acid can improve HFD induced obesity and associated glucose intolerance mainly via regulating food intake and energy expenditure. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Jilin, China
| |
Collapse
|
31
|
|
32
|
Bellumori M, Chasquibol Silva NA, Vilca L, Andrenelli L, Cecchi L, Innocenti M, Balli D, Mulinacci N. A Study on the Biodiversity of Pigmented Andean Potatoes: Nutritional Profile and Phenolic Composition. Molecules 2020; 25:molecules25143169. [PMID: 32664446 PMCID: PMC7397087 DOI: 10.3390/molecules25143169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/25/2022] Open
Abstract
The characterization of six varieties of native Andean potatoes with a wide biodiversity in tuber shape, flesh, and skin color was performed, through the determination of their proximate composition, mineral content, and phenolic profile. Minerals concentration revealed significant genotypic variation. Potassium was the most abundant element in all varieties, ranging from 7272.9 to 13,059.9 µg/g and from 12,418 to 17,388.6 µg/g dried weight for the flesh and skin samples, respectively. Iron content was relevant, ranging from 20.5 to 39.9 µg/g and from 112.2 to 288.8 µg/g dried weight in flesh and skin samples, respectively. Phenolic compounds were consistently higher in the skin than in the flesh. The total content varied greatly from 19.5 to 2015.3 µg/g and from 1592.3 to 14807.3 µg/g dried weight for flesh and skin tissues, respectively. 5-caffeoylquinic acid was 74% of the total phenolic acids. Different pattern of anthocyanins was found, depending on the color of the variety; the red genotypes contained predominantly pelargonidin derivatives, while the purple samples had petunidin as a major anthocyanidin. This study increases the knowledge of the composition of the local Andean varieties (which are only scarcely studied so far), helping to enhance these genotypes and the conservation of biodiversity.
Collapse
Affiliation(s)
- Maria Bellumori
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Nancy A. Chasquibol Silva
- Center of Studies and Innovation of Functional Foods (CEIAF), Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 33, Peru; (N.A.C.S.); (L.V.)
| | - Laida Vilca
- Center of Studies and Innovation of Functional Foods (CEIAF), Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 33, Peru; (N.A.C.S.); (L.V.)
| | - Luisa Andrenelli
- Department of Agriculture, Food, Environment and Forestry University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Lorenzo Cecchi
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Marzia Innocenti
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Diletta Balli
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
- Correspondence: ; Tel.: +39-0554573773
| |
Collapse
|
33
|
Gutiérrez-Quequezana L, Vuorinen AL, Kallio H, Yang B. Impact of cultivar, growth temperature and developmental stage on phenolic compounds and ascorbic acid in purple and yellow potato tubers. Food Chem 2020; 326:126966. [PMID: 32416419 DOI: 10.1016/j.foodchem.2020.126966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Phenolic compounds and ascorbic acid were analyzed in one yellow and four purple-flesh potato cultivars grown at 13 °C and 18 °C and harvested at different stages of tuber development, using HPLC-DAD and UHPLC-MS. The expression of genes in the phenylpropanoid pathway was studied at transcription level using qPCR. Petunidin-3-p-coumaroylrutinoside-5-glucoside was the most abundant anthocyanin in 'Blue Congo', 'Blaue Schweden', and 'Synkeä Sakari', whereas malvidin-3-p-coumaroylrutinoside-5-glucoside dominated in 'Blaue Veltlin'. In mature tubers, the purple cultivar 'Synkeä Sakari' showed the highest content of anthocyanins (2.4 mg/g freeze-dried sample), and 'Blaue Veltlin' had the highest content of phenolic acids (5.5 mg/g). Cultivar was the main variable affecting the biosynthesis of the studied metabolites, whereas the temperatures studied did not show different impact. The content of the main phenolic acids and anthocyanins in the potato cultivars correlated positively with the expression levels of the genes involved in the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Liz Gutiérrez-Quequezana
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Anssi L Vuorinen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
