1
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers-ZnS quantum dots based composite sensor for optical detection of chlorogenic acid. Anal Biochem 2025; 702:115846. [PMID: 40090607 DOI: 10.1016/j.ab.2025.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Chlorogenic acid (CGA), a key phenolic acid found in coffee, fruits, vegetables, and herbs, has significant pharmacological activities, necessitating its accurate detection in complex matrices. In this study, an organic acrylate molecularly imprinted polymers-chitosan modified zinc sulphide quantum dots/polydopamine (MIPs-CS:ZnS QDs/PDA) based composite sensor for the detection of CGA has been designed. In MIPs shell, CGA served as template and 4-vinylpyridine and methacrylic acid as functional monomers, azobisisobutyronitrile acting as the initiator and ethylene glycol dimethacrylate as the cross-linker. Chitosan was incorporated to enhance the stability of ZnS QDs, while polydopamine was introduced during polymerization to improve adhesion and the selectivity of MIPs for CGA. Under ideal conditions, the composite sensor had shown a linear range of 0.02-11 μg/mL with detection limit of 8.9 × 10-3 μg/mL. The composite sensor showed imprinting factor of 6.3, and response time of 12 min. The sensor demonstrated good selectivity towards CGA, in the presence of interfering agents. Composite sensor was successfully applied to detect CGA in plant extracts, coffee and fruit juices, with recovery ranges from 88.93 to 98.49 %. The MIPs-CS:ZnS QDs/PDA composite sensor offers a simple and robust approach for CGA detection in real samples without requiring pre-treatment.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib, 140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| |
Collapse
|
2
|
Ashique S, Kumar S, Sirohi E, Hussain A, Farid A, Faiyazuddin M, Mishra N, Garg A. A Comprehensive Update on Nanotechnology in Functional Food Developments: Recent Updates, Challenges, and Future Perspectives. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:241-256. [PMID: 37904558 DOI: 10.2174/1872210517666230825100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
The food business makes extensive use of lipophilic bioactive substances derived from plants, such as phytosterols, antimicrobials, antioxidants, ω3 fatty acids, tastes, and countless other constituennts. The preponderance of these bioactive substances, nevertheless, is just about unsolvable in hydric solution and unbalanced at a particular eco-friendly provocation, such as sunlight, temperature, and oxygen, in construction, transference, storage, and employment, for example, icy, chilling, desiccation, warm air dealing out, or machine-driven agitation. According to this standpoint, there are high-tech hitches that must be resolved to inform functionality for the social figure due to the lipophilic bioactive dearth of solubilization, bioavailability, and permanency. This leads to failure in commercialization and quality enhancement. Nanotechnology can generally be used to manufacture nano-kinds of stuff like nano-emulsion, nanoparticles, nanostructured materials, and nanocomposites. The creation of functional foods has attracted a huge interest as our consideration of their affiliation with nourishment and human health has grown. There are still a number of problems that need to be fixed, such as finding useful substances, figuring out ideal intake amounts, and fashioning apt food conveyance systems in addition to product compositions. In several of these areas, new methods and materials developed through nanotechnology have the potential to offer fresh explanations. The present article provides a thorough examination of nanotechnologies employed in the development of functional foods. It outlines the current patterns and forthcoming outlooks of sophisticated nanomaterials in the food industry, with particular emphasis on their applications in processing, packaging, safety, and preservation. The utilization of nanotechnologies in the food industry can improve the "bioavailability, taste, texture, and consistency of food products". This is accomplished by manipulating the particle size, potential cluster formation, and surface charge of food nanomaterials. Furthermore, this paper examines the utilization of nano-delivery systems for administering nutraceuticals, the cooperative effects of nanomaterials in safeguarding food, and the implementation of nano-sensors in intelligent food packaging to monitor the quality of stored food. Additionally, the customary techniques employed for evaluating the influence of nanomaterials on biological systems are also addressed. By examining patents, we aim to gain insights into the trends and innovations driving this field forward and assess its implications on the food industry and society.
Collapse
Affiliation(s)
- Sumel Ashique
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Shubneesh Kumar
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Ekta Sirohi
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, KPK, Pakistan
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
- Nano Drug Delivery®, Raleigh-Durham, NC 27705, USA
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Ashish Garg
- Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur, MP 482001, India
| |
Collapse
|
3
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers in the analysis of chlorogenic acid: A review. Anal Biochem 2024; 694:115616. [PMID: 38996900 DOI: 10.1016/j.ab.2024.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib-140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala-147002, Punjab, India.
| |
Collapse
|
4
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
5
|
Leng Q, Han S, Zhai M, Liu S, Song Y. A molecularly imprinted photopolymer based on mesh TpPa-2 embedded with perovskite CsPbBr 3 quantum dots for the sensitive solid fluorescence sensing of patulin in apple products. Food Chem 2023; 416:135855. [PMID: 36898336 DOI: 10.1016/j.foodchem.2023.135855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/17/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Here, a novel molecularly imprinted photopolymer was prepared using CsPbBr3 quantum dots as the fluorescence source, TpPa-2 as substrate for selective solid fluorescence detection of patulin (PAT). TpPa-2 can promote efficient recognition of PAT due to its unique structure and significantly improve the fluorescence stability and sensitivity. The test results showed that the photopolymer exhibited large adsorption capacity (131.75 mg/g), fast adsorption ability (12 mins), superior reusability and high selectivity. The sensor proposed had good linearity for PAT in the range of 0.2-20 ng/mL and was applied to the analysis of PAT in apple juice and apple jam with a limit of detection as low as 0.027 ng/mL. Therefore it maybe a promising method for solid fluorescence detection of trace PAT in food analysis.
