1
|
Hernández-Bautista M, Gutiérrez TJ, Tovar J, Bello-Pérez LA. Effect of starch structuring and processing on the bioaccessibility of polyphenols in starchy foodstuffs: A review. Food Res Int 2025; 208:116199. [PMID: 40263792 DOI: 10.1016/j.foodres.2025.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Starch is the main polysaccharide in the human diet and is the major calory supplier. The digestibility of starch can be controlled by processing conditions, which produce the rearrangement of the polymer's multi-scale structure and interactions with other components in the food matrix. The interest in consuming functional foods with polyphenols is linked to the pursuit of overall well-being. Still, the bioaccessibility of the polyphenols can be limited by their interactions with starch, features that also affect the digestibility of the polysaccharide. The starch-polyphenol interactions produce different VI-type, VIIa-type, and VIIb-type complexes, which are generated depending on the polyphenol type (structure) and the processing for developing a food matrix. The complex formation between linear glucan chains and polyphenols produces crystalline and lamellar structures that modulate the starch digestion rate. The interactions with starch modulate the bioaccessibility of the polyphenols, and the starch-polyphenols complexes are not substrates for the digestive enzymes, leading to a reduction in intestinal glucose release and absorption. The release of polyphenols produces inhibition of the α-amylase, a phenomenon that may further decrease starch digestion. The type of processing and polyphenols present are crucial factors in determining the nature of the starch-polyphenol complex that will be formed. To prepare this review, The database from Scopus was used using the keywords Starch and Polyphenols. Articles from high-impact factor journals in the study area were selected (e.g. Food Hydrocolloids, Food Chemistry, Food Research International, Functional Foods, etc.).
Collapse
Affiliation(s)
- Monserrat Hernández-Bautista
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico
| | - Tomy J Gutiérrez
- Grupo de Nanotecnología de Alimentos y Agro-alimentos (NanoÅ(2)), Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Villanueva, 1324, C1426BMJ, Capital Autónoma de Buenos Aires (CABA), Argentina
| | - Juscelino Tovar
- Division of Food and Pharma, Department of Process and Life Science Engineering. Lund University, P.O. Box 124, SE-221 00, Lund. Sweden
| | - Luis Arturo Bello-Pérez
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico.
| |
Collapse
|
2
|
García-Lorca N, Libero C, Livigni C, Frouzaki NE, Aguayo E. Sustainable Fortification of Corn Tortillas with Broccoli By-Products. Foods 2025; 14:799. [PMID: 40077501 PMCID: PMC11899475 DOI: 10.3390/foods14050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Fortification is the deliberate addition of essential micronutrients, such as vitamins and minerals, to enhance a food's nutritional profile and contribute to public health. A promising approach to fortification involves the use of plant by-products which are rich in bioactive compounds. This study evaluates the effects of incorporating broccoli by-product powder into corn-flour tortillas. Five formulations were developed: a control (100% corn flour) and variations replacing 2.5%, 5%, 7.5%, and 10% of the corn flour with broccoli by-product powder. Adding broccoli powder resulted in darker tortillas with slightly reduced firmness. Water and oil absorption capacities increased in fortified tortillas compared to the control. The broccoli powder in the tortillas significantly enhanced their nutritional profile. Calcium content increased nearly six-fold, while potassium and iron concentrations were tripled in tortillas fortified with 10% broccoli powder. Additionally, dietary fiber content rose by 23%. Antioxidant capacity improved significantly, particularly in total polyphenol content. Fortification also led to a significantly higher glucosinolate concentrations, notably neoglucobrassicin and glucoraphanin. Sensory evaluation showed that consumers found tortillas containing 2.5% to 7.5% broccoli powder to be the most acceptable. However, fortification at 10% negatively impacted overall acceptability, primarily due to the intensified brassica flavor. In conclusion, incorporating broccoli by-product powder into corn tortillas enhanced their nutritional and functional properties, whilst retaining acceptable sensory characteristics. This approach promotes the sustainable valorization of by-products, offering a viable, eco-friendly alternative for the development of functional, nutrient-rich foods that support sustainability in the food industry.
Collapse
Affiliation(s)
- Nieves García-Lorca
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| | - Concetta Libero
- Faculty of Agriculture, University of Naples “Federico II” via Università, 100-80055 Portici, 80055 Naples, Italy; (C.L.); (C.L.)
| | - Carmela Livigni
- Faculty of Agriculture, University of Naples “Federico II” via Università, 100-80055 Portici, 80055 Naples, Italy; (C.L.); (C.L.)
| | - Natalia Eleftheria Frouzaki
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400 Myrina, Lemnos, Greece;
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| |
Collapse
|
3
|
Wu Q, Liu D, Zhang J, Li T, Niu H, Xin X, Zhao S, He C, Zhang C. Enhancing the formation of functional glucosinolate degradation products in fermented broccoli stalk by-product with lactic acid bacteria. Food Chem 2025; 464:141689. [PMID: 39427612 DOI: 10.1016/j.foodchem.2024.141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Broccoli stalk by-product (BsBP) is rich in glucosinolates (GSLs). Its fermentation process is generally characterized by the degradation of GSLs and formation of bioactive isothiocyanates (ITCs), in which lactic acid bacteria (LAB) play an important role. The GSLs-degrading capacity of 61 LAB strains was investigated in vitro. Lacticaseibacillus paracasei YC5, Pediococcus pentosaceus RBHZ36, and Lactiplantibacillus plantarum ND1, with high potential to transform GSLs into ITCs, were screened. The functional GSL degradation products (total content of sulforaphane, indol-3-carbinol, and ascorbigen) increased 22.0-33.5 % compared to natural fermentation after 24 h when BsBP was fermented by the three screened strains in pure culture. LAB fermentation also helped to increase the quantity of indolic GSL degradation products in BsBP brine, suggesting that LAB fermentation promoted BsBP GSLs transformation into bioactive ITCs. The proposed use of the LAB strains characterized in this study provided a fermented BsBP and brine with high profile of functional GSL degradation products.
Collapse
Affiliation(s)
- Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyue Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chengyun He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Gudiño I, Casquete R, Martín A, Wu Y, Benito MJ. Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products. Foods 2024; 13:3918. [PMID: 39682990 DOI: 10.3390/foods13233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals. Additionally, they contain proteins, essential amino acids, lipids, and carbohydrates, with the leaves exhibiting the highest protein content among the by-products. Processing techniques such as ultrasound-assisted extraction and freeze-drying are crucial for maximizing the concentration and efficacy of these bioactive compounds. Advanced analytical methods, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), have enabled precise characterization of these bioactives. Broccoli by-products have diverse applications in the food industry, enhancing the nutritional quality of food products and serving as natural substitutes for synthetic additives. Their antioxidant, antimicrobial, and anti-inflammatory properties not only contribute to health promotion but also support sustainability by reducing agricultural waste and promoting a circular economy, thereby underscoring the value of these often underutilized components.
Collapse
Affiliation(s)
- Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
5
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
6
|
Zhao Z, Wu J, Yao X, Sun H, Wu Y, Zhou H, Wang X, Guo K, Deng B, Tang J. Influence of Fermented Broccoli Residues on Fattening Performance, Nutrient Utilization, and Meat Properties of Finishing Pigs. Animals (Basel) 2024; 14:1987. [PMID: 38998099 PMCID: PMC11240572 DOI: 10.3390/ani14131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The study determined the impacts of dietary fermented residues' (FBR) inclusion on growth, nutrient utilization, carcass characteristics, and meat properties in fattening pigs. Seventy-two robust pigs were randomly assigned to two experimental groups (Duroc × Landrace × Yorkshire, thirty-six pigs each). Each group was subjected to a 52-day trial, during which they received either a corn-soybean meal-based diet or diet enhanced with a 10% addition of FBR. Consequently, adding 10% FBR caused a significant decrease in the digestive utilization of crude dietary components in fattening pigs (p < 0.05) but showed no significant impact on the growth performance. Additionally, FBR inclusion increased the marbling scores (p < 0.05) and total antioxidant functions (p < 0.05) of muscle tissues, indicating improved meat quality. Gender affected backfat depth, with barrows showing thicker backfat depth. In conclusion, dietary supplementation with 10% FBR in finishing pigs influenced the meat quality by improving the marbling score and antioxidant performance while reducing digestibility without compromising growth performance.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie Wu
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kai Guo
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Bo Deng
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
AlJuhaimi F, Mohamed Ahmed IA, Özcan MM, Uslu N, Albakry Z. Quantitative Determination of Biogenic Element Contents and Phytochemicals of Broccoli ( Brassica oleracea var. italica) Cooked Using Different Techniques. PLANTS (BASEL, SWITZERLAND) 2024; 13:1283. [PMID: 38794354 PMCID: PMC11124966 DOI: 10.3390/plants13101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
In this study, the effect of different cooking techniques on broccoli moisture, total phenolic, total flavonoid, and radical scavenging capacity results, polyphenol contents, and their quantitative values was investigated. The total phenolic quantities of fresh and cooked broccoli samples were assessed to be between 36.32 (conventional boiling) and 423.39 mg GAE/100 g (microwave heating). The radical scavenging activities of the broccoli samples were reported between 2.55 (conventional boiling) and 4.99 mmol/kg (microwave heating). In addition, catechin and rutin quantities of the fresh and cooked broccoli samples were measured to be between 2.24 (conventional boiling) and 54.48 mg/100 g (microwave heating), and between 0.55 (conventional boiling) and 16.33 mg/100 g (microwave heating), respectively. The most abundant elements in fresh and cooked broccoli samples were K, Ca, P, S, and Mg. The results showed some changes depending on cooking techniques compared to the control. The bioactive properties of broccoli samples cooked by means of conventional boiling, boiling in vacuum bag, and high-pressure boiling were established to be lower compared to the fresh sample. Catechin, 3,4-dihydroxybenzoic acid, rutin, and gallic acid were the key phenolic compounds of fresh and cooked broccoli samples. The phenolic components of broccoli were significantly affected by the applied cooking techniques. The highest protein in broccoli samples was determined in the broccoli sample cooked by boiling in a vacuum bag. There were statistically significant changes among the mineral results of broccoli cooked with different cooking methods.
Collapse
Affiliation(s)
- Fahad AlJuhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (I.A.M.A.)
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (I.A.M.A.)
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya 42031, Turkey;
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya 42031, Turkey;
| | - Zainab Albakry
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| |
Collapse
|
8
|
Mantzourani C, Mesimeri ID, Kokotou MG. Free Fatty Acid Determination in Broccoli Tissues Using Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules 2024; 29:754. [PMID: 38398506 PMCID: PMC10891939 DOI: 10.3390/molecules29040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Broccoli (Brassica oleracea L. var. italica Plenck) is a widely consumed vegetable, very popular due to its various nutritional and bioactive components. Since studies on the lipid components of broccoli have been limited so far, the aim of the present work was the study of free fatty acids (FFAs) present in different broccoli parts, aerial and underground. The direct determination of twenty-four FFAs in broccoli tissues (roots, leaves, and florets) was carried out, using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method in a 10 min single run. Linolenic acid was found to be the most abundant FFA in all different broccoli parts in quantities ranging from 0.76 to 1.46 mg/g, followed by palmitic acid (0.17-0.22 mg/g) and linoleic acid (0.06-0.08 mg/g). To extend our knowledge on broccoli's bioactive components, for the first time, the existence of bioactive oxidized fatty acids, namely hydroxy and oxo fatty acids, was explored in broccoli tissues adopting an HRMS-based lipidomics approach. 16- and 2-hydroxypalmitic acids were detected in all parts of broccoli studied, while ricinoleic acid was detected for the first time as a component of broccoli.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Irene-Dimitra Mesimeri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
9
|
Dadalı C. Valorization of kidney bean ( Phaseolus vulgaris L.) pod powder: Multifactorial optimization of gluten-free cake. Food Sci Nutr 2024; 12:997-1005. [PMID: 38370037 PMCID: PMC10867519 DOI: 10.1002/fsn3.3813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 02/20/2024] Open
Abstract
The lifelong gluten-free diet of celiac patients and gluten-intolerant people prevents their balanced diet mainly due to starch-rich products. The aim of this study is to determine optimum gluten-free cake formulation having kidney bean (Phaseolus vulgaris L.) pod powder as fat replacer of up to 50% and rice flour replacer of up to 30% using multifactorial optimization approach. Central composite design was used to determine optimum formulation. The use of kidney beans in gluten-free cake increased moisture, hardness, chewiness, L*, a*, b*, antioxidant activity, total phenolic content, and sensory evaluation scores (p < .05). The optimum gluten-free cake is rich in protein (5.89%), phenolic compounds (0.51 mg GAE/g), antioxidant activity (1.93 μmol TE/g), and total dietary fiber (4.43%) with improved sensory properties. The optimum gluten-free cake formulation prepared with kidney bean pod powder of 27.88% fat and 13.52% rice flour replacer provides higher specific volume, springiness, total phenolic content, antioxidant activity, and sensory analysis scores, and lower hardness and chewiness conditions. Gluten-free cake containing kidney bean pod powder as fat and rice flour replacer at optimum ratio is a new healthier alternative with reduced fat content and improved nutritional and sensory properties for celiac patients and gluten-intolerant people.
Collapse
Affiliation(s)
- Ceyda Dadalı
- Food Engineering Department, Engineering FacultyEge UniversityİzmirTurkey
| |
Collapse
|
10
|
Sik B, Kovács K, Lakatos E, Kapcsándi V, Székelyhidi R. Increasing the functionality of sponge cakes by mint, and cocoa powder addition. Heliyon 2023; 9:e20029. [PMID: 37809425 PMCID: PMC10559764 DOI: 10.1016/j.heliyon.2023.e20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
While sponge cake is one of the most well-liked cookies in the world, mint and cocoa have both been shown to be excellent sources of antioxidant compounds. Therefore, the aim of the study was to create functional sponge cakes with the addition of Dutch cocoa powder and different types of mint, with proven increased total antioxidant and polyphenol content. Additionally, made an effort to produce functional sponge cakes enhanced with cocoa powder and dried, ground mint leaves. To accomplish this, the cakes with cocoa addition were also added 1, 3, and 5% of the ground mint variety, and then the changes in their antioxidant and polyphenol content were assessed. To prove the functionality of cakes, total polyphenol content was detected by Folin-Ciocalteu, while all antioxidant content was measured by the FRAP method. The spectrophotometric analysis supported the functionality of sponge cakes and the baking losses of identified components. The total polyphenol content of baked goods ranged from 1.37 to 1.66 mg GAE/g for peppermint cakes, from 1.66 to 1.87 mg GAE/g for spearmint cakes, and from 1.20 to 1.68 mg GAE/g for strawberry mint sponge cakes. The total antioxidant content of the functional cakes changed between 1.84 and 2.82 mg AAE/g for peppermint cakes, from 1.84 to 4.00 mg AAE/g for spearmint cakes, and from 1.56 to 2.94 mg GAE/g for strawberry mint sponge cakes. The natural control samples, and control sponge cakes made without mint addition with only cocoa powder always had lower levels of polyphenols and antioxidants. All samples had baking loss (control samples had the highest in all cases), but strawberry mint samples had the least of it when it came to antioxidant content and spearmint samples had the least in the case of polyphenol content. Overall, mints and Dutch cocoa powder are appropriate for the production of functional bakery goods because they give the final product a tasty flavor and provide a significant amount of antioxidants and polyphenols despite baking.
Collapse
Affiliation(s)
- Beatrix Sik
- Department of Food Science, Albert Kázmér Faculty of Mosomagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Krisztina Kovács
- Department of Food Science, Albert Kázmér Faculty of Mosomagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Faculty of Mosomagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Viktória Kapcsándi
- Department of Food Science, Albert Kázmér Faculty of Mosomagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Rita Székelyhidi
- Department of Food Science, Albert Kázmér Faculty of Mosomagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
11
|
Xiao J, Li Y, Niu L, Chen R, Tang J, Tong Z, Xiao C. Effect of Adding Fermented Proso Millet Bran Dietary Fiber on Micro-Structural, Physicochemical, and Digestive Properties of Gluten-Free Proso Millet-Based Dough and Cake. Foods 2023; 12:2964. [PMID: 37569233 PMCID: PMC10419140 DOI: 10.3390/foods12152964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing demand for functional foods has pushed the food industry to produce fiber-enriched products. In this study, rheological, microstructural, physicochemical, and functional characteristics were investigated for whole proso millet dough and cake, fortified with fermented proso millet bran dietary fiber flour (F-DF). Results showed that proso millet flour is less absorbent and stable than the control group. Adding proso millet flour and F-DF reduced the elasticity of the dough and increased its hardness, but had no significant effect on viscosity, cohesion, and