1
|
Blasi F, Pellegrino RM, Alabed HB, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Detailed analysis of polar lipids and comparison with bovine milk. Food Res Int 2025; 200:115493. [PMID: 39779134 DOI: 10.1016/j.foodres.2024.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
In this work, the lipidomic analysis on polar components of almond, coconut, and soy beverages was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A comparison with bovine milk was also performed. A total of 30 subclasses of polar lipids, belonging mainly to glycerophospholipids and sphingolipids, and a total of 572 molecular species were identified. Coconut showed various kinds of sphingolipids, belonging to hexosylceramides and sulfatides. Soy is particularly rich in molecular species of phospholipids. Fatty acids with chain length from 16 to 18 were the most common in almond. Numerous species of sphingomyelins were found in bovine milk, differently from plant-based beverages. Furthermore, a principal component analysis based on the polar lipid data was applied to discriminate samples, with 21 molecular species identified as biomarkers. This research opens interesting perspectives on vegetable beverages as bovine milk alternatives, especially in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
2
|
Kuckova S, Kaderabkova L. Determination of nut varieties and their detection in festive cookies by MALDI-TOF mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9925. [PMID: 39400391 DOI: 10.1002/rcm.9925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
RATIONALE Nuts contain a large amount of essential fatty acids, amino acids, and whole range of minerals and vitamins valuable for human health, yet certain risks are associated with their consumption, of which allergic reaction is the most important. Considering the growing number of people suffering from allergies caused by allergens of protein origin, the aim of this work is to find out whether nuts can be distinguished from each other on the basis of contained proteins. METHODS A total of eleven raw and subsequently heat-treated nuts (almonds, Brazil nuts, cashews, coconuts, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios, and walnuts) were analyzed using MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry with the subsequent finding of characteristic m/z values for each analyzed nut. No previous method for protein extraction was used. RESULTS The characteristic values were used to verify the composition of seven types of festive cookies - six commercial products and one "unknown" cookie, where it was not known in advance, which nut it was made from. CONCLUSIONS The procedure, together with the found characteristic m/z values, could serve to rapidly identify the plant origin of nut products.
Collapse
Affiliation(s)
- Stepanka Kuckova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- Department of Chemistry and Chemistry Education, Charles University, Prague, Czech Republic
| | - Lucie Kaderabkova
- Department of Chemistry and Chemistry Education, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Ruiz W, Fontagné-Dicharry S, Verdier S, Dayton DC, Guillemant J, Moulian R, Giusti P, Barrère-Mangote C, Bouyssiere B. Quantifying Phospholipids in Organic Samples Using a Hydrophilic Interaction Liquid Chromatography-Inductively Coupled Plasma High-Resolution Mass Spectrometry (HILIC-ICP-HRMS) Method. Anal Chem 2024. [PMID: 39264017 DOI: 10.1021/acs.analchem.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel method using hydrophilic interaction liquid chromatography (HILIC) coupled with inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) was introduced for the quantification of phospholipids in oil samples. The method employed a bridged ethyl hybrid (BEH) stationary phase HILIC column with a tetrahydrofuran (THF)/water mobile phase, enhancing the solubility and detection of phospholipids. During the study, a gradient/matrix effect on ICP-HRMS sensitivity was observed and successfully compensated for experimentally, ensuring reliable quantification results. This approach has proven effective for a wide range of different oil samples including vegetable oils, animal fats, and phospholipid supplements. Notably, this method allowed the direct quantification of phospholipids in oil samples, bypassing the need for prior sample preparation methods, such as solid phase extraction (SPE), thereby streamlining the analytical process. The precision, accuracy, and reduced need for extensive sample preparation offered by this method mark a significant advancement in lipids analysis. Its robustness and broad applicability have substantial implications for industries such as food and renewable energy production, where both efficient and accurate lipid identification and quantification are crucial.
Collapse
Affiliation(s)
- Wladimir Ruiz
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | | | - Sylvain Verdier
- Haldor Topsoe A/S, Haldor Topsøes allé 1, 2800 Kgs. Lyngby, Denmark
| | - David C Dayton
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Julie Guillemant
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
- TotalEnergies OneTech Belgium, Zone Industrielle C, B-7187 Feluy, Belgium
| | - Rémi Moulian
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Pierre Giusti
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Caroline Barrère-Mangote
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| |
Collapse
|
4
|
Dai K, Agarwal N, Rodriguez-Palacios A, Basson AR. Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds. Nutrients 2024; 16:2643. [PMID: 39203780 PMCID: PMC11357266 DOI: 10.3390/nu16162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Walnuts (Juglans regia L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients.
Collapse
Affiliation(s)
- Kexin Dai
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Neel Agarwal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
| | - Alexander Rodriguez-Palacios
- Germfree Mouse Models Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106-4909, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Abigail Raffner Basson
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| |
Collapse
|
5
|
Zhou L, Zhang W, Li Q, Cui M, Shen D, Shu J, Mo R, Liu Y. Evaluation of Lipid Quality in Fruit: Utilizing Lipidomic Approaches for Assessing the Impact of Biotic Stress on Pecans ( Carya illinoinensis). Foods 2024; 13:974. [PMID: 38611280 PMCID: PMC11011906 DOI: 10.3390/foods13070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
There is a scarcity of data on how the lipid composition of oily seeds changes in response to biotic stress. Yellow peach moth (Conogethes punctiferalis) has caused massive economic losses on the pecan (Carya illinoinensis) industry. Lipidomics is used in this study to determine the lipid composition of pecan and how it changes in response to insect attack. Pecan had 167 lipids, including 34 glycerolipids (GL), 62 glycerophospholipids (GP), 17 fatty acyls (FA), 41 sphingolipids (SP), and 13 saccharolipids (SL). The effects of biotic stress on lipids, particularly GL and GP, were significant. Biotic stress significantly reduced the lipid content of chains longer than 48. Forty-four significantly different lipids were discovered as potential biomarkers for distinguishing non-infected pecans from infested pecans. In addition, we used bioinformatics to identify the five most important metabolic pathways in order to investigate the processes underlying the changes. Our discoveries may offer valuable insights for enhancing pecan production in the future and contribute novel perspectives towards enhancing the nutritional value of pecans.
Collapse
Affiliation(s)
- Lingyuan Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Wei Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Runhong Mo
- Quality Testing Center for Non-Wood Forest Products of National Forestry and Grassland Administration, Chinese Academy of Forestry, Fuyang 311400, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| |
Collapse
|
6
|
Ma Y, Yao J, Zhou L, Zhao M, Wang W, Liu J, Marchioni E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem 2024; 430:136964. [PMID: 37531917 DOI: 10.1016/j.foodchem.2023.136964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Sea buckthorn is an important ecological and economic plant which has multiple bioactivities. The fruits and seeds of sea buckthorn are rich in oil. However, there are few studies on the differences of lipid profiles of sea buckthorn varieties. Herein, the lipidomic fingerprints of sea buckthorn was established. First, a mixture solvent of methanol and chloroform (2:1, v/v) was selected to extract the lipid of the flesh and seed of sea buckthorn. Then, global lipidomic analysis of different varieties of sea buckthorn was conducted. A total of 16 lipid classes and 112 lipid molecular species were determined. Several molecular species, such as PE (phosphatidylethanolamine) 18:1/18:3, PE18:0/18:1, PE18:0/18:2, etc. were selected as the potential biomarkers to classify the samples. Our study provides a scientific basis for quality control of sea buckthorn and promotes the development of sea buckthorn oil.
Collapse
Affiliation(s)
- Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
7
|
Lopez C, Rabesona H, Novales B, Weber M, Anton M. Walnut (Juglans regia L.) kernel oil bodies recovered by aqueous extraction for utilization as ingredient in food emulsions: Exploration of their microstructure, composition and the effects of homogenization, pH, and salt ions on their physical stability. Food Res Int 2023; 173:113197. [PMID: 37803532 DOI: 10.1016/j.foodres.2023.113197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
Natural oil-in-water emulsions containing plant oil bodies (OBs), also called oleosomes, rich in health-promoting omega-3 polyunsaturated fatty acids (ω3 PUFA) are of increasing interest for food applications. In this study, we focused on walnut kernel OBs (WK-OBs) and explored their microstructure, composition and physical stability in ionic environments as well as the impact of homogenization. A green process involving aqueous extraction by grinding of WK allowed the co-extraction of OBs and proteins, and centrifugation was used to recover the WK-OBs. Confocal laser scanning microscopy images showed the spherical shape of WK-OBs with an oil core envelopped by a layer of phospholipids (0.16 % of lipids) and embedded proteins. Their mean diameter was 5.1 ± 0.3 µm. The WK-OBs contained 70.1 % PUFA with 57.8 % ω6 linoleic acid and 12.3 % ω3 α-linolenic acid representing 68 % and 11.6 % of the total fatty acids in the sn-2 position of the triacylglycerols (TAG), respectively. Trilinolein was the main TAG (23.1 %). The WK-OBs also contained sterols (1223 ± 33 mg/kg lipids; 86 % β-sitosterol), carotenoids (0.62 ± 0.01 mg/kg lipids; 49.2 % β-carotene), and tocopherols (322.7 ± 7.7 mg/kg lipids; 89 % γ-tocopherol), confirming their interest as health-promoting ingredients. The decrease in the size of WK-OBs under high-pressure homogenization avoided phase separation upon storage. The anionic WK-OB surface at neutral pH was affected by stressful ionic environments (pH, NaCl, CaCl2), that induced aggregation of WK-OBs and decreased the physical stability of the emulsions. Emulsions containing WK-OBs are promising to diversify the market of the ω3-rich plant-based food products and beverages.
Collapse
Affiliation(s)
| | | | - Bruno Novales
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
8
|
Zhao Z, Wang F, Hu T, Zhou C. Lipidomic analyses of five Carya illinoinensis cultivars. Food Sci Nutr 2023; 11:6336-6348. [PMID: 37823132 PMCID: PMC10563669 DOI: 10.1002/fsn3.3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 10/13/2023] Open
Abstract
Carya illinoinensis (Wangenh.) K. Koch, nuts are a renowned health food. However, there are many cultivars of this nut tree, and their mature kernel lipid composition has not been thoroughly studied. Therefore, we used liquid chromatography-mass spectrometry (LC-MS) to analyze the lipid composition of mature nuts of five C. illinoinensis cultivars. In the mature kernels of all cultivars, there were 58 lipid types which were mainly composed of glycerolipids (c. 65%) and phospholipids (>30%). Triacylglycerol (TG) accounted for the largest proportion of mature nuts of all cultivars, exceeding 50%; and diacylglycerol (DG), ceramide (Cer), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were also relatively high. Additionally, nuts contain fatty acids, mainly oleic, linoleic, and linolenic acids. Our research provides a new perspective for the processing and utilization of plant and edible oils, and for the use of C. illinoinensis kernels in the development of medicine and food science.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Fei Wang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Tian Hu
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Chun‐hua Zhou
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| |
Collapse
|
9
|
Jardim T, Domingues MRM, Alves E. An overview on lipids in nuts and oily fruits: oil content, lipid composition, health effects, lipidomic fingerprinting and new biotechnological applications of their by-products. Crit Rev Food Sci Nutr 2023; 64:9132-9160. [PMID: 37178132 DOI: 10.1080/10408398.2023.2208666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tree nuts and oily fruits are used as a diet complement and are highly consumed worldwide. The production and consumption of these foods have been increasing, and an enormous global market value is forecasted for 2023. Besides their high nutritional value and lipid content, they provide health benefits to fat metabolism, heart, skin, and brain. The industrial by-products of these oily foods represent promising raw materials for many industries. However, the lipidomic analysis of nuts and oily fruits is still in its early stages. State-of-the-art analytical approaches for the lipid profiling and fingerprinting of nuts and oily fruits have been developed using high-performance liquid chromatography and high-resolution mass spectrometry for the accurate identification and structural characterization at the molecular species level. It is expected to bring a new understanding of these everyday foods' nutritional and functional value. This review comprises the oil content and lipid composition of various nuts and oily fruits, particularly those mostly consumed worldwide and having recognized beneficial health effects, biological activities associated with the lipids from different oily foodstuffs, analytical methodologies to analyze lipids in nuts and oily fruits, and the potential biotechnological applications of their industrial by-products for a lipid-based commercial valorization.
Collapse
Affiliation(s)
- Tiago Jardim
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Chen DW, Wan P, Yao J, Yang X, Liu J. Egg yolk phospholipids as an ideal precursor of fatty note odorants for chicken meat and fried foods: A review. Food Chem 2023; 407:135177. [PMID: 36527950 DOI: 10.1016/j.foodchem.2022.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Egg yolk phospholipids (PLs) have been demonstrated to generate large quantities of lipid-derived odorants, especially the fatty note odorants. Recently, egg yolk PLs have been successfully used in chicken meat and fried foods to improve aroma. This review comprehensively summarizes the properties of egg yolk PLs as precursors of fatty note odorants, including their classes, extraction, identification, oxidation, decomposition and odorant formation, applications, considerations and future prospects in the food industry. Most likely, phosphatidylcholine (PC) is the most abundant class in egg yolk PLs, and PC is more efficient than phosphatidylethanolamine in generating fatty note odorants; moreover, the predominant polyunsaturated fatty acid is linoleic acid, and its corresponding predominant hydroperoxide is 9-hydroperoxy-10,12-octadecadienoic acid during autoxidation, which is the precursor of 2,4-decadienals and 2,4-nonadienals, the key fatty note odorants. Therefore, egg yolk PLs could be an ideal precursor of fatty note odorants for chicken meat and fried foods.
Collapse
Affiliation(s)
- De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peng Wan
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingyu Yao
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoying Yang
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jie Liu
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
11
|
Yao J, Zhu J, Zhao M, Zhou L, Marchioni E. Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. Molecules 2023; 28:molecules28093653. [PMID: 37175063 PMCID: PMC10179896 DOI: 10.3390/molecules28093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, ultra-high-performance liquid chromatography high-resolution accurate mass-mass spectrometry (UHPLC-HRAM/MS) was applied to characterize the lipid profiles of five crab species. A total of 203 lipid molecular species in muscle tissue and 176 in edible viscera were quantified. The results indicate that Cancer pagurus contained high levels of lipids with a docosahexaenoic acid (DHA) and eicosapntemacnioc acid (EPA) structure in the muscle tissue and edible viscera. A partial least squares discriminant analysis (PLS-DA) showed that PE 16:0/22:6, PE P-18:0/20:5, PA 16:0/22:6 and PC 16:0/16:1 could be used as potential biomarkers to discriminate the five kinds of crabs. In addition, some lipids, such as PE 18:0/20:5, PC 16:0/16:1, PE P-18:0/22:6 and SM 12:1;2O/20:0, could be used as characteristic molecules to distinguish between Cancer magister and Cancer pagurus, which are similar in appearance. This study provides a new perspective on discriminating crab species from MS-based lipidomics.
Collapse
Affiliation(s)
- Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| |
Collapse
|
12
|
Jiang C, Zhang X, Yu J, Yuan T, Zhao P, Tao G, Wei W, Wang X. Comprehensive lipidomic analysis of milk polar lipids using ultraperformance supercritical fluid chromatography-mass spectrometry. Food Chem 2022; 393:133336. [PMID: 35691069 DOI: 10.1016/j.foodchem.2022.133336] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Polar lipids in milk are receiving increasing interest due to their bioactivities. However, milk polar lipids present a wide range of physical-chemical properties at different concentrations, making their analysis challenging. In this study, we presented a comprehensive lipidomic method using ultraperformance supercritical fluid chromatography (UPSFC)-quadrupole-time of flight-mass spectrometry (Q-TOF-MS), which enabled the separation of 18 lipid classes (including nonpolar lipids, cholesterol, ceramide, glycerophospholipids, sphingomyelin, and gangliosides) within 10 min. The method was used to analyze the polar lipids in seven samples, including human milk, other mammalian milk and milk fat globule membrane ingredients, identifying 14 lipid classes containing 219 lipid molecular species. A mass spectrometry data processing strategy applicable for high-throughput studies was also developed and validated.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinghe Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiahui Yu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tinglan Yuan
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pu Zhao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guanjun Tao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Comprehensive comparative analysis of lipid profile in dried and fresh walnut kernels by UHPLC-Q-Exactive Orbitrap/MS. Food Chem 2022; 386:132706. [DOI: 10.1016/j.foodchem.2022.132706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022]
|
14
|
Study on the characteristics of glycerides and phospholipids in human milk from Tibet. Food Res Int 2022; 157:111025. [DOI: 10.1016/j.foodres.2022.111025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/16/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
15
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
16
|
Silva ACR, Garrett R, Rezende CM, Meckelmann SW. Lipid Characterization of Arabica and Robusta Coffee Beans by Liquid Chromatography-Ion Mobility-Mass Spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Hou J, Zhang Z, Zhang L, Wu W, Huang Y, Jia Z, Zhou L, Gao L, Long H, Lei M, Wu W, Guo DA. Spatial lipidomics of eight edible nuts by desorption electrospray ionization with ion mobility mass spectrometry imaging. Food Chem 2022; 371:130893. [PMID: 34808757 DOI: 10.1016/j.foodchem.2021.130893] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
Nuts have long been known for their health benefits which are mainly contributed by their lipid components. However, the spatial distribution of lipids in nuts has not been firmly established. In this study, desorption electrospray ionization combined with ion mobility and quadrupole time-of-flight mass spectrometry in positive and negative ion modes was applied to visualize spatially the lipids in eight edible nuts, namely almonds, hazelnuts, cashews, walnuts, peanuts, peach seeds, bitter almonds, and Chinese dwarf cherry seeds. The glycerophospholipids were first imaged in nuts in the negative ion mode, while the glycerolipids and phosphatidylcholines were mainly detected in the positive ion mode. In total 87 characterized components, including 47 glycerophospholipids, 24 glycerolipids, eight alkyl phenolic acids, three fatty acid acyl metabolites, four oligosaccharides, and amygdalin, were visualized in the eight nuts, and the collision cross-sectional values of these components were obtained. The outer shell of the nut cotyledon concentrated more abundant components than the center, while for the hydrolyzed glycerophospholipids, the reverse was observed. The results provide a more comprehensive and in-depth understanding of the location of the diverse metabolite profiles in nuts and of their relationship to their respective health benefits.
Collapse
Affiliation(s)
- Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linlin Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengwei Jia
- Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Lihong Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Huang W, Lan L, Zhou H, Yuan J, Shui Miao, Mao X, Hu Q, Ji S. Comprehensive profiling of Platycodonis radix in different growing regions using liquid chromatography coupled with mass spectrometry: from metabolome and lipidome aspects. RSC Adv 2022; 12:3897-3908. [PMID: 35425426 PMCID: PMC8981106 DOI: 10.1039/d1ra08285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. is widely cultivated across the south and north of China. Its root, Platycodonis radix, is commonly used as a vegetable, functional food, and traditional herbal medicine with various biological benefits. It is critical to fully clarify the chemical composition of Platycodonis radix for the sake of the food industry and traditional herb markets. In this study, a strategy of metabolome and lipidome profiling based on ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS) was developed to reveal the overall chemical composition of Platycodonis radix. IN particular, comprehensive lipidome profiling was first performed for Platycodonis radix, in which 170 lipid molecular species including 55.9% glycerophospholipids, 31.2% glycerolipids, and 12.9% sphingolipids were identified. Platycodonis radix from two major production regions in China, Inner Mongolia and Anhui province, were collected and analyzed by the MS based approach combined with multivariate statistical analysis from both the metabolome and lipidome aspects. This study threw focus on the profiling investigations of Platycodonis radix from different growing regions and provided new potential in the lipidome analysis of medicinal food.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University Shanghai 201203 PR China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| |
Collapse
|
19
|
Fabritius M, Yang B. Direct infusion and ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry analysis of phospholipid regioisomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9151. [PMID: 34169571 DOI: 10.1002/rcm.9151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Phospholipids are important components of cell membranes that are linked to several beneficial health effects such as increasing plasma HDL cholesterol levels, improving cognitive abilities and inhibiting growth of colon cancer. The role of phospholipid (PL) regioisomers in all these health effects is, however, largely not studied due to lack of analytical methods. METHODS Electrospray ionization mass spectrometry in negative mode produces structurally informative fragment ions resulting from differential dissociation of fatty acids (FAs) from the sn-1 and sn-2 positions, primarily high-abundance [RCOO]- ions. The fragment ion ratios obtained with different ratios of regiopure phospholipid reference compounds were used to construct calibration curves, which allow determination of regioisomeric ratios of an unknown sample. The method was developed using both direct infusion mass spectrometry (MS) and ultra-high-performance liquid chromatography and hydrophilic interaction liquid chromatography mass spectrometry (UHPLC-HILIC-MS). RESULTS The produced calibration curves have high coefficients of determination (R2 >0.98) and the fragment ion ratios in replicate analyses were very consistent. A test mixture containing 60/40% ratios of all available regioisomer pairs was analyzed to test and validate the functionality of the calibration curves. The results were accurate and reproducible. However, regioisomeric quantification of certain chromatographically overlapping compounds is restricted by the relatively wide window in precursor ion selection of the MS instrument used. CONCLUSIONS This method establishes a framework for analysis of phospholipid regioisomers. Specific regioisomers can be quantified using the existing data, and method development will continue with improving chromatographic separation and exploring the fragmentation patterns and efficiencies of different PL classes and FA combinations, ultimately to refine this method for routine analysis of natural fats and oils.
Collapse
Affiliation(s)
- Mikael Fabritius
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Huang W, Zhou H, Yuan M, Lan L, Hou A, Ji S. Comprehensive characterization of the chemical constituents in Platycodon grandiflorum by an integrated liquid chromatography-mass spectrometry strategy. J Chromatogr A 2021; 1654:462477. [PMID: 34433124 DOI: 10.1016/j.chroma.2021.462477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Platycodon grandiflorum (PG), as a well-known medicine food homology species, possess various pharmacological effects and health benefits. Aiming to facilitate in-depth and global characterization of the chemical compositions of PG, a profiling method based on ultra-high performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) was conducted. Consequently, as many as 187 compounds were plausibly or unambiguously identified. Most importantly, phospholipids (PLs) were first observed and identified in PG. Due to their widely confirmed bioactivities, an analysis scheme was developed by hydrophilic interaction liquid chromatography and electrospray ionization tandem mass spectrometry combined with the online Paternò-Büchi reaction (HILIC-PB-MS/MS). The fatty acyl chains and C=C locations of 180 PLs molecular species, which fell into four classes, were unprecedently characterized. This exposure strategy of multi-type constituents greatly enriches the chemical profiling of PG, and helps promoting the further development of therapeutic agents and nutraceutical products from PG.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Ming Yuan
- Waters Corporation (China), Shanghai 201206, PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| | - Aijun Hou
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| |
Collapse
|
21
|
Yan S, Wang X, Yang C, Wang J, Wang Y, Wu B, Qiao L, Zhao J, Mohammad P, Zheng X, Xu J, Zhi H, Zheng J. Insights Into Walnut Lipid Metabolism From Metabolome and Transcriptome Analysis. Front Genet 2021; 12:715731. [PMID: 34539744 PMCID: PMC8446449 DOI: 10.3389/fgene.2021.715731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Walnut oil is an excellent source of essential fatty acids. Systematic evaluation of walnut lipids has significance for the development of the nutritional and functional value of walnut. Ultra-performance liquid chromatography/Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) was used to characterize the lipids of walnut. A total of 525 lipids were detected and triacylglycerols (TG) (18:2/18:2/18:3) and diacylglycerols (DG) (18:2/18:2) were the main glycerolipids present. Essential fatty acids, such as linoleic acid and linolenic acid, were the main DG and TG fatty acid chains. Many types of phospholipids were observed with phosphatidic acid being present in the highest concentration (5.58%). Using a combination of metabolome and transcriptome analysis, the present study mapped the main lipid metabolism pathway in walnut. These results may provide a theoretical basis for further study and specific gene targets to enable the development of walnut with increased oil content and modified fatty acid composition.
Collapse
Affiliation(s)
- Suxian Yan
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingsu Wang
- College of Food Science, Shanxi Normal University, Linfen, China
| | - Chenkang Yang
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Junyou Wang
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ying Wang
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Pourkheirandish Mohammad
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Xingwei Zheng
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Linfen, China
| | - Huming Zhi
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| |
Collapse
|
22
|
Yin M, Fu X, Wang X. Key lipid molecules in hepatopancreas of Eriocheir sinensis: Identification and thermal oxidative degradation characteristics. J Food Biochem 2021; 45:e13734. [PMID: 33990974 DOI: 10.1111/jfbc.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
The hepatopancreas of Eriocheir sinensis are the key parts that form its unique flavor. Lipids are important parts of hepatopancreas; hence, this study used UHPLC-Q E Orbitrap mass spectrometer to investigate the changes in the lipid composition of crabs formed from thermal oxidation system. The results demonstrated that key lipids in the hepatopancreas of female Chinese mitten crabs were phosphatidylethanolamine (PE) and free fatty acid (FFA) during the steaming process. The key fatty acids of PE were C18:1, C18:3, C20:3, C20:4, C20:5, and C22:6. The degradation rate of C24:0 in FFA was greater than the synthesis rate. Principal component analysis, partial least square analysis combined with hierarchical cluster analysis found that PE (16:0/20:5), PE (18:1/20:4), PE (16:0/22:6), PE (16:0/20:4), PE (16:0 /16:1), PE (16:0/18:2), PE (18:0/20:5), PE (18:0/22:6), PE (18:0/20:4), PE (16:0/18:1), PE (18:0/18:2), PE (18:0/22:5), and PE (18:0/18:1) were the key PE molecular species. Simulating thermal oxidation to understand the dynamic change mechanism of lipids is meaningful for processing of Chinese mitten crab products and catering to public sensory orientation. PRACTICAL APPLICATIONS: In this study, the UHPLC-Q E Orbitrap method was used to detect and analyze the molecular species changes of Eriocheir sinensis in the simulated thermal oxidation system, and systematically analyzed the law of changes. Based on these results, we can expand our understanding of the changing characteristics of the hepatopancreas and pancreas of the river crab and provide a direction for the formation mechanism of the aroma substances of E. sinensis during the heat treatment and the improvement of the quality of its products.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xueyan Fu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
23
|
Song S, Liu TT, Liang X, Liu ZY, Yishake D, Lu XT, Yang MT, Man QQ, Zhang J, Zhu HL. Profiling of phospholipid molecular species in human breast milk of Chinese mothers and comprehensive analysis of phospholipidomic characteristics at different lactation stages. Food Chem 2021; 348:129091. [PMID: 33508603 DOI: 10.1016/j.foodchem.2021.129091] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/30/2022]
Abstract
Phospholipids are critical for milk digestion and infant development. But the profile of phospholipid molecular species in human milk and its dynamic changes during the lactation period have never been reported. The present study elucidated precise qualitative and quantitative analysis of 258 phospholipid molecular species in 486 human milk samples. Phosphatidylcholine is the most abundant class, followed by phosphatidylserine, phosphatidylethanolamine and sphingomyelin as the second abundant class in different lactation period. The plasmalogens declined along the lactation period, and the polyunsaturated-phospholipids decreased after 10-15 days. The decrease of phosphatidylcholines and phosphatidylglycerols, and the increase of lysophosphatidylethanolamines and lysophosphatidylcholines are critical changes from 0 to 5 days to 10-15 days; increase of phosphatidylinositols, phosphatidylserines, lysophosphatidylethanolamines and lysophosphatidylcholines is the key changes from 10-15 days to 40-45 days; the decrease of most phospholipid molecular species is the characteristic change from 40-45 days to 200-240 days; and the phospholipid profile achieved stability after 200 days.
Collapse
Affiliation(s)
- Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xue Liang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dinuerguli Yishake
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Ting Lu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
24
|
|
25
|
Gertner DS, Bishop DP, Oglobline A, Padula MP. Enhancing Coverage of Phosphatidylinositol Species in Canola Through Specialised Liquid Chromatography-Mass Spectrometry Buffer Conditions. J Chromatogr A 2020; 1637:461860. [PMID: 33422796 DOI: 10.1016/j.chroma.2020.461860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 01/15/2023]
Abstract
Phosphatidylinositols (PIs) constitute a minor class of phospholipid with wide-spread influence throughout various cellular functions. Monitoring the distribution of these lipids can therefore provide insight as to the state of cellular processes or reveal the development of various pathologies. The speciation of these compounds is often performed either as part of a comprehensive characterisation of lipids, or specifically targeted using the same methods, however, such methods were intended to maximise coverage of lipid classes rather than provide an in-depth analysis of any single class. In the particular case of PIs, the majority of reported molecular diversity is limited to a small proportion of the already minor class, as such the cursory glance enabled by such methods is insufficient. Therefore, this work compared the suitability of both established and novel LC-MS buffers with the aim of maximising the ionisation efficiency of PIs, in an attempt to enhance coverage of the class. Through experimentation, it was determined that a 0.25 mM ammonium fluoride buffer provided up to a 6-fold increase in signal intensity, and on average a 38-fold increase in the signal-to-noise ratio. Using these new conditions, 14 PI species, and 12 PI candidates were identified within a dilute lipid extract sourced from canola seed, compared to 0 species identified using the generalised method. As a result, it is suggested that this procedure has yielded the highest number of PI species identifications for a sample of this concentration. Methods which therefore intend to characterise PI species in dilute quantities, such as those extracted from mammalian cells, are henceforth provided with the means to conduct more comprehensive characterisations.
Collapse
Affiliation(s)
- David S Gertner
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - David P Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Alexandre Oglobline
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia; Chemistry First Pty Ltd, Mosman 2088, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
26
|
Silva ACR, da Silva CC, Garrett R, Rezende CM. Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Food Res Int 2020; 137:109727. [PMID: 33233296 DOI: 10.1016/j.foodres.2020.109727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Lipids play an important role in coffee bean development, coffee brew and in the effects of coffee on human health. They account for around 17% of the dry bean weight and encompass different classes and subclasses, mostly triacylglycerols (TAG) and a minor quantity of phospholipids (PL) and βN-alkanoyl-5-hydroxytryptamides (C-5HT). To comprehensive profile these different lipids, it is important to evaluate extraction methods that provide high lipid coverage and to analyze the lipids in high-resolution techniques. In this work, liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was employed to comprehensive profile lipids from green Arabica coffee beans and to evaluate the extraction efficiency and lipid coverage of three methods: Bligh-Dyer (BD), Folch (FO), and Matyash (MA). The MA method yielded the greatest number of annotated compounds (131 lipids) compared to the other methods. In the positive electrospray ionization (ESI) mode, the main difference among extraction methods was observed for TAG and diacylglycerols, whereas for the negative ESI it was observed differences for phosphatidylinositol (PI), lysophosphatidylinositol and phosphatidic acid (p < 0.05). The analysis of coffees from different maturation stages and/or post-harvest processes were also performed using the MA method. Immature beans were discriminated from mature and overripe beans by its lower levels of C-5HT, PI, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, and lysophosphatidylethanolamine. These results can help to better understand the coffee lipid composition and its association with coffee quality.
Collapse
Affiliation(s)
- Ana Carolina R Silva
- Federal University of Rio de Janeiro, Institute of Chemistry, Aroma Analysis Laboratory, 21941-909 Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Carol Cristine da Silva
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Rafael Garrett
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil.
| | - Claudia M Rezende
- Federal University of Rio de Janeiro, Institute of Chemistry, Aroma Analysis Laboratory, 21941-909 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Rabadán A, Pardo JE. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods 2020; 9:E1646. [PMID: 33187330 PMCID: PMC7697880 DOI: 10.3390/foods9111646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022] Open
Abstract
This work presents a bibliographic review about almond kernel non-lipid components, in particular about the protein fraction, the carbohydrates and the mineral fraction. In addition, other fat-soluble phytochemicals which are present in minor concentrations but show important antioxidant activities are reviewed. Almond kernel is a rich protein food (8.4-35.1%), in which the globulin-albumin fraction dominates, followed by glutelins and prolamins. Within the almond kernel protein profile, amandine dominates. Free amino acids represent a small amount of the total nitrogen quantity, highlighting the presence of glutamic acid and aspartic acid, followed by arginine. Carbohydrates that appear in almond kernels (14-28%) are soluble sugars (mainly sucrose), starch and other polysaccharides such as cellulose and non-digestible hemicelluloses. Regarding the mineral elements, potassium is the most common, followed by phosphorus; both macronutrients represent more than 70% of the total mineral fraction, without taking into account nitrogen. Microminerals include sodium, iron, copper, manganese and zinc. Within the phytochemical compounds, tocopherols, squalene, phytosterols, stanols, sphingolipids, phospholipids, chlorophylls, carotenoids, phenols and volatile compounds can be found.
Collapse
Affiliation(s)
- José M. Roncero
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Arturo Pardo-Giménez
- Mushroom Research, Experimentation and Service Centre, C/Peñicas, s/n, Apartado 63, Quintanar del Rey, 16220 Cuenca, Spain;
| | - Adrián Rabadán
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| |
Collapse
|
28
|
Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta 2019; 205:120100. [DOI: 10.1016/j.talanta.2019.06.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023]
|
29
|
Lu S, Liu H, Jin C, Li Q, Guo L. An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. PLANT DIRECT 2019; 3:e00183. [PMID: 31832598 PMCID: PMC6858605 DOI: 10.1002/pld3.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
In past two decades, numerous lipidomics approaches based on mass spectrometry with or without liquid chromatography separation have been established for identification and quantification of lipids in plants. In this study, we developed an efficient and comprehensive lipidomics approach based on UPLC with an Acquity UPLCTM BEH C18 column coupled to TripleTOF using ESI in positive ion mode and MS/MSALL scan for data collection. Lipid extract was prepared to 2 mg/ml solution according to dry tissue weight and mixed with 13 kinds of internal standards including PA, PC, PE, and PG. Each analysis required single injection of 5-10 μl lipid solvent and completed in 32 min. A target method dataset was generated using the LipidView software for prediction of the accurate mass of target lipid species. The dataset was uploaded into the PeakView to create processing datasets to search target lipid species, which achieved batch data processing of multiple samples for lipid species-specific identification and quantification. As proof of concept, we profiled the lipids of different tissues of rapeseed. Thirteen lipid classes including 218 glycerolipids were identified including 46 TAGs, 15 DAGs, 20 PCs, 24 PEs, 13 PGs, 14 PIs, 26 PSs, 12 PAs, 16 MGDGs, 16 DGDGs, 6 LysoPCs, 5 LysoPEs, and 5 LysoPGs. Together, our approach permits the analysis of glycerolipids in plant tissues with simplicity in sample analysis and data processing using UPLC-TripleTOF.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qing Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
30
|
Gao Y, Wu S. Comprehensive analysis of the phospholipids and phytosterols in Schisandra chinensis oil by UPLC-Q/TOF- MSE. Chem Phys Lipids 2019; 221:15-23. [DOI: 10.1016/j.chemphyslip.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/26/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
|
31
|
Rapid and direct determination of fatty acids and glycerides profiles in Schisandra chinensis oil by using UPLC-Q/TOF-MS E. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:157-167. [PMID: 30476796 DOI: 10.1016/j.jchromb.2018.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Fatty acids and glycerides are globally accepted quality and nutrition indicators of oils. Schisandra chinensis (S. chinensis) is a good functional oil source, with an oil content of 10-50% (dry weight). In this study, the UPLC-Q/TOF-MSE technique was developed to profile FFA and glycerides in the S. chinensis oils directly. The results showed that all of the 36 FFA calibration equations of the mixture standard had good linear relationships (R2 > 0.99). The limit of detection for the tested compounds ranged from 0.0001 to 0.0200 μg/mL, while the limit of quantification ranged from 0.0005 to 0.1300 μg/mL. In total, seventeen FFAs, six diglycerides and 20 triglycerides were identified. Linoleic, oleic, stearic and palmitic acids were the most abundant FFAs in the S. chinensis oils. It was also found that S. chinensis oil is rich in the L-L, L-L-L, O-L-L and O-L-O glycerides. These results will be helpful for the use of this technique in physicochemical evaluation and for further application development.
Collapse
|
32
|
Kola O, Hayoğlu İ, Türkoğlu H, Parıldı E, Ak BE, Akkaya MR. Physical and chemical properties of some pistachio varieties (Pistacia vera L.) and oils grown under irrigated and non-irrigated conditions in Turkey. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2017.1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- O. Kola
- Department of Food Engineering, Faculty of Engineering, Adana Science and Technology University, Adana 01180, Turkey
| | - İ. Hayoğlu
- Department of Food Engineering, Faculty of Agriculture, Harran University, Şanlıurfa 63100, Turkey
| | - H. Türkoğlu
- Ula Ali Koçman Vocational School, Muğla Sıtkı Koçman University, Muğla 48000, Turkey
| | - E. Parıldı
- Department of Food Engineering, Faculty of Engineering, Adana Science and Technology University, Adana 01180, Turkey
| | - B. Erol Ak
- Department of Horticulture, Faculty of Agriculture, Harran University, Şanlıurfa 63040, Turkey
| | - M. Reis Akkaya
- Department of Food Engineering, Faculty of Engineering, Adana Science and Technology University, Adana 01180, Turkey
| |
Collapse
|
33
|
Use of an “Intelligent Knife” (iknife), Based on the Rapid Evaporative Ionization Mass Spectrometry Technology, for Authenticity Assessment of Pistachio Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1386-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Cheong LZ, Jiang C, He X, Song S, Lai OM. Lipid Profiling, Particle Size Determination, and in Vitro Simulated Gastrointestinal Lipolysis of Mature Human Milk and Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12042-12050. [PMID: 30362342 DOI: 10.1021/acs.jafc.8b03998] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dairy technologists has attempted to produce "improved" infant formulas mimicking human milk by supplementation with bovine MFGM and/or phospholipids-enriched materials. The present study investigated and compared the lipid profile and particle sizes of mature human milk and infant formula fat globules (IF 1, IF 2, IF 3, and IF 4) and elucidated the relationship between physicochemical properties and in vitro simulated gastrointestinal lipolysis rate of the different milk samples. Despite having larger micron-sized fat globules, mature human milk demonstrated the highest gastrointestinal lipolysis rate with higher release of medium- and long-chain saturated fatty acids. In comparison, IF 3, which contained the lowest phospholipids content, demonstrated the lowest gastrointestinal lipolysis rate. Higher gastrointestinal lipolysis rate of mature human milk fat as compared to infant formula fats might be due to the presence of MFGM interfacial layer (phospholipids) surrounding the fat droplets which govern lipase activity on lipid droplets.
Collapse
Affiliation(s)
- Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Chenyu Jiang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Xiaoqian He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Shuang Song
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | |
Collapse
|
35
|
Jiang C, Ma B, Song S, Lai OM, Cheong LZ. Fingerprinting of Phospholipid Molecular Species from Human Milk and Infant Formula Using HILIC-ESI-IT-TOF-MS and Discriminatory Analysis by Principal Component Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7131-7138. [PMID: 29902005 DOI: 10.1021/acs.jafc.8b01393] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phospholipid composition in the milk fat globule membrane (MFGM) fluctuates during the entire lactation period in order to suit the growing needs of newborn infants. The present study elucidated and relatively quantified phospholipid molecular species extracted from human milk (HM), mature human milk (MHM), and infant formulas (with or without MFGM supplementation) using hydrophilic liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HILIC-ESI-IT-TOF-MS) system. Principal component analysis was used to clarify the differences between phospholipid composition in HM, MHM, and infant formulas. HM and MHM contained high concentrations of sphingomyeline (HM: 107.61 μg/mL, MHM: 227.18 μg/mL), phosphatidylcholine (HM: 59.96 μg/mL, MHM: 50.77 μg/mL), and phosphatidylethanolamine (PE) (HM: 25.24 μg/mL, MHM: 31.76 μg/mL). Significant concentrations (<300 ng/mL) of arachidonic, eicosapentanoic, and docosahexanoic acids were found to esterify to PE in HM and MHM. Meanwhile, all infant formulas were found to contain high concentrations of phosphatidic acids indicating the possibility of degradation of the fortified MFGM either during processing or storage of the infant formulas.
Collapse
Affiliation(s)
- Chenyu Jiang
- Department of Food Science and Engineering, School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Baokai Ma
- School of Life and Sciences , Shanghai University , Shanghai 200444 , China
| | - Shuang Song
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Bimolecular Sciences , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor Malaysia
- Institute of Bioscience , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor Malaysia
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, School of Marine Science , Ningbo University , Ningbo 315211 , China
| |
Collapse
|