34
|
The Impact of Fertilization Regime on the Crop Performance and Chemical Composition of Potato (Solanum tuberosum L.) Cultivated in Central Greece. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potato cultivation is quite demanding in inorganic nutrients and adequate fertilization is a key factor for maximizing yield and producing tubers of high quality. In the present study, a field experiment was carried out to evaluate the effect of various forms of fertilization on crop performance and the nutritional value and chemical composition of two potato varieties (cv. Spunta and cv. Kennebec). For this purpose, five different fertilizer treatments were applied namely: control (C), standard fertilizer (T1), standard fertilizer + zeolite (T2), manure (T3) and slow release nitrogen fertilizer (T4). According to the results, it was observed that slow release treatment (T4) achieved the highest yield for both varieties, while the control treatment presented significantly lower yield compared to the studied fertilization regimes. The dry matter of leaves and shoots was higher in T1 treatment for cv. Kennebec and in T2 and T4 treatments for cv. Spunta, whereas the control treatment presented the highest dry matter content in tubers for cv. Kennebec and T2 and T3 treatments for cv. Spunta. A significant effect of the fertilization regime was also observed on the nutritional value of tubers and more specifically the protein, ash and fat content was increased by treatments T1 and T4, while carbohydrate content was also increased by T3 and T4 treatments for both varieties. Similarly, the total sugars, organic acids, β-carotene and lycopene content was increased in T3 treatment for the Spunta variety, while the antioxidant capacity showed a varied response depending on the fertilizer regime and the tested variety. In conclusion, the fertilization regime has a significant effect not only on the tuber yield but also on the quality of the final product and should be considered as an effective tool to increase the added value of potato crop.
Collapse
|
35
|
Sampling for DUS Test of Flower Colors of Ranunculus asiaticus L. in View of Spatial and Temporal Changes of Flower Colorations, Anthocyanin Contents, and Gene Expression Levels. Molecules 2019; 24:molecules24030615. [PMID: 30744185 PMCID: PMC6384639 DOI: 10.3390/molecules24030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
Sampling for DUS test of flower colors should be fixed at the stages and sites that petals are fully colored, and besides, flower colorations are uniform among individuals and stable for a period of time to allow testers to get consistent results. It remains a problem since spatial and temporal flower colorations are reported a lot but their change traits are little discussed. In this study, expression state, uniformity and stability of color phenotypes, anthocyanin contents, and gene expression levels were taken into account based on measurements at 12 development stages and three layers (inner, middle, and outer petals) of two varieties of Ranunculus asiaticus L. to get their best sampling. Our results showed that, outer petals of L9–L10 (stage 9–stage 10 of variety ‘Jiaoyan zhuanhong’) and C5–C6 (stage 5–stage 6 of variety ‘Jiaoyan yanghong’) were the best sampling, respectively. For DUS test, it is suggested to track flower colorations continuously to get the best sampling as well as representative colors since different cultivars had different change traits, and moreover, full expression of color phenotypes came later and lasted for a shorter duration than those of anthocyanin contents and gene expressions. Our innovation exists in following two points. Firstly, a model of change dynamic was introduced to illustrate the change traits of flower colorations, anthocyanin contents, and gene expressions. Secondly, genes used for expression analysis were screened on account of tentative anthocyanins, which were identified based on comparison between liquid chromatography–mass spectrometry (LC–MS) results and molecular mass and mass fragment pattern (M2) of each putative anthocyanin and their fragments deduced in our previous study. Gene screening in this regard may also be interest for other non-model plant genera with little molecular background.
Collapse
|
36
|
Li Y, Kong D, Bai M, He H, Wang H, Wu H. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. HORTICULTURE RESEARCH 2019; 6:73. [PMID: 31231531 PMCID: PMC6544646 DOI: 10.1038/s41438-019-0154-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 05/18/2023]
Abstract
Hydroxycinnamoyl-CoA quinate transferase (HQT) is one of the key enzymes in the biosynthesis of chlorogenic acid (CGA) in the flowers of Lonicera japonica. However, the spatiotemporal expression patterns of HQT and its relationship to the dynamics of CGA biosynthesis, transport, and storage remain largely unknown. In this study, we collected L. japonica flower samples at different growth stages (S1-S6) and examined the spatiotemporal expression pattern of HQT and the dynamic accumulation patterns of CGA using a combination of molecular and cytological techniques. Our results suggest that the spatiotemporal expression pattern of HQT is directly correlated with dynamic changes in CGA accumulation and distribution in L. japonica flowers. We further show that CGA is synthesized primarily in the cytoplasm and chloroplasts. CGA synthesized in the cytoplasm first accumulates in specialized vesicles and is then transferred to large central vacuoles for storage by fusion of CGA-containing vesicles with vacuoles. Furthermore, CGA synthesized in the chloroplasts appears to be transferred into the vacuoles for storage by direct membrane fusion between the tonoplast and the disrupted chloroplast membranes. Collectively, our results suggest that CGA is synthesized in chloroplasts and cytoplasm and finally transferred to the vacuole for long-term storage.
Collapse
Affiliation(s)
- Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
37
|
Ruiz A, Aguilera A, Ercoli S, Parada J, Winterhalter P, Contreras B, Cornejo P. Effect of the frying process on the composition of hydroxycinnamic acid derivatives and antioxidant activity in flesh colored potatoes. Food Chem 2018; 268:577-584. [PMID: 30064800 DOI: 10.1016/j.foodchem.2018.06.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022]
Abstract
Phenolic composition of potatoes (Solanum tuberosum) with colored flesh has been previously reported, highlighting their anthocyanin composition. However, there is less information available about the profiles and concentrations of hydroxycinnamic acid derivatives (HCADs) in these potatoes. In pigmented potatoes from Southern Chile, three HCADs have been detected, corresponding to the trans isomers of 3-, 4- and 5-caffeoylquinic acid. It is remarkable that after frying, the HCAD concentrations increased 493% compared to those of fresh potatoes. The same tendency has been observed for total phenols and antioxidant activity of the chips. The results obtained are relevant in relation to the classification of pigmented potatoes as functional foods not only due to their anthocyanin content but also due to their higher content of HCADs, especially since their concentration increases considerably after frying, thus contributing to their antioxidant activity and potential beneficial effects for human health compared with uncolored genotypes.
Collapse
Affiliation(s)
- Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile.
| | - Ariel Aguilera
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Stefano Ercoli
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - José Parada
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | | | - Boris Contreras
- Novaseed Ltda and Papas Arcoiris Ltda, Loteo Pozo de Ripio s/n, Parque Ivian II, Puerto Varas, Chile
| | - Pablo Cornejo
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
38
|
Chaparro JM, Holm DG, Broeckling CD, Prenni JE, Heuberger AL. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds. Front Nutr 2018; 5:36. [PMID: 29876353 PMCID: PMC5974217 DOI: 10.3389/fnut.2018.00036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023] Open
Abstract
Potato (Solanum tuberosum L.) is an important global food crop that contains phytochemicals with demonstrated effects on human health. Understanding sources of chemical variation of potato tuber can inform breeding for improved health attributes of the cooked food. Here, a comprehensive metabolomics (UPLC- and GC-MS) and ionomics (ICP-MS) analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes including russet, red, yellow, chip, and specialty potatoes. The analyses detected 2,656 compounds that included known bioactives (43 compounds), nutrients (42), lipids (76), and 23 metals. Most nutrients and bioactives were partially degraded during cooking (44 out of 85; 52%), however genotypes with high quantities of bioactives remained highest in the cooked tuber. Chemical variation was influenced by genotype and market class. Specifically, ~53% of all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most notable metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty potatoes which had the higher levels of chlorogenic acid as compared to the other market classes. Variation in several molecules with known association to health was observed among market classes and included vitamins (e.g., pyridoxal, ~2-fold variation), bioactives (e.g., chlorogenic acid, ~40-fold variation), medicinals (e.g., kukoamines, ~6-fold variation), and minerals (e.g., calcium, iron, molybdenum, ~2-fold variation). Furthermore, more metabolite variation was observed within market class than among market class (e.g., α-tocopherol, ~1-fold variation among market class vs. ~3-fold variation within market class). Taken together, the analysis characterized significant metabolite and mineral variation in raw and cooked potato tuber, and support the potential to breed new cultivars for improved health traits.
Collapse
Affiliation(s)
- Jacqueline M. Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, United States
| | - David G. Holm
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Corey D. Broeckling
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, United States
| | - Jessica E. Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, United States
| | - Adam L. Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Bactericidal and Cytotoxic Activities of Polyphenol Extracts from Solanum tuberosum spp. tuberosum and spp. andigena Cultivars on Escherichia coli and Human Neuroblastoma SH-SY5Y Cells In Vitro. J Nutr Metab 2018; 2018:8073679. [PMID: 29765781 PMCID: PMC5885406 DOI: 10.1155/2018/8073679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Potatoes (Solanum tuberosum L.) are a good source of dietary antioxidant polyphenols. This study investigated the potential antioxidant, bactericidal, and cytotoxic activities in vitro of the phenolic compounds present in tubers of one S. tuberosum spp. tuberosum (Summerside), and three S. tuberosum spp. andigena (landraces Moradita, Waicha, and Santa María) cultivars. Both the content of phenolic acids, chlorogenic acids (CGAs) being the most abundant, and the antioxidant activity were higher in extracts from skin than from flesh. Extracts from Moradita flesh and Summerside skin showed bactericidal activity against Escherichia coli ATCC 25922 but failed to inhibit pathogenic E. coli O157. Both extracts lack pigmentation but do contain 5-CGA, caffeic, and ferulic acids. Positive control with gentamicin and commercial 5-CGA resulted in a complete inhibition of bacterial growth. In addition, all potato extracts and commercial 5-CGA diminished dose-dependently human neuroblastoma SH-SY5Y cell viability. Skin extracts were more potent than flesh extracts. Among flesh extracts, Moradita was the most potent. Together, our results suggest that Moradita flesh could provide a desirable source of important health-promoting substances. Findings indicate that the biological activity of potato extracts is a combination of various bioactive compounds and contribute to the revalorization of potato as a functional food.
Collapse
|
40
|
Rytel E, Tajner-Czopek A, Kita A, Kucharska AZ, Sokół-Łętowska A, Hamouz K. Content of anthocyanins and glycoalkaloids in blue-fleshed potatoes and changes in the content of α-solanine and α-chaconine during manufacture of fried and dried products. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Elżbieta Rytel
- Department of Food Storage and Technology; Wrocław University of Environmental and Life Sciences; Chełmońskiego37/41 Str 51-630 Wrocław Poland
| | - Agnieszka Tajner-Czopek
- Department of Food Storage and Technology; Wrocław University of Environmental and Life Sciences; Chełmońskiego37/41 Str 51-630 Wrocław Poland
| | - Agnieszka Kita
- Department of Food Storage and Technology; Wrocław University of Environmental and Life Sciences; Chełmońskiego37/41 Str 51-630 Wrocław Poland
| | - Alicja Z. Kucharska
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology; Wrocław University of Environmental and Life Sciences; Chełmońskiego37/41 Str 51-630 Wrocław Poland
| | - Anna Sokół-Łętowska
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology; Wrocław University of Environmental and Life Sciences; Chełmońskiego37/41 Str 51-630 Wrocław Poland
| | - Karel Hamouz
- Department of Plant Production; Czech University of Life Sciences; Kamycka 129 16500 Praha 6 - Suchdol Czech Republic
| |
Collapse
|