1
|
Meng W, Hu M, Gao Y, Zhang P, Wang J, Yuan Z, Li S, Wang F. Transformation effects of Bacillus subtilis BSNK-5 on okara: Insights into its component transformation, structural characteristics, and functional properties. Food Chem 2025; 476:143433. [PMID: 39977985 DOI: 10.1016/j.foodchem.2025.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The high-value utilization of okara is vital for promoting sustainable practices in the soybean industry and addressing global food security challenges. This study investigated the effects of Bacillus subtilis BSNK-5 fermentation on okara's nutritional, structural, and functional properties. BSNK-5 fermentation effectively degraded insoluble dietary fiber, protein, and fat into soluble fiber, peptides, amino acids, and fatty acids, while reducing trypsin inhibitors and antigenic proteins. It also increased phenolic compounds, promoted the conversion of glycosides to aglycones, and enhanced digestibility and nutritional quality. After fermentation with BSNK-5, the surface wrinkles of the okara were reduced, and the particles became smaller. Additionally, BSNK-5 fermentation improved water-holding, oil-holding, swelling capacities, antioxidant activity, cholesterol binding, glucose absorption, and antihypertensive properties. These results highlight the potential of BSNK-5 fermentation to enhance okara's nutritional and functional value, providing valuable raw materials for the food industry.
Collapse
Affiliation(s)
- Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zifan Yuan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Gao X, Yi X, Pei Z, Xia G, Zhao Z, Shen X. Modification of coconut insoluble dietary fiber by enzymatic extraction and high-pressure homogenization: physicochemical property changes and inhibitory effects on pancreatic lipase activity. Int J Biol Macromol 2025; 310:143280. [PMID: 40250691 DOI: 10.1016/j.ijbiomac.2025.143280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
In this study, coconut insoluble dietary fiber (CIDF) was modified by high-pressure homogenization (HPH), and the physicochemical properties and pancreatic lipase (PL) inhibitory activity were investigated. HPH diminished the particle size of CIDF (859.90 nm to 232.80 nm) and increased the total surface area and gap ratio. HPH enhanced the water and oil holding capacities of CIDF from 6.01 to 10.33 g/g and from 6.52 to 9.87 g/g, respectively. CIDF markedly inhibited PL activity by up to 72.51 % (p < 0.05), with the inhibition rate of PL was significantly higher in HPH-modified CIDF than in unmodified CIDF. The exposure of CIDF's hydroxyl groups due to the HPH treatment directly affected the degree of binding of CIDF to PL. CIDF reduces PL activity through hydrogen bonding and hydrophobic interactions with its aromatic amino acid residues.
Collapse
Affiliation(s)
- Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zifang Zhao
- Hainan Huayan collagen Technology Co., Haikou 571000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Hainan 570228, China; School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China.
| |
Collapse
|
3
|
Sereti F, Alexandri M, Papapostolou H, Kachrimanidou V, Papadaki A, Kopsahelis N. Green extraction of carotenoids and oil produced by Rhodosporidium paludigenum using supercritical CO 2 extraction: Evaluation of cell disruption methods and extraction kinetics. Food Chem 2025; 483:144261. [PMID: 40233516 DOI: 10.1016/j.foodchem.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
The constantly expanding functional food market has steered scientific research towards alternative sources of bioactive compounds. Red yeasts are valuable producers of active ingredients such as carotenoids and microbial oil. Efficient and sustainable recovery methods are required when food applications are targeted. In this study, intracellular carotenoids and oil synthesized by Rhodosporidium paludigenum in batch bioreactor cultures were recovered using supercritical CO2 (SFE-CO2) as a green alternative to conventional organic solvents. Yeast biomass was subjected to six different cell disruption methods prior to SFE-CO2. Homogenization emerged as the optimal pre-treatment method, resulting in an 80 % yield of total carotenoids and an 83 % yield of microbial oil. The use of ethanol as co-solvent was imperative for the efficient recovery of both products. β-Carotene was the main carotenoid, while the obtained microbial oil was rich in oleic acid. These results pave the way for integrating these functional compounds into innovative food products.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece.
| |
Collapse
|
4
|
Zhao Z, Yang R, Chen D, Wan J, Huang W, Prakash S. Preparation of composite film based on corn starch and soybean fiber composites blended in 1-ethyl-3-methylimidazolium chloride. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2960-2967. [PMID: 39655530 DOI: 10.1002/jsfa.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 11/23/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND To overcome the deficiency of pure starch in film-forming performance, ionic liquids (ILs) have been introduced when preparing a homogeneous blend of starch and fiber. It is essential to select the appropriate ratio of starch to fiber and evaluate the film-forming property of the resulted composites. In the present study, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) was used to prepare composites of soybean fiber (SF) and corn starch (CS) at various ratios. The gelatinization properties, water holding capacity, expansibility and film-forming properties of CS-SF composites were measured. RESULTS The results showed that the composites had good water holding capacity and expansibility. They easily dissolved in water to form a low-viscosity solution, which contributed to improve their film-forming performance. Furthermore, the addition of SF improved the mechanical and barrier properties of the film, and composites with higher SF content exhibited excellent film pliability that remained flexibility even after 30 days of storage. CONCLUSION The findings demonstrate that the ratio of corn starch to soybean fiber will affect the film-forming properties of the composites formed in [EMIM]Cl. The CS-SF composite film with a CS to SF ratio of 1:1 exhibited the best overall performance. The performance improvement of these CS-SF composite films may be attributed to the molecular entanglement or intermolecular interaction between starch and fiber. These findings provide valuable information for the development of degradable starch-fiber composite films. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rui Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Dan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jie Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
| | - Wenwen Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Ma X, Cheng X, Du Y, Tang P, Chen L, Chen W, Zheng Z. Pectins Rich in RG-I Extracted from Watermelon Peel: Physicochemical, Structural, Emulsifying, and Antioxidant Properties. Foods 2024; 13:2338. [PMID: 39123530 PMCID: PMC11311835 DOI: 10.3390/foods13152338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
RG-I pectin has excellent health benefits, but its raw materials are relatively scarce, and its complex structure often breaks down its side-chain structure during the extraction process. In this study, the physicochemical and antioxidant properties of a branched-chain-rich pectin gained from watermelon peel were demonstrated, and the structure-function relationships of RG-I-enriched pectin and emulsification properties were investigated. Fourier transform infrared spectroscopy, high-performance anion exchange chromatography, high-performance gel permeation chromatography, nuclear magnetic resonance spectroscopy, and methylation analyses reveal it as acetylated, low-methoxylated pectin, rich in RG-I side chains (MW: 1991 kDa, RG-I = 66.17%, methylation degree: 41.45%, (Ara + Gal)/Rha: 20.59%). RPWP outperforms commercial citrus pectin in emulsification and stability, significantly preventing lipid oxidation in emulsions. It also exhibits free radical scavenging abilities, contributing to its effectiveness in preventing lipid oxidation. Emulsions made with RPWP show higher viscosity and form a weak gel network (G' > G″), enhancing stability by preventing phase separation. These findings position watermelon peel as a good source of RG-I pectin and deepen our understanding of RPWP behavior in emulsion systems, which may be useful in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Xiaojun Ma
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| | - Xinxin Cheng
- College of Agronomy, Shandong Agricultural University, Taian 271018, China;
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| | - Peiyao Tang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| | - Liangxiao Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| | - Wei Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.M.); (Y.D.); (P.T.); (L.C.); (Z.Z.)
| |
Collapse
|
6
|
Fan R, Wang L, Cao H, Du R, Yang S, Yan Y, Zheng B. Characterization of the Structure and Physicochemical Properties of Soluble Dietary Fiber from Peanut Shells Prepared by Pulsed Electric Fields with Three-Phase Partitioning. Molecules 2024; 29:1603. [PMID: 38611882 PMCID: PMC11013324 DOI: 10.3390/molecules29071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China;
| | - Lei Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Huihui Cao
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Ruihuan Du
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Shuo Yang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Yanhua Yan
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Baiqin Zheng
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| |
Collapse
|
7
|
Zhu R, Tan S, Wang Y, Zhang L, Huang L. Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods 2023; 12:3695. [PMID: 37835348 PMCID: PMC10572562 DOI: 10.3390/foods12193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the effects of three oil production methods on the physicochemical properties of dietary fiber from rice bran flour, and the hypolipidemic effects of the dietary fibers were investigated in vitro and in vivo. The particle size results showed that the organic-solvent-impregnated rice bran meal dietary fiber (N-RBDF) had the smallest average particle size and the aqueous enzymatic rice bran meal dietary fiber (E-RBDF) had the narrowest particle size distribution. Scanning electron microscopy (SEM) results demonstrated that all three kinds of rice bran meal dietary fibers (RBDFs) were irregularly flaky. Fourier transform infrared spectroscopy (FT-IR) results revealed that the three RBDFs had similar reactive groups, and X-ray diffraction (XRD) results indicated that all three RBDFs were cellulose type I crystals. The results of thermogravimetric analysis showed that the lignin content of N-RBDF was significantly lower than that of the other two. Among the three kinds of RBDFs, E-RBDF had higher water retention capacity, swelling capacity, oil holding capacity, and adsorption capacity for cholesterol and sodium bile salts. The results of experimental studies in hyperlipidemic rats showed that all three kinds of RBDFs significantly reduced triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and elevated high-density lipoprotein cholesterol (HDL-C) in the serum of hyperlipidemic rats; they also significantly lowered malondialdehyde (MDA) and elevated total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in the livers of rats. In addition, all three kinds of RBDFs decreased aminotransferase (ALT) and aminotransferase (AST) activity in serum and also improved liver steatosis and reduced atherosclerosis index (AI) in rats with hyperlipidemia. Our study provides a reference for the development and utilization of rice bran meal and the application of rice bran meal dietary fiber in food processing.
Collapse
Affiliation(s)
- Renwei Zhu
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Sha Tan
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
8
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
9
|
Pirozzi A, Olivieri F, Castaldo R, Gentile G, Donsì F. Cellulose Isolation from Tomato Pomace: Part II-Integrating High-Pressure Homogenization in a Cascade Hydrolysis Process for the Recovery of Nanostructured Cellulose and Bioactive Molecules. Foods 2023; 12:3221. [PMID: 37685154 PMCID: PMC10487015 DOI: 10.3390/foods12173221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) direct HPH treatment of the raw material, (ii) HPH treatment following acid hydrolysis, and (iii) HPH treatment following alkaline hydrolysis. The results demonstrate that these isolation routes enable the production of cellulose with tailored morphological properties from TP with higher yields (up to +21% when HPH was applied before hydrolysis and approximately +6% when applied after acid or after alkaline hydrolysis). Additionally, the side streams generated by this cascade process show a four-fold increase in phenolic compounds when HPH is integrated after acid hydrolysis compared to untreated sample, and they also contain nanoparticles composed of hemicellulose and lignin, as shown by FT-IR and SEM. Notably, the further application of HPH treatment enables the production of nanostructured cellulose from cellulose pulp derived from TP, offering tunable properties. This approach presents a sustainable pathway for the extraction of cellulose and nanocellulose, as well as the valorization of value-added compounds found in residual biomass in the form of side streams.
Collapse
Affiliation(s)
- Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Federico Olivieri
- Institute for Polymers Composites and Biomaterials, National research Council of Italy, IPCB CNR, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (F.O.); (R.C.); (G.G.)
| | - Rachele Castaldo
- Institute for Polymers Composites and Biomaterials, National research Council of Italy, IPCB CNR, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (F.O.); (R.C.); (G.G.)
| | - Gennaro Gentile
- Institute for Polymers Composites and Biomaterials, National research Council of Italy, IPCB CNR, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (F.O.); (R.C.); (G.G.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| |
Collapse
|
10
|
Feng J, Fu S, Luan J. Selection of Mechanical Fragmentation Methods Based on Enzyme-Free Preparation of Decellularized Adipose-Derived Matrix. Bioengineering (Basel) 2023; 10:758. [PMID: 37508785 PMCID: PMC10376183 DOI: 10.3390/bioengineering10070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The decellularized adipose-derived matrix (DAM) has emerged as a promising biomaterial for inducing adipose tissue regeneration. Various methods have been employed to produce DAM, among which the enzyme-free method is a relatively recent preparation technique. The mechanical fragmentation step plays a crucial role in determining the efficacy of the enzyme-free preparation. METHODS The adipose tissue underwent fragmentation through the application of ultrasonication, homogenization, and freeze ball milling. This study compared the central temperature of the mixture immediately following crushing, the quantity of oil obtained after centrifugation, and the thickness of the middle layer. Fluorescence staining was utilized to compare the residual cell activity of the broken fat in the middle layer, while electron microscopy was employed to assess the integrity and properties of the adipocytes among the three methods. The primary products obtained through the three methods were subsequently subjected to processing using the enzyme-free method DAM. The assessment of degreasing and denucleation of DAM was conducted through HE staining, oil red staining, and determination of DNA residues. Subsequently, the ultrasonication-DAM (U-DAM) and homogenation-DAM (H-DAM) were implanted bilaterally on the back of immunocompromised mice, and a comparative analysis of their adipogenic and angiogenic effects in vivo was performed. RESULTS Oil discharge following ultrasonication and homogenization was significantly higher compared to that observed after freeze ball milling (p < 0.001), despite the latter exhibiting the lowest center temperature (p < 0.001). The middle layer was found to be thinnest after ultrasonication (p < 0.001), and most of the remaining cells were observed to be dead following fragmentation. Except for DAM obtained through freeze ball milling, DAM obtained through ultrasonication and homogenization could be completely denucleated and degreased. In the in vivo experiment, the first adipocytes were observed in U-DAM as early as 1 week after implantation, but not in H-DAM. After 8 weeks, a significant number of adipocytes were regenerated in both groups, but the U-DAM group demonstrated a more efficient adipose regeneration than in H-DAM (p = 0.0057). CONCLUSIONS Ultrasonication and homogenization are effective mechanical fragmentation methods for breaking down adipocytes at the initial stage, enabling the production of DAM through an enzyme-free method that facilitates successful regeneration of adipose tissues in vivo. Furthermore, the enzyme-free method, which is based on the ultrasonication pre-fragmentation approach, exhibits superior performance in terms of denucleation, degreasing, and the removal of non-adipocyte matrix components, thereby resulting in the highest in vivo adipogenic induction efficiency.
Collapse
Affiliation(s)
- Jiayi Feng
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
11
|
Huang Q, Hong T, Zheng M, Yang Y, Zhu Y, Jiang Z, Ni H, Li Q. High-pressure homogenization treatment of red seaweed Bangia fusco-purpurea affects the physicochemical, functional properties and enhances in vitro anti-glycation activity of its dietary fibers. INNOV FOOD SCI EMERG 2023; 86:103369. [DOI: 10.1016/j.ifset.2023.103369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
13
|
Renoldi N, Melchior S, Calligaris S, Peressini D. Application of high-pressure homogenization to steer the technological functionalities of chia fibre-protein concentrate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Wang L, Fan R, Yan Y, Yang S, Wang X, Zheng B. Characterization of the structural, physicochemical, and functional properties of soluble dietary fibers obtained from the peanut shell using different extraction methods. Front Nutr 2023; 9:1103673. [PMID: 36817066 PMCID: PMC9929463 DOI: 10.3389/fnut.2022.1103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To propose a possible solution for a peanut by-product, peanut shell (PS), this study evaluated the effects of different methods, including enzymatic extraction (E-SDF), microwave extraction (M-SDF), and pulsed electric field extraction (PEF-SDF), on the characterization of soluble dietary fibers (SDFs) from PS. Methods We determined the physicochemical properties, including water- and oil-holding capacities (WHC and OHC), emulsifying properties, rheological properties, functional properties, including pancreatic lipase activity inhibition (PRAI), glucose and cholesterol adsorption capacities (GAC and CAC), and the structural properties of SDFs. Results The results showed that PEF-SDF possessed the highest WHC, OHC, and emulsifying properties. M-SDF and PEF-SDF appeared to have more complex and porous structures, and they showed small molecular weights. Notably, PEF-SDF showed the strongest capacities in CAC, GAC, and PRAI. Conclusions The results indicate that PEF-SDF is a potential SDF preparation method for a promising dietary fiber (DF) source, PS.
Collapse
Affiliation(s)
- Lei Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yanhua Yan
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Shuo Yang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Xuesong Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Baiqin Zheng
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China,*Correspondence: Baiqin Zheng ✉
| |
Collapse
|
15
|
Shin JS, Kim BH, Kim HS, Baik MY. Optimization of pea protein and citrus fiber contents for plant based stirred soymilk yogurt using response surface methodology. Food Sci Biotechnol 2022; 31:1691-1701. [PMID: 36313001 PMCID: PMC9596660 DOI: 10.1007/s10068-022-01180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022] Open
Abstract
This study investigated the optimization of pea protein (PP) and citrus fiber (CF) contents with the goal of producing a clean-label plant-based stirred soymilk yogurt that is free of additives. If CF is absent, a greater PP concentration tends to produce soymilk yogurt with improved physical properties (viscosity, flowability and water holding capacity). A CF concentration of 0.1% helped to improve the physical properties necessary in the production of stirred yogurt; however, an increase in CF concentration to 0.2% or higher would instead cause the physical properties to become unfavorable. The lactic acid bacteria (LAB) count was unaffected by CF content and increased proportionally with PP content. Response surface methodology was employed to investigate how the physical properties were affected by the mixing ratio, and an optimization technique was used to obtain the optimal yogurt mixing ratio. According to the optimization process, the optimal contents of 4% PP and 0.1% CF was obtained with a desirability of 87.1%. This result could provide the basic and fundamental information for developing clean-label plant-based stirred soymilk yogurt as a reference in the future.
Collapse
Affiliation(s)
- Jae-Sung Shin
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Seoul, Republic of Korea
- Corporate Technology Office, Pulmuone Corp., Cheongju, 28220 Republic of Korea
| | - Beom-Hee Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Seok Kim
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon, Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Huang ZG, Wang XY, Zhang JY, Liu Y, Zhou T, Chi SY, Bi CH. High-pressure homogenization modified chickpea protein: Rheological properties, thermal properties and microstructure. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cui Y, Liu J, Han S, Li P, Luo D, Guo J. Physical Stability of Chestnut Lily Beverages (CLB): Effects of Shear Homogenization on Beverage Rheological Behavior, Particle Size, and Sensory Properties. Foods 2022. [PMCID: PMC9601390 DOI: 10.3390/foods11203188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing parameters have a crucial influence on the stability and sensory quality of beverages. The focus of this study is to observe the rheological behavior, particle size distribution, stability, color change, and sensory evaluation of chestnut lily beverages (CLB) at different rotational speeds (0~20,000 rpm) using a high-shear homogeneous disperser. The CLB system exhibited non-Newtonian shear-thinning behavior. As the homogenization speed increased (0~12,000 rpm), the viscosity increased (0.002~0.059 Pa.s). However, when the rotational speed shear continued to increase (12,000~20,000 rpm), the viscosity decreased slightly (0.035~0.027 Pa.s). Under all homogeneous conditions, the turbidity and precipitation fractions were the lowest when the rotational speed was 12,000 rpm: the sedimentation index was lowest at this point (2.87%), and the relative turbidity value of CLB was largest at this point (80.29%). The average beverage particle diameter and ascorbic acid content showed a downward trend at the homogenization speed from 0 to 20,000 rpm, whereas the total soluble solids (TSS) content followed the opposite trend. The results show that these physical properties can be correlated with different rotational speeds of homogenization. This study explained the effect of homogenization speed on CLB properties, which needs to be considered in beverage processing, where high-speed shear homogenization can serve as a promising technique.
Collapse
Affiliation(s)
- Yao Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianxue Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
- Correspondence:
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| |
Collapse
|
18
|
Relationships between Size Distribution, Morphological Characteristics, and Viscosity of Cellulose Nanofibril Dispersions. Polymers (Basel) 2022; 14:polym14183843. [PMID: 36145983 PMCID: PMC9506213 DOI: 10.3390/polym14183843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Rheological parameters of cellulose nanofibril dispersions (CNF) are relevant and commonly used as quality control for producing of this type of material. These parameters are affected by morphological features and size distribution of the nanofibrils. Understanding the effect of size distribution is essential for analyzing the rheological properties, viscosity control, performance of CNFs, and potential dispersion applications. This study aims at comprehending how the morphological characteristics of the CNFs and their size distribution affect the rheological behavior of dispersions. The CNF dispersions were fractionated by size, obtaining six fractions of each, which were analyzed for their morphology and rheology (viscosity, intrinsic viscosity). In the dilute region, the viscosity and intrinsic viscosity behavior of CNF dispersions are linear concerning the size distribution present in the dispersion. In the semi-dilute region, the size of the fibrils and the fiber aggregates have a relevant effect on the viscosity behavior of CNF dispersions, which are satisfactorily related (R2 = 0.997) using the rule of logarithmic additivity of the dispersion viscosities of size fractions.
Collapse
|
19
|
Xu F, Zhang S, Zhou T, Waterhouse GI, Du Y, Sun-Waterhouse D, Wu P. Green approaches for dietary fibre-rich polysaccharide production from the cooking liquid of Adzuki beans: Enzymatic extraction combined with ultrasonic or high-pressure homogenisation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Fan R, Wang L, Fan J, Sun W, Dong H. The Pulsed Electric Field Assisted-Extraction Enhanced the Yield and the Physicochemical Properties of Soluble Dietary Fiber From Orange Peel. Front Nutr 2022; 9:925642. [PMID: 35938122 PMCID: PMC9355398 DOI: 10.3389/fnut.2022.925642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The study aimed to investigate the effects of pulsed electric field (PEF)-assisted extraction on the yield, physicochemical properties, and structure of soluble dietary fiber (SDF) from orange peel. The results showed that the optinal parameters of PEF assisted extraction SDF was temperature of 45oC with the electric field intensity of 6.0 kV/cm, pulses number of 30, and time of 20min and SDF treated with PEF showed the higher water solubility, water-holding and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, foam stability and higher binding capacity for Pb2+, As3+, Cu2+, and higher which resulted from the higher viscosity due to PEF treatment. Compared with the untreated orange peel, the SDF obtained with PEF exhibited stronger antioxidant activities, which was due to its smaller molecular weight (189 vs. 512 kDa). In addition, scanning electron micrograph images demonstrated that the surface of PEF-SDF was rough and collapsed. Overall, it was suggested that PEF treatment could improve the physicochemical properties of SDF from the orange peel and would be the potential extraction technology with high efficiency.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Lei Wang
- Key Laboratory of Agricultural Product Quality Evaluation and Nutrition Health, Ministry of Agriculture and Rural Affairs, Tangshan, China
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China
| | - Jingfang Fan
- Hebei Plant Protection and Quarantine General Station, Shijiazhuang, China
| | - Wanqiu Sun
- Beijing Institute of Nutritional Resources Co., Ltd., Beijing, China
| | - Hui Dong
- Shijiazhuang Institute of Pomology, Heibei Academy of Agriculture and Forestry Science, National Pear Improvement Centre, Shijiazhuang, China
- *Correspondence: Hui Dong ;
| |
Collapse
|
21
|
Márquez K, Márquez N, Ávila F, Cruz N, Burgos-Edwards A, Pardo X, Carrasco B. Oleuropein-Enriched Extract From Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities. Front Nutr 2022; 9:895070. [PMID: 35832049 PMCID: PMC9273007 DOI: 10.3389/fnut.2022.895070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Olive oil consumption has increased in the last two decades and consequently, its wastes have increased, which generates a tremendous environmental impact. Among the by-products are the olive mill leaves, which are easier and inexpensive to treat than other olive by-products. However, little research has been done on their chemical composition and potential bioactivity. Hence, in this study, olive mill leaves were used to obtain Oleuropein-Enriched Extracts (OLEU-EE) using Conventional Extraction, Ultrasound-Assisted Extraction, and Homogenization-Assisted Extraction. These three techniques were evaluated using a Factorial Design to determine the parameters to obtain an OLEU-EE with high contents of Total Phenolic Compounds (TPC), Antioxidant Activity (AA), and Oleuropein concentration (OLEU). From the results, the Homogenizer-Assisted Extraction (HAE) technique was selected at 18,000 rpm, solid:liquid ratio 1:10, and 30 s of homogenization with 70% ethanol, due to its high TPC (5,196 mg GA/100 g), AA (57,867 μmol of TE/100 g), and OLEU (4,345 mg of OLEU/100 g). In addition, the antiglycating effect of OLEU-EE on the levels of (1) fluorescent Advanced Glycation End Products (AGEs) were IC50 of 0.1899 and 0.1697 mg/mL for 1λEXC 325/λEM 440 and 2λEXC 389/λEM 443, respectively; (2) protein oxidative damage markers such as dityrosine (DiTyr), N-formylkynurenine (N-formyl Kyn), and kynurenine (Kyn) were IC50 of 0.1852, 0.2044, and 0.1720 mg/mL, respectively. In conclusion, OLEU-EE from olive mill leaves has different capacities to inhibit AGEs evidenced by the IC50 of fluorescent AGEs and protein oxidation products, together with the scavenging free radical evidenced by the concentration of Trolox Equivalent. Therefore, OLEU-EE could be potential functional ingredients that prevent oxidative damage caused by free radicals and AGEs accumulation.
Collapse
Affiliation(s)
- Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
- *Correspondence: Katherine Márquez ; orcid.org/0000-0001-6298-2597
| | - Nicole Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Alberto Burgos-Edwards
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Ximena Pardo
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| |
Collapse
|
22
|
Modification of Artichoke Dietary Fiber by Superfine Grinding and High-Pressure Homogenization and Its Protection against Cadmium Poisoning in Rats. Foods 2022; 11:foods11121716. [PMID: 35741914 PMCID: PMC9222235 DOI: 10.3390/foods11121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
This study was carried out to investigate the effects of superfine grinding (SP) and high-pressure homogenization (HPH) on the structural and physicochemical properties of artichoke dietary fiber (ADF), as well as the protective effects against cadmium poisoning in rats. The structural characteristics and physicochemical properties of ADF, HPH-ADF (ADF treated by HPH) and CM-ADF (ADF treated by SP and HPH) were determined, and cadmium chloride (CdCl2) was induced by exposing rats for 7 weeks. The amounts of creatinine and urea; the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum; the quantity of red blood cells, hemoglobin, white blood cells and neutrophil proportion in blood samples; and the activity of glutathione peroxidase (GSH-Px) in liver tissue were analyzed. Hematoxylin-eosin (HE) staining was performed to analyze the tissue structure and pathology of the liver and testis. The results showed that ADF subjected to HPH and SP-HPH exhibited increased content of soluble dietary fiber (SDF) (p < 0.05). HPH and SP-HPH treatments increased oil-holding capacity (OHC), total negative charge (TNC) and heavy metal adsorption capacity (p < 0.05). The CdCl2 intervention led to a significant increase in AST, ALT, creatinine, urea, neutrophil proportion and white blood cell count, as well as a significant decrease in GSH-Px activity, red blood cell count and hemoglobin (HGB) (p < 0.05). In rats fed with ADF, HPH-ADF and CM-ADF significantly reduced creatinine, urea amounts, ALT, AST activity in serum, leukocyte count and the neutrophil ratio in blood and increased GSH-Px activity in the liver, in addition to increasing the erythrocyte count and hemoglobin count in blood (p < 0.05). H&E staining results showed that steatosis in the liver was significantly reduced, whereas testicular tissue edema was improved. These results indicate that ADF exhibited positive activity against cadmium poisoning in rats and that CM-ADF had a better protective effect than ADF and HPH-ADF. ADF has specific potential to be used in health foods or therapeutic drugs, providing a reference for the development and utilization of artichoke waste.
Collapse
|
23
|
Liu Y, Zhang D, Li X, Xiao J, Guo L. Enhancement of ultrasound-assisted extraction of sulforaphane from broccoli seeds via the application of microwave pretreatment. ULTRASONICS SONOCHEMISTRY 2022; 87:106061. [PMID: 35716467 PMCID: PMC9213254 DOI: 10.1016/j.ultsonch.2022.106061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, microwave pretreatment and grinding treatment were used to enhance sulforaphane formation, then ultrasonic-assisted extraction (UAE) was applied to extract sulforaphane using simultaneous hydrolysis and extraction method. The effects of various parameters, which were ultrasonic time,ultrasonic power, solid-water ratio and solid-ethyl acetate ratio on the extraction rate of sulforaphane were investigated. The results showed that microwave pretreatment enhanced sulforaphane formation. Excessive size reduction did not increase or even reduced extraction rate of sulforaphane. Simultaneous hydrolysis and extraction significantly increased extraction rate of sulforaphane compared to hydrolysis followed by extraction. UAE accelerated mass transfer and the solubilization of the targeted compounds due to the acoustic cavitation effect, thus enhanced enzymatic hydrolysis of glucoraphanin and the extraction rate of sulforaphane. The extraction rate of sulforaphane using UAE with simultaneous hydrolysis and extraction was 4.07-fold of the conventional extraction method. UAE was an effective method to extract sulforaphane from broccoli seeds since it led to higher yield of sulforaphane in a much shorter extraction time.
Collapse
Affiliation(s)
- Yanbing Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Di Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China.
| |
Collapse
|
24
|
Jiang Z, Mu S, Ma C, Liu Y, Ma Y, Zhang M, Li H, Liu X, Hou J, Tian B. Consequences of ball milling combined with high-pressure homogenization on structure, physicochemical and rheological properties of citrus fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Garg J, Pathania K, Sah SP, Pawar SV. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
In recent years, the field of nanotechnology and nanomedicine has transformed the pharmaceutical industry with the development of novel drug delivery systems that overcome the shortcomings of traditional drug delivery systems. Nanostructured lipid carriers (NLCs), also known as the second-generation lipid nanocarriers, are one such efficient and targeted drug delivery system that has gained immense attention all across due to their myriad advantages and applications. Scientific advancements have revolutionized our health system, but still, brain diseases like brain tumour have remained formidable owing to poor prognosis and the challenging drug delivery to the brain tissue. In this review, we highlighted the application and potential of NLCs in brain-specific delivery of chemotherapeutic agents.
Main body
NLCs are lipid-based formulations with a solid matrix at room temperature and offer advantages like enhanced stability, low toxicity, increased shelf life, improved drug loading capacity, and biocompatibility over other conventional lipid-based nanocarriers such as nanoemulsions and solid lipid nanoparticles. This review meticulously articulates the structure, classification, components, and various methods of preparation exemplified with various research studies along with their advantages and disadvantages. The concept of drug loading and release has been discussed followed by a brief about stability and strategies to improve stability of NLCs. The review also summarizes various in vitro and in vivo research studies on NLCs encapsulated with cytotoxic drugs and their potential application in brain-specific drug delivery.
Conclusion
NLCs are employed as an important carrier for the delivery of food, cosmetics, and medicines and recently have been used in brain targeting, cancer, and gene therapy. However, in this review, the applications and importance of NLCs in targeting brain tumour have been discussed in detail stating examples of various research studies conducted in recent years. In addition, to shed light on the promising role of NLCs, the current clinical status of NLCs has also been summarized.
Graphical Abstract
Collapse
|
26
|
Physicochemical stability of pineapple suspensions: the integrated effects of enzymatic processes and homogenization by shear. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1610-1618. [PMID: 35250084 PMCID: PMC8882522 DOI: 10.1007/s13197-021-05172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
The pineapple (Ananas comosus) is an important tropical fruit in the world market. Its pulp has significant nutritional value while the peel and the core, in spite of being high in dietary fibre and nutrients, are generally considered to be agro-industrial waste. The aim of this research was to evaluate the effect that the integrated enzymatic and shear homogenization processes have on the physicochemical stability of pineapple base suspensions (pulp, core, and peel extract). Initially, an enzymatic hydrolysis process was evaluated with a completely randomized factorial design. Independent variables: incubation time (tinc) (1-4 h) and [enzyme] (0-200 ppm). Dependent variables: viscosity (μ) and particle sizes (D[3;2] and D[4;3]). The results showed a reduction of (μ) (70.7%), D[3;2] (54.2%), and D[4;3] (61.8%) for the optimized treatment (tinc = 3.2 h and [enzyme] = 200 ppm) compared to the control (t = 0, without enzyme). The effect of the integrated enzymatic treatment with a serial homogenization process was subsequently evaluated. Independent variables: high-speed homogenization time (t1) (15-20 min), recirculation time in high pressure homogenizer (t2) (3-7 min), and arabic gum (AG) (0.6-1.0%). Dependent variables: total suspension solids (TSS), zeta potential (ζ), μ, spectral stability index (R), D[3;2], and D[4;3]. The application of the integrated processes of enzymatic treatment and serial homogenization was more effective to be able to obtain a stable pineapple-based suspension. The experimental optimization of multiple responses defined t1 = 16.4 min, t2 = 7 min, AG = 0.98%, and TSs = 15.7 ± 0.5%, ζ = - 23.1 ± 0.4 mV, µ = 221 ± 11 cP, D[3;2] = 56.8 ± 2 µm and D[4;3] = 120.6 ± 4 µm and R = 0.58 ± 0.02 were obtained.
Collapse
|
27
|
Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr Rev Food Sci Food Saf 2022; 21:2149-2199. [DOI: 10.1111/1541-4337.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/04/2021] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Goly Fayaz
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Yasamin Soleimanian
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Mmadi Mhamadi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Sylvie L. Turgeon
- Institute of Nutrition and Functional Foods Laval University Québec Canada
- Food Science Department Laval University Québec Canada
| | - Seddik Khalloufi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| |
Collapse
|
28
|
Li J, Yang Z, Zhang Y, Gao B, Niu Y, Lucy Yu L. The structural and functional characteristics of soluble dietary fibers modified from tomato pomace with increased content of lycopene. Food Chem 2022; 382:132333. [PMID: 35149462 DOI: 10.1016/j.foodchem.2022.132333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
Abstract
The tomato pomace, a by-product of tomato processing, was rich in nutrients such as lycopene (Lyc), vitamins, phenols and soluble dietary fibers (SDF). Homogenization combined with enzymatic hydrolysis (HE) was firstly applied to obtain HE-pomace. The yield of Lyc was raised by 57.2% after HE treatment by the optimal condition. The extraction rate of HE-SDF was increased by 73.4%. In order to clarify the relationship between the SDF and the release of Lyc, SDFs were characterized by structural analysis and morphological determination. The results suggested that HE-SDF possessed smaller molecular weight and loose microstructure with shorter chains. It implied that the degradation of dietary fiber led to the release of Lyc molecules. Besides, HE-SDF exhibited stronger capacity of water-holding, glucose adsorption and bile acid binding. In conclusion, HE treatment possessed the potential to be applied as an excellent modification method, which improved the nutritional and economic value of tomato pomace.
Collapse
Affiliation(s)
- Jiaoyong Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyuan Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufan Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
29
|
Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods 2022; 11:foods11030266. [PMID: 35159418 PMCID: PMC8833915 DOI: 10.3390/foods11030266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
This work proposes a biorefinery approach for the utilization of agri-food residues, such as tomato pomace (TP), through combining chemical hydrolysis with high-pressure homogenization (HPH), aiming to achieve the isolation of cellulose with tailored morphological properties from underused lignocellulose feedstocks, along with the valorization of the value-added compounds contained in the biomass. Cellulose was isolated from TP using sequential chemical hydrolysis in combination with mechanical pretreatment through HPH. The chemical and structural features of cellulose isolated from TP pretreated by HPH were compared with cellulose isolated from untreated TP through light scattering for particle size distribution, optical and scanning electron microscopy, and Fourier-transform infrared spectroscopy (FT-IR) analysis. HPH pretreatment (80 MPa, 10 passes) not only promoted a slight increase in the yield of cellulose extraction (+9%) but contributed to directly obtaining defibrillated cellulose particles, characterized by smaller irregular domains containing elongated needle-like fibers. Moreover, the selected mild chemical process produced side streams rich in bioactive molecules, evaluated in terms of total phenols and reducing activity. The liquors recovered from acid hydrolysis of TP exhibited a higher biological activity than those obtained through a conventional extraction (80% v/v acetone, 25 °C, 24 h at 180 rpm).
Collapse
|
30
|
Zhu L, Yu B, Chen H, Yu J, Yan H, Luo Y, He J, Huang Z, Zheng P, Mao X, Luo J, Chen D. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem 2022; 366:130618. [PMID: 34330028 DOI: 10.1016/j.foodchem.2021.130618] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/28/2023]
Abstract
The objective of this study was to compare the effects of the micronization (MT), steam explosion (SE), and gamma irradiation (GI) treatment on the chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. GI (1200 kGy) treatment exerted the optimum effects on improving soluble dietary fiber content, in vitro gross energy digestibility (IVGED), and reducing sugar yield (RS) in the three modification methods, increased by 342.88%, 55.24%, and 117.02%, respectively. Compared with GI treatment, MT-GI combined treatment could further enhance the degradation effect of irradiation and improve the physicochemical properties (p<0.05) in soybean fibers. From the results of correlation analysis, RS was a significant positive correlation (p<0.05) with IVGED, and RS = -112.24 + 4.90 × IVGED (r2 = 0.82, p<0.01). In summary, MT-GI combined treatment could be considered the ideal modification method to improve the quality of soybean fiber.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
31
|
Non-enzymatically hydrolyzed guar gum and orange peel fibre together stabilize the low-fat, set-type yogurt: A techno-functional study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
He Y, Wang B, Wen L, Wang F, Yu H, Chen D, Su X, Zhang C. Effects of dietary fiber on human health. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
ERASO-GRISALES S, CORTES-RODRÍGUEZ M, CASTAÑO-PELÁEZ HI, HURTADO-BENAVIDES A. Enzymatic hydrolysis of a colloidal system based on cape gooseberry. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Liu Y, Yi S, Ye T, Leng Y, Alomgir Hossen M, Sameen DE, Dai J, Li S, Qin W. Effects of ultrasonic treatment and homogenization on physicochemical properties of okara dietary fibers for 3D printing cookies. ULTRASONICS SONOCHEMISTRY 2021; 77:105693. [PMID: 34343823 PMCID: PMC8348173 DOI: 10.1016/j.ultsonch.2021.105693] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This paper presents a means to modify the attributes of okara fiber using ultrasonic and high-speed shearing treatment. The results of scanning electron microscopy and differential scanning calorimetry reveal that the modified okara fiber demonstrates small particle size and high thermal stability. When the 500 W-15,000 rpm combination is used for okara-fiber treatment, the latter exhibits excellent swelling (SC) as well as water- and oil-holding capacities. When 6% of modified okara fiber is added to the dough, the resulting cookies demonstrate the best printing performance. Subsequently, the printing parameters can be optimized to obtain the best filling rate of 30%. The corresponding nozzle diameter and printing speed equal 0.8 mm and 50 mm/s, respectively. Finally, the 3D-printed cookies containing okara fiber are compared against those commonly available in the market via sensory evaluation. As observed, the 3D-printed cookies were more acceptable to people. Therefore, the addition of the okara dietary fiber to the cookie dough not only improves the okara utilization rate but also increases the dietary-fiber content in the cookie, thereby alleviating the occurrence of obesity in modern society.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shengkui Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Tingting Ye
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Ying Leng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
35
|
Kaur GJ, Orsat V, Singh A. An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables. Crit Rev Food Sci Nutr 2021; 63:2004-2017. [PMID: 34459296 DOI: 10.1080/10408398.2021.1969890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fruits and vegetables (F&V) are the second highest recommended foods, rich in antioxidants, vitamins and minerals, vital for building immunity against chronic diseases. F&V processing involves particle size reduction, for which different types of homogenizers, categorized as mechanical homogenizers, pressure homogenizers and ultrasonic homogenizers are used. The review discusses different types of homogenizers, their working mechanism, and application in F&V processing. Among mechanical homogenizers, knife mills are used for primary size reduction, ball mills for the micronization of dried F&V and rotor-stator homogenizers for emulsification. Use of the ultrasonic homogenizer is limited to extraction of bioactive compounds or as a pre-treatment for dehydration of F&V. High-pressure homogenizers are most widely used and reported due to the synergistic effect of homogenization and temperature increase, resulting in longer shelf-life and better physicochemical properties of the product. Additionally, the review also explains the effect of homogenization on the physicochemical, sensory and nutraceutical properties of the product.
Collapse
Affiliation(s)
- Gagan Jyot Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Valerie Orsat
- Department of Bioresource Engineering, McGill University, Montreal, QC, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
De la Peña-Armada R, Villanueva-Suárez MJ, Molina-García AD, Rupérez P, Mateos-Aparicio I. Novel rich-in-soluble dietary fiber apple ingredient obtained from the synergistic effect of high hydrostatic pressure aided by Celluclast®. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Lin Y, An F, He H, Geng F, Song H, Huang Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Effect of homogenization associated with alkaline treatment on the structural, physicochemical, and emulsifying properties of insoluble soybean fiber (ISF). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by high-intensity ultrasound treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Impact of high-pressure homogenization on the microstructure and rheological properties of citrus fiber. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.
Collapse
|
41
|
Fan X, Chang H, Lin Y, Zhao X, Zhang A, Li S, Feng Z, Chen X. Effects of ultrasound-assisted enzyme hydrolysis on the microstructure and physicochemical properties of okara fibers. ULTRASONICS SONOCHEMISTRY 2020; 69:105247. [PMID: 32634727 DOI: 10.1016/j.ultsonch.2020.105247] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 05/17/2023]
Abstract
This work focuses on the effects of different ultrasound power densities on the microstructural changes and physicochemical properties of okara fibers, which are composed of carbohydrate-based polymers. Okara suspensions were treated with ultrasound at different power densities (0, 1, 2, 3, 4, and 5 W/mL) for 30 min, after which the ultrasound-treated okara were hydrolyzed by trypsin to obtain okara fibers. The ultrasound treatment of the okara fibers induced structural disorganization and changes, evidenced mainly in their morphological characteristics and their relative crystallinity degrees. Increasing the ultrasound power broke the okara fibers into flaky and stacked structures. When the ultrasound power density reached 4 W/mL, the parenchyma became compact and the hourglass structure fractured. The mean particle size of the okara fiber was reduced from 82.24 µm to 53.96 µm, and the homogeneity was enhanced significantly. The relative crystallinity of the okara fibers was reduced from 55.14% to 36.47%. The okara fiber surface charge decreased when the ultrasound power was increased. However, after ultrasound treatment at 4 W/mL (800 W), the okara fiber suspension exhibited the highest viscosity value and a higher swelling capacity, water-holding capacity, and oil-holding capacity. Therefore, the results indicated that the selection of processing conditions for okara fibers is critical and that okara fiber modification using a high ultrasound treatment might improve their use in potential applications.
Collapse
Affiliation(s)
- Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Haode Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Yanan Lin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Xingming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Shuang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China.
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China.
| |
Collapse
|
42
|
Huang X, Yang Y, Liu Q, He WQ. Effect of high pressure homogenization on sugar beet pulp: Physicochemical, thermal and structural properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Yang K, Yang Z, Wu W, Gao H, Zhou C, Sun P, Wu C, Xia Q, Chen J. Physicochemical properties improvement and structural changes of bamboo shoots ( Phyllostachys praecox f . Prevernalis) dietary fiber modified by subcritical water and high pressure homogenization: a comparative study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3659-3666. [PMID: 32904000 PMCID: PMC7447742 DOI: 10.1007/s13197-020-04398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
In presented study, the effects of subcritical water (SW) and high pressure homogenization (HPH) treatments on the physicochemical and structural characteristics of dietary fibers (DFs) from bamboo shoots (Phyllostachys praecox f. Prevernalis) were investigated. The soluble dietary fiber (SDF) content was dramatically increased in SW and HPH treated DFs. Compared with HPH, SW modification enhanced higher physicochemical properties including water holding capacity (WHC), oil holding capacity (OHC) and swelling capacity (SC) of DFs. The abilities of DFs to absorb cholesterol and nitrite ions were both greatly increased after treatments. The results of Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) showed that the structure of DFs were changed by SW and HPH. In conclusion, SW treatment showed better effects on improvement of physicochemical properties of bamboo shoot DFs than that of HPH, and the modified DFs could be a potential new functional foods or food additives.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150 USA
| | - Zhenhuan Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Cheng Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150 USA
| | - Qile Xia
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Jianbing Chen
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| |
Collapse
|
44
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
45
|
Salehi F. Physico-chemical and rheological properties of fruit and vegetable juices as affected by high pressure homogenization: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1781167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Gao W, Chen F, Wang X, Meng Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr Rev Food Sci Food Saf 2020; 19:2222-2255. [DOI: 10.1111/1541-4337.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wenjie Gao
- School of Ecological Technology and EngineeringShanghai Institute of Technology Shanghai China
| | - Feng Chen
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
| | - Xi Wang
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
- Nutra Manufacturing Greenville South Carolina
| | - Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
47
|
Lan Q, Lin Z, Dong H, Wu D, Lin D, Qin W, Liu J, Yang W, Zhang Q. Influence of okara with varying particle sizes on the gelling, rheological, and microstructural properties of glucono-δ-lactone-induced tofu. Journal of Food Science and Technology 2020; 58:520-531. [PMID: 33568845 DOI: 10.1007/s13197-020-04563-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Influence of lyophilized okara with varying particle sizes (250-380, 150-180, 120-150, and < 75 μm) on the quality of glucono-δ-lactone-induced tofu was investigated. Adding okara significantly (p < 0.05) improved the yield, water-holding capacity, cooking loss, and nutritional value of the conventional tofu. The gel strength and sensory score of the okara-added tofu (OAT) increased with the decreasing of the particle size of okara, and these quality attributes of the OAT were better than those of the conventional tofu, except for the OAT with 250-380 μm okara. The microstructural profile of the OAT with reduced okara particle size was similar to that of the conventional tofu. Theoretically, the addition of okara mainly impacted the interactions among denatured proteins via disulfide bonding and hydrophobic interactions and the sizes of insoluble solid and oil droplet in soymilk, thereby affecting the formation of the gel network and finally the edible quality of tofu. In conclusion, the addition of okara with appropriate particle sizes can remarkably improve the processing quality and nutritional value of tofu, which is beneficial to the reasonable exploration of okara for the producers of soybean products.
Collapse
Affiliation(s)
- Qiuyu Lan
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China
| | - Zhaohui Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 Sichuan China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 Sichuan China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014 China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
48
|
Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Wu H, Xiao D, Lu J, Jiao C, Li S, Lei Y, Liu D, Wang J, Zhang Z, Liu Y, Shen G, Li S. Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Gabiatti C, Neves IC, Lim LT, Bohrer BM, Rodrigues RC, Prentice C. Characterization of dietary fiber from residual cellulose sausage casings using a combination of enzymatic treatment and high-speed homogenization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|