Collapse
Affiliation(s)
- Qiuxue Leng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Minghui Zhai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shiwei Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yuzhuo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
6
|
Sodkrathok P, Karuwan C, Kamsong W, Tuantranont A, Amatatongchai M. Patulin-imprinted origami 3D-ePAD based on graphene screen-printed electrode modified with Mn-ZnS quantum dot coated with a molecularly imprinted polymer. Talanta 2023; 262:124695. [PMID: 37229813 DOI: 10.1016/j.talanta.2023.124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 μM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.
Collapse
Affiliation(s)
- Porntip Sodkrathok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Chanpen Karuwan
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wichayaporn Kamsong
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Adisorn Tuantranont
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
7
|
Xu J, Liu J, Li W, Wei Y, Sheng Q, Shang Y. A Dual-Signaling Electrochemical Aptasensor Based on an In-Plane Gold Nanoparticles-Black Phosphorus Heterostructure for the Sensitive Detection of Patulin. Foods 2023; 12:foods12040846. [PMID: 36832920 PMCID: PMC9957366 DOI: 10.3390/foods12040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Patulin (PAT), a type of mycotoxin existing in foodstuffs, is harmful to food safety and human health. Thus, it is necessary to develop sensitive, selective and reliable analytical methods for PAT detection. In this study, a sensitive aptasensor based on a dual-signaling strategy was fabricated, in which a methylene-blue-labeled aptamer and ferrocene monocarboxylic acid in the electrolyte acted as a dual signal, for monitoring PAT. To improve the sensitivity of the aptasensor, an in-plane gold nanoparticles-black phosphorus heterostructure (AuNPs-BPNS) was synthesized for signal amplification. Due to the combination of AuNPs-BPNS nanocomposites and the dual-signaling strategy, the proposed aptasensor has a good analytical performance for PAT detection with the broad linear range of 0.1 nM-100.0 μM and the low detection limit of 0.043 nM. Moreover, the aptasensor was successfully employed for real sample detection, such as apple, pear and tomato. It is expected that BPNS-based nanomaterials hold great promise for developing novel aptasensors and may provide a sensing platform for food safety monitoring.
Collapse
Affiliation(s)
- Jinqiong Xu
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Wuwu Li
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Yongsheng Wei
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
- Correspondence: (Q.S.); (Y.S.)
| | - Yonghui Shang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
- Correspondence: (Q.S.); (Y.S.)
| |
Collapse
|
8
|
Küçük N, Şahin S, Çağlayan MO. An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies. Crit Rev Anal Chem 2023; 54:2422-2434. [PMID: 36719654 DOI: 10.1080/10408347.2023.2172677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patulin is a low molecular weight mycotoxin and poses a global problem, especially threatening food safety. It is also resistant to processing temperatures and is commonly found in fruits and vegetables. Studies have shown that it has toxic effects on animals and humans and the severity of patulin toxicity depends on the amount ingested. Therefore, the consumption of contaminated products, especially in infants and children, is important. The maximum daily intake of PAT that can be tolerated is found to be 0.4 µg/kg body weight to prevent chronic effects and the maximum residue limits in food samples were given as 50 ng/g (∼320 nM). Conventional methods for the detection of PAT have many disadvantages such as the use of expensive equipment, the need for trained personnel, and complicated sample preparation steps. To this extent, various numbers of research have been conducted on selective and sensitive detection of patulin using biosensor platforms in various media. This review presents an overview of the current literature dealing with the studies to develop patulin-specific aptamer-based biosensors and adapts various immobilization methods to increase the sensor response using different nanomaterials. Furthermore, a comparison of biosensors with conventional methods is presented using analytical performance parameters and their practicality for the detection of patulin.
Collapse
Affiliation(s)
- Netice Küçük
- Department of Biotechnology, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
9
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
10
|
He YT, Liang L, Zhao ZQ, Hu LF, Fei WM, Chen BZ, Cui Y, Guo XD. Advances in porous microneedle systems for drug delivery and biomarker detection: A mini review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
12
|
Cioates Negut C, Stefan-van Staden RI, van Staden J(KF. Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food Products. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2083146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
13
|
ul Gani Mir T, Malik AQ, Singh J, Shukla S, Kumar D. An Overview of Molecularly Imprinted Polymers Embedded with Quantum Dots and Their Implementation as an Alternative Approach for Extraction and Detection of Crocin. ChemistrySelect 2022. [DOI: 10.1002/slct.202200829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tahir ul Gani Mir
- Department of Forensic Science School of Bioengineering & Biosciences Lovely Professional University Phagwara Punjab India- 144411
| | - Azad Qayoom Malik
- Department of Chemistry School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara Punjab India- 144411
| | - Jaskaran Singh
- Department of Forensic Science University Institute of Applied Health Sciences Chandigarh University Mohali Punjab India- 140413
| | - Saurabh Shukla
- Department of Forensic Science School of Bioengineering & Biosciences Lovely Professional University Phagwara Punjab India- 144411
| | - Deepak Kumar
- Department of Chemistry School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara Punjab India- 144411
| |
Collapse
|
14
|
Tang S, Wu X, Zhao P, Tang K, Chen Y, Fu J, Zhou S, Yang Z, Zhang Z. A near-infrared fluorescence capillary imprinted sensor for chiral recognition and sensitive detection of l-histidine. Anal Chim Acta 2022; 1206:339794. [DOI: 10.1016/j.aca.2022.339794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
|
15
|
Pang H, Li H, Zhang W, Mao J, Zhang L, Zhang Z, Zhang Q, Wang D, Jiang J, Li P. Fullerenol Quantum Dots-Based Highly Sensitive Fluorescence Aptasensor for Patulin in Apple Juice. Toxins (Basel) 2022; 14:272. [PMID: 35448881 PMCID: PMC9024875 DOI: 10.3390/toxins14040272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
A highly selective and sensitive aptasensor for detecting patulin (PAT) was constructed based on the fluorescence quenching of fullerenol quantum dots (FOQDs) towards carboxytetramethylrhodamine (TAMRA) through PET mechanism. The π-π stacking interaction between PAT aptamer and FOQDs closed the distance between TAMRA and FOQDs and the fluorescence of TAMRA was quenched with maximum quenching efficiency reaching 85%. There was no non-specific fluorescence quenching caused by FOQDs. In the presence of PAT, the PAT aptamer was inclined to bind with PAT and its conformation was changed. Resulting in the weak π-π stacking interaction between PAT aptamer and FOQDs. Therefore, the fluorescence of TAMRA recovered and was linearly correlated to the concentration of PAT in the range of 0.02-1 ng/mL with a detection limit of 0.01 ng/mL. This PAT aptasensor also performed well in apple juice with linear dynamic range from 0.05-1 ng/mL. The homogeneous fluorescence aptasensor shows broad application prospect in the detection of various food pollutants.
Collapse
Affiliation(s)
- Hua Pang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Du Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
16
|
Mukunzi D, Habimana JDD, Li Z, Zou X. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Crit Rev Food Sci Nutr 2022; 63:6034-6068. [PMID: 35048762 DOI: 10.1080/10408398.2022.2027338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
Collapse
Affiliation(s)
- Daniel Mukunzi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Wan T, Zhu L, Zhang Z, Wang H, Yang Y, Ye H, Wang H, Li L, Li J. Zr-based metal organic framework nanoparticles coated with a molecularly imprinted polymer for trace diazinon surface enhanced Raman scattering analysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new surface imprinted polymer of type MOFs-MIPs was synthesized with diazinon as template and Zr-based metal organic framework (UiO-67) as matrix for trace diazinon surface enhanced...
Collapse
|
18
|
Vieira A, Gramacho A, Rolo D, Vital N, Silva MJ, Louro H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:225-257. [DOI: 10.1007/978-3-030-88071-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.
Collapse
|
19
|
Marć M, Bystrzanowska M, Pokajewicz K, Tobiszewski M. Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples. MATERIALS 2021; 14:ma14227078. [PMID: 34832478 PMCID: PMC8624434 DOI: 10.3390/ma14227078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
In the case of quantitative and qualitative analysis of pesticides in environmental and food samples, it is required to perform a sample pre-treatment process. It allows to minimalize the impact of interferences on the final results, as well as increase the recovery rate. Nowadays, apart from routinely employed sample preparation techniques such as solid-phase extraction (SPE) or solid-phase microextraction (SPME), the application of molecularly imprinted polymers (MIPs) is gaining greater popularity. It is mainly related to their physicochemical properties, sorption capacity and selectivity, thermo-mechanical resistance, as well as a wide range of polymerization techniques allowing to obtain the desired type of sorption materials, adequate to a specific type of pesticide. This paper targets to summarize the most popular and innovative strategies since 2010, associated with the MIPs synthesis and analytical procedures for pesticides determination in environmental and food samples. Application of multi-criteria decision analysis (MCDA) allows for visualization of the most beneficial analytical procedures in case of changing the priority of each step of analysis (MIPs synthesis, sample preparation process—pesticides extraction, chromatographic analysis) bearing in mind metrological and environmental issues.
Collapse
Affiliation(s)
- Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology (GUT), 80-233 Gdansk, Poland;
- Correspondence:
| | - Marta Bystrzanowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology (GUT), 80-233 Gdansk, Poland;
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, Chemical Faculty, Opole University, 45-040 Opole, Poland;
| | - Marek Tobiszewski
- Department of Analytical Chemistry, Faculty of Chemistry and EcoTech Center, Gdansk University of Technology (GUT), 80-233 Gdansk, Poland;
| |
Collapse
|
20
|
Huang C, Wang H, Ma S, Bo C, Ou J, Gong B. Recent application of molecular imprinting technique in food safety. J Chromatogr A 2021; 1657:462579. [PMID: 34607292 DOI: 10.1016/j.chroma.2021.462579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Due to the extensive use of chemical substances such as pesticides, antibiotics and food additives, food safety issues have gradually attracted people's attention. The extensive use of these chemicals seriously damages human health. In order to detect trace chemical residues in food, researchers have to find several simple, economical and effective tools for qualitative and quantitative analysis. As a kind of material that specifically and selectively recognize template molecules from real samples, molecular imprinting technique (MIT) has widely applied in food samples analysis. This article mainly reviews the application of molecularly imprinted polymer (MIP) in the detection of chemical residues from food in the past five years. Some recent and novel methods for fabrication of MIP are reviewed. Their application of sample pretreatment, sensors, etc. in food analysis is reviewed. The application of molecular imprinting in chromatographic stationary phase is referred. Additionally, the challenges faced by MIP are discussed.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
21
|
Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA. Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 2021; 7:e08480. [PMID: 34901509 PMCID: PMC8640478 DOI: 10.1016/j.heliyon.2021.e08480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi have great prospects for synthesis, applications and developing new products in nanotechnology. In recent times, fungi use in nanotechnology is gaining more attention because of the ecological friendly state of their metabolite-mediated nanoparticles, their safety, amenability and applications in diverse fields. The diversity of the metabolites such as enzymes, polysaccharide, polypeptide, protein and other macro-molecules has made fungi a veritable tool for nanoparticles synthesis. Mechanism of fungal nano-biosynthesis from the molecular perspective has been extensively studied through various investigations on its green synthesized metal nanoparticles. Fungal nanobiotechnology has been applied in agricultural, medical and industrial sectors for goods and services improvement and delivery to mankind. Agriculturally, it has found applications in plant disease management and production of environmentally friendly, non-toxic insecticides, fungicides to enhance agricultural production in general. Medically, diagnosis and treatment of diseases, especially of microbial origin have been improved with fungal nanoparticles through more efficient drug delivery systems with great benefits to pharmaceutical industries. This review therefore explored fungal nanobiotechnology; mechanism of synthesis, characterization and potential applications in various fields of human endeavours for goods and services delivery.
Collapse
Affiliation(s)
- Elijah A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Micheal B. Alao
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Abel M. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Daniel A. Aina
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
22
|
A nanohybrid magnetic sensing probe for levofloxacin determination integrates porous graphene, selective polymer and graphene quantum dots. J Pharm Biomed Anal 2021; 205:114316. [PMID: 34411981 DOI: 10.1016/j.jpba.2021.114316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022]
Abstract
A nanohybrid magnetic fluorescent sensing probe was designed and fabricated for ultrasensitive and selective determination of levofloxacin. The probe integrated porous graphene (PGr), magnetite (Fe3O4) nanoparticles and graphene quantum dots (GQDs) into selective molecularly imprinted polymer (MIP). The developed probe was sensitive, selective, and its binding ability enriched levofloxacin in complex samples. The fabrication strategy was evaluated to achieve the best performance and the synthesized sensing probe was characterized. In the best condition, the fluorescence emission of the probe was quenched linearly from 0.10 to 25.0 μg L-1 of levofloxacin and the limit of detection was 0.03 μg L-1. The quenching of fluorescence was not affected by the analog compounds ciprofloxacin, lomefloxacin, marbofloxacin and sarafloxacin. The imprinting factor of the developed nanohybrid sensing probe was 4.26. The developed probe was utilized to detect levofloxacin in milk and recoveries between 91.8 % and 100.5 % were achieved with RSDs <6.5 %. Analysis with the optosensor provided the same results as HPLC analysis but the optosensor was more sensitive, less expensive, simpler and more rapid.
Collapse
|
23
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|
24
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Yang Q, Zhou X, Wang H, Huang F, Xu S. Influences of cetyl trimethyl ammonium bromide on structure, optical and electrical properties of ZnS nanoparticles prepared by hydrothermal method. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinghua Yang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou 310018 China
| | - Xiaoli Zhou
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou 310018 China
| | - Huanping Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou 310018 China
| | - FeiFei Huang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou 310018 China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou 310018 China
| |
Collapse
|
26
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Paimard G, Mohammadi R, Bahrami R, Khosravi‐Darani K, Sarlak Z, Rouhi M. Detoxification of patulin from juice simulator and apple juice via cross-linked Se-chitosan/L-cysteine nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Determination of patulin using dual-dummy templates imprinted electrochemical sensor with PtPd decorated N-doped porous carbon for amplification. Mikrochim Acta 2021; 188:148. [PMID: 33797604 DOI: 10.1007/s00604-021-04812-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023]
Abstract
A novel dual-dummy templates imprinted electrochemical sensor has been fabricated for the detection of patulin. Herein, 2-oxindole (2-oxin) and 6-hydroxynicotinic acid (6-HNA) as the dummy templates, 4-aminothiophenol as functional monomer, and ionic liquid (IL) as electropolymerization electrolyte are employed to prepare molecularly imprinted polymer (MIP) film. 2-Oxin and 6-HNA have multiple groups and the obtained MIP possesses different types of imprinted sites, thereby achieving a better recognition capacity than that of single-dummy imprinted film. ILs can regulate the density of molecularly imprinted film and facilitate effective molecular recognition. The composite of PtPd decorated N-doped porous carbon has good conductivity and large surface area, and can amplify the signal. With the aid of electrochemical probe [Fe(CN)6]3-/4- (0.16 V vs. SCE) patulin can be detected. Under the optimal conditions, this sensor shows a detection range from 0.01 to 10 μg L-1, with a detection limit of 7.5 × 10-3 μg L-1 (S/N = 3). Two spiked juice samples were analyzed by this method, and the recovery ranges from 94 to 99.8% with RSD values of 2.4-4.6% (n = 3), indicating that this method can be applied for the detection of patulin in real samples. A novel dual-dummy templates imprinted electrochemical sensor is firstly fabricated for the detection of patulin. This sensor exhibits high recognition capacity and sensitivity.
Collapse
|
29
|
Zhao H, Qiao X, Zhang X, Niu C, Yue T, Sheng Q. Simultaneous electrochemical aptasensing of patulin and ochratoxin A in apple juice based on gold nanoparticles decorated black phosphorus nanomaterial. Anal Bioanal Chem 2021; 413:3131-3140. [PMID: 33715040 DOI: 10.1007/s00216-021-03253-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
Simultaneous detection of patulin (PAT) and ochratoxin A (OTA) in food products is in great demand, which can prevent toxins from being exposed to human and animal bodies. However, simultaneous detection of multiple targets still faces a challenge. Herein, we developed a novel electrochemical aptasensor for the simultaneous detection of PAT and OTA in apple juice based on gold nanoparticles decorated black phosphorus (AuNPs-BP) nanomaterial. AuNPs-BP function?/work? as a sensing platform for loading much different electrochemical signal molecules functionalized aptamers. In this context, methylene blue functionalized PAT aptamers (Mb-PAT-aptamers) and ferrocene functionalized OTA aptamers (Fc-OTA-aptamers) have been introduced here to fabricate the aptasensor. Fc close to electrode surface showed a strong signal, whereas Mb was far away from electrode surface so exhibited a weak signal in the absence of OTA and PAT. Two kinds of electrochemical signal changes have been recorded dependent on target of OTA and PAT concentrations. So, simultaneous detection of OTA and PAT is achieved. Under the optimum conditions, using this developed biosensor, PAT and OTA can be quantified at a linearity range of 0.01 × 10-7 μg·mL-1 ~ 0.10 μg·mL-1. In addition, it also has good selectivity, stability and repeatability. For the practical application, it shows promising performance for the simultaneous detection of PAT and OTA in apple juice.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiujuan Qiao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xuelian Zhang
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
30
|
Díaz-Álvarez M, Martín-Esteban A. Molecularly Imprinted Polymer-Quantum Dot Materials in Optical Sensors: An Overview of Their Synthesis and Applications. BIOSENSORS 2021; 11:bios11030079. [PMID: 33805669 PMCID: PMC7999655 DOI: 10.3390/bios11030079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/03/2023]
Abstract
In the last decades analytical methods have focused on the determination of target analytes at very low concentration levels. This has been accomplished through the use of traditional analytical methods that usually require high reagent consumption, expensive equipment and long pretreatment steps. Thus, there is a demand for simple, rapid, highly selective and user-friendly detection procedures. Quantum dots (QDs) are semiconductor fluorescent nanomaterials with unique optoelectronic properties that have shown great potential for the development of fluorescence probes. Besides, the combination of QDs with molecularly imprinted polymer (MIPs), synthetic materials with selective recognition, have been proposed as useful materials in the development of optical sensors. The resulting MIP-QDs optical sensors integrate the advantages of both techniques: the high sensitivity of QDs-based fluorescence sensors and the high selectivity of MIPs. This review gives a brief overview of the strategies for the synthesis of MIPs-QDs based optical sensors, highlighting the modifications in the synthesis procedure that improve the sensor performance. Finally, a revision of recent applications in sensing and bioimaging is presented.
Collapse
|
31
|
Arreguin-Campos R, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B, Eersels K. Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety. BIOSENSORS 2021; 11:46. [PMID: 33670184 PMCID: PMC7916965 DOI: 10.3390/bios11020046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023]
Abstract
Foodborne illnesses represent high costs worldwide in terms of medical care and productivity. To ensure safety along the food chain, technologies that help to monitor and improve food preservation have emerged in a multidisciplinary context. These technologies focus on the detection and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides) safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and biological contaminants. While numerous reviews have focused on the use of these robust materials in extraction and separation applications, little bibliography summarizes the research that has been performed on their coupling to sensing platforms for food safety. The aim of this work is therefore to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting technology in the whole value chain ranging from IP preparation to integrated sensor systems for the specific recognition and quantification of chemical and microbiological contaminants in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616,6200 MD Maastricht, The Netherlands; (R.A.-C.); (K.L.J.-M.); (H.D.); (T.J.C.); (B.v.G.)
| |
Collapse
|
32
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
33
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
34
|
Yang Z, Wang J, Shah T, Liu P, Ahmad M, Zhang Q, Zhang B. Development of surface imprinted heterogeneous nitrogen-doped magnetic carbon nanotubes as promising materials for protein separation and purification. Talanta 2020; 224:121760. [PMID: 33379006 DOI: 10.1016/j.talanta.2020.121760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
To promote the development of molecular imprinting technique in the separation and analysis of protein, novel bovine serum albumin (BSA) surface imprinted nitrogen-doped magnetic carbon nanotubes (N-MCNTs@MIPs) are developed by this paper. The imprinted materials are prepared by depositing polydopamine (PDA) on the surface of nitrogen-doped magnetic carbon nanotubes (N-MCNTs). N-MCNTs prepared by high temperature pyrolysis and chemical vapor deposition exhibit high specific surface area, positive hydrophilicity, abundant nitrogen functional groups and excellent magnetic properties. These characteristics are conducive to the increase of effective binding sites, the smooth development of the protein imprinting process in the aqueous phase, the improvement of the binding capacity and the simplification of the separation process. The amount of BSA adsorbing on the N-MCNTs@MIPs can reach 150.86 mg/g within 90 min. The imprinting factor (IF) is 1.43. The results of competitive adsorption and separation of fetal bovine serum showed that N-MCNTs@MIPs can specifically recognize BSA. The excellent reusability and separation ability for real sample prove that N-MCNTs@MIPs have the potential to be applied to the separation and purification of proteins in complex biological samples.
Collapse
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Jiqi Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Tariq Shah
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China.
| | - Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Sunresins New Materials Co. Ltd., Xi'an, 710072, PR China.
| |
Collapse
|
35
|
Li M, Yu H, Cheng Y, Guo Y, Yao W, Xie Y. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110780. [PMID: 32470683 DOI: 10.1016/j.ecoenv.2020.110780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
A green synthesis method for nanoscale silver using β-cyclodextrin as both reducing agent and stabilizer was developed. β-cyclodextrin was used not only as a reducing agent but also a stabilizing agent for nano-silver, and is also an excellent detection substrate due to its special structure (inner hydrophobic and outer hydrophilic ring structure). Then, the green synthesized silver nanoparticles were used as Surface-enhanced Raman spectroscopy (SERS) enhanced substrates to detect polycyclic aromatic hydrocarbons, such as: anthracene, pyrene, chrysene and triphenylene. The SERS substrate can be used for both quantitative detection of the four polycyclic aromatic hydrocarbons and qualitative identification of mixtures of these hydrocarbons. This synthesis method is simple and convenient, having great potential in simultaneous and rapid detection of environmental organic pollutants.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
36
|
Ngolong Ngea GL, Yang Q, Castoria R, Zhang X, Routledge MN, Zhang H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr Rev Food Sci Food Saf 2020; 19:2447-2472. [PMID: 33336983 DOI: 10.1111/1541-4337.12599] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Facile approach to the synthesis of molecularly imprinted ratiometric fluorescence nanosensor for the visual detection of folic acid. Food Chem 2020; 319:126575. [DOI: 10.1016/j.foodchem.2020.126575] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023]
|
38
|
Patel J, Jain B, Singh AK, Susan MABH, Jean-Paul L. Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Qiu Y, Zhang Y, Wei J, Gu Y, Yue T, Yuan Y. Thiol-functionalized inactivated yeast embedded in agar aerogel for highly efficient adsorption of patulin in apple juice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121802. [PMID: 31822350 DOI: 10.1016/j.jhazmat.2019.121802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The issue of patulin (PAT) contamination in apple juice has attracted widespread concern. Recently, inactivated yeast based biosorbents have shown great advantages in the removal of toxic contaminants. However, the traditional yeast adsorbents have disadvantages of a limited adsorption capacity in juice and separation difficulty. In the present work, five chemical thiol-functionalization methods were used to increase the PAT adsorption efficiency of yeast cells in apple juice. Thereinto, glutaraldehyde cross-linking increased the thiol (-SH) content of yeast cells to 1.26 mmol g-1 and improved the PAT adsorption capacity of inactivated yeast in apple juice by 150 times. The covalent bonding of -SH and PAT played an important role in the improvement of adsorption capacity. The as-prepared thiol-modification yeast (Y-SH(Gl)) was then embedded in the agar aerogel to obtain Y-SH(Gl)@Agar free of separation. PAT adsorption of Y-SH(Gl)@Agar was consistent with the Freundlich model and the pseudo-second-order kinetic model. Moreover, Y-SH(Gl)@Agar was competent for PAT removal in apple juice and manifested negligible effects on juice quality. Cytotoxicity investigation indicated its good biocompatibility and ignorable food safety risk, thereby demonstrating that Y-SH(Gl)@Agar may be a promising adsorbent material for the control of PAT contaminant in juice.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yangeng Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China.
| |
Collapse
|
40
|
Fu H, Xu W, Wang H, Liao S, Chen G. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in juice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122101. [PMID: 32305710 DOI: 10.1016/j.jchromb.2020.122101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022]
Abstract
A highly efficient and selective method was successfully developed by using magnetic molecularly imprinted polymers (MMIPs) combined with high performance liquid chromatography (HPLC) to quickly determine patulin (PAT) in juice. MMIPs was prepared by surface imprinting method using Fe3O4 nanoparticles as supporter, 2-oxindole as virtual template, (3-Aminopropyl) triethoxysilane (APTES) as functional monomer and tetraethyl orthosilicate (TEOS) as crosslinking agent. The structure of the product was characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results showed that MMIP with a particle size of about 450 nm was successfully prepared, the imprinted molecular layer accounted for about 11.6% of the total mass, and the saturation magnetization was about 6.82 emu/g. The maximum adsorption capacities (Qmax) of kinetic and thermodynamic adsorption experiments were 1.97 mg/g and 4.241 mg/g, respectively. The adsorption process was highly selective and fitted well with the pseudo-second-order model. Langmuir model demonstrated that the binding sites were evenly distributed on the surface of the MMIPs. Scatchard analysis showed that MMIPs had two types of binding sites with Qmax of 4.53 mg/g and 5.73 mg/g, respectively. In the actual sample application, the limit of detection (LOD) and the limit of quantification (LOQ) were 3 μg/kg and 10 μg/kg. And the recovery rate of the sample was 86.44-95.50%. MMIPs possessed excellent applicability with stability of 1.11-3.16% and accuracy of 0.63-1.94%. These results indicated that MMIPs had good performance in separating PAT and was suitable for determining PAT in actual samples.
Collapse
Affiliation(s)
- Han Fu
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Wu Xu
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Haixiang Wang
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Shenghua Liao
- School of Science, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China
| | - Guitang Chen
- College of Engineering, China Pharmaceutical University, No. 24 Tongjia Alley, Nanjing, PR China.
| |
Collapse
|
41
|
Madurangika Jayasinghe GT, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Room temperature phosphorescent determination of aflatoxins in fish feed based on molecularly imprinted polymer - Mn-doped ZnS quantum dots. Anal Chim Acta 2020; 1103:183-191. [DOI: 10.1016/j.aca.2019.12.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
|
42
|
Das G, Patra JK, Paramithiotis S, Shin HS. The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4848. [PMID: 31810271 PMCID: PMC6926672 DOI: 10.3390/ijerph16234848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a connection among various branches of science with potential applications that extend over a variety of scientific disciplines, particularly in the food science and technology fields. For nanomaterial applications in food processing, such as antimicrobials on food contact surfaces along with the improvement of biosensors, electrospun nanofibers are the most intensively studied ones. As in the case of every developing skill, an assessment from a sustainability point of view is necessary to address the balance between its benefits to civilization and the unwanted effects on human health and the environment. The current review aimed to provide an update regarding the sustainability of current nanotechnology applications in food science technology, environment, and public health together with a risk assessment and toxicity evaluation.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| |
Collapse
|
43
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Yang Y, Lv S, Wang F, An Y, Fang N, Zhang W, Zhao W, Guo X, Ji S. Toxicity and serum metabolomics investigation of Mn-doped ZnS quantum dots in mice. Int J Nanomedicine 2019; 14:6297-6311. [PMID: 31496687 PMCID: PMC6689551 DOI: 10.2147/ijn.s212355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Mn-doped ZnS quantum dots (QDs) with special luminescent properties have been widely researched and applied in various fields. Thus, their release toxicity and security cannot be ignored. Methods In the present study, the toxicity and non-targeted metabolomics of Mn-doped ZnS QDs were investigated after single intravenous injection. Serum metabolites were evaluated based on gas chromatography–mass spectrometry together with multivariate statistical analyses [principal component analysis, partial least squares discriminant analysis, and orthogonal PLS-DA]. Results The modified metabolites (variable importance in the projection (VIP) >1 and p<0.05) revealed that Mn-doped ZnS QDs exposure disturbed glycolysis, tricarboxylic acid cycle, ketoplasia, glutaminolysis, and amino acid and lipid metabolism. The behavior, coefficients of organs, and histological changes were the same as in the control group, and the disturbance of hematology and serum biochemistry was not dose- or time-dependent. Conclusion Our study provides a general observation regarding the toxicity and potential metabolic responses of mice exposed to Mn-doped ZnS QDs.
Collapse
Affiliation(s)
- Yanjie Yang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuangyu Lv
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Fengling Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Yang An
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Na Fang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Weijuan Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Wei Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiangqian Guo
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China.,Henan Provincial Engineering Centre of Tumor Molecular Diagnosis and Therapy & Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan University , Kaifeng 475004, People's Republic of China
| |
Collapse
|
45
|
Sobiech M, Bujak P, Luliński P, Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. NANOSCALE 2019; 11:12030-12074. [PMID: 31204762 DOI: 10.1039/c9nr02585e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Bujak
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Pron
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
46
|
Ahmadi A, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Emrani AS, Abnous K, Taghdisi SM. A rapid and simple ratiometric fluorescent sensor for patulin detection based on a stabilized DNA duplex probe containing less amount of aptamer-involved base pairs. Talanta 2019; 204:641-646. [PMID: 31357347 DOI: 10.1016/j.talanta.2019.06.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/29/2022]
Abstract
In this study, a sensor is described for determination of patulin by using ratiometric fluorescence measurement and strand displacement strategy. In the presence of patulin, the ratiometric fluorescence response decreases, owing to disassembly of DNA duplex structure and target-mediated release of TAMRA-labeled complementary DNA sequence2 (cDNA2). While, in the absence of target, the fluorescence resonance energy transfer (FRET) phenomenon happens between FAM and TAMRA under excitation at 490 nm, resulting in the enhancement of ratiometric signal. The use of ratiometric fluorescence signal with different signal indicators avoids the problem of environmental interference and improves the sensitivity of the aptasensor. Also, the DNA duplex structure contains minimum aptamer-involved base pair sequence, resulting in further improvement of the aptasensor sensitivity. This sensing platform provided a wide linear range from 15 ng/L to 35 μg/L and a detection limit of 6 ng/L for patulin. The aptasensor was used to determine patulin in spiked apple juice samples and showed satisfactory results.
Collapse
Affiliation(s)
- Ali Ahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Ahmad Sarreshtehdar Emrani
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Wu L, Yan H, Li G, Xu X, Zhu L, Chen X, Wang J. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01498-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Xu J, Qiao X, Wang Y, Sheng Q, Yue T, Zheng J, Zhou M. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Mikrochim Acta 2019; 186:238. [PMID: 30868260 DOI: 10.1007/s00604-019-3339-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 12/20/2022]
Abstract
An aptamer based impedimetric assay for the mycotoxin patulin (PAT) is described. A glassy carbon electrode (GCE) was modified with black phosphorus nanosheets (BP NSs) and modified with PAT aptamer by electrostatic attraction. Detection is based on the variations of electron transfer resistance at the modified electrode surface. This assay can detect PAT over a linear range that extends from 1.0 nM to 1.0 μM with a 0.3 nM detection limit. To improve the performance of the sensor, the BP NS-GCE was further modified with gold nanoparticles and then with thiolated PAT aptamer. This modified electrode, operated at an applied potential of 0.18 V (vs. Ag/AgCl), has a wider linear range (0.1 nM to 10.0 μM) and a lower detection limits (0.03 nM). Both assays were successfully applied to the analysis of (spiked) genuine food samples. Graphical abstract Black phosphorus nanosheets (BP NSs) were used to fabricate an aptamer based assay for patulin. To further improve the performance of the electrode, gold nanoparticles (AuNP) were placed on the surface of black phosphorus nanosheets (AuNP-BP NSs) by electrostatic attraction for patulin aptasensing.
Collapse
Affiliation(s)
- Jinqiong Xu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiujuan Qiao
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuan Wang
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qinglin Sheng
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, Shaanxi, China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Jianbin Zheng
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin Province, 130024, People's Republic of China
| |
Collapse
|
49
|
Joye IJ, Corradini MG, Duizer LM, Bohrer BM, LaPointe G, Farber JM, Spagnuolo PA, Rogers MA. A comprehensive perspective of food nanomaterials. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:1-45. [PMID: 31151722 DOI: 10.1016/bs.afnr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanotechnology is a rapidly developing toolbox that provides solutions to numerous challenges in the food industry and meet public demands for healthier and safer food products. The diversity of nanostructures and their vast, tunable functionality drives their inclusion in food products and packaging materials to improve their nutritional quality through bioactive fortification and probiotics encapsulation, enhance their safety due to their antimicrobial and sensing capabilities and confer novel sensorial properties. In this food nanotechnology state-of-the-art communication, matrix materials with particular focus on food-grade components, existing and novel production techniques, and current and potential applications in the fields of food quality, safety and preservation, nutrient bioaccessibility and digestibility will be detailed. Additionally, a thorough analysis of potential strategies to assess the safety of these novel nanostructures is presented.
Collapse
Affiliation(s)
- I J Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M G Corradini
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - L M Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - B M Bohrer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - G LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - J M Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - P A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
50
|
He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. J Food Drug Anal 2019; 27:1-21. [PMID: 30648562 PMCID: PMC9298627 DOI: 10.1016/j.jfda.2018.12.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
The rapid development of nanotechnology has been facilitating the transformations of traditional food and agriculture sectors, particularly the invention of smart and active packaging, nanosensors, nanopesticides and nanofertilizers. Numerous novel nanomaterials have been developed for improving food quality and safety, crop growth, and monitoring environmental conditions. In this review the most recent trends in nanotechnology are discussed and the most challenging tasks and promising opportunities in the food and agriculture sectors from selected recent studies are addressed. The toxicological fundamentals and risk assessment of nanomaterials in these new food and agriculture products are also discussed. We highlighted the potential application of bio-synthesized and bio-inspired nanomaterial for sustainable development. However, fundamental questions with regard to high performance, low toxic nanomaterials need to be addressed to fuel active development and application of nanotechnology. Regulation and legislation are also paramount to regulating the manufacturing, processing, application, as well as disposal of nanomaterials. Efforts are still needed to strengthen public awareness and acceptance of the novel nano-enabled food and agriculture products. We conclude that nanotechnology offers a plethora of opportunities, by providing a novel and sustainable alternative in the food and agriculture sectors.
Collapse
Affiliation(s)
- Xiaojia He
- The University of Georgia, Athens, GA, 30602,
USA
| | - Hua Deng
- Morgan State University, Baltimore, MD, 21251,
USA
| | - Huey-min Hwang
- Jackson State University, Jackson, MS, 39217,
USA
- Dalian Marinetime University, Dalian, Liaoning,
China
| |
Collapse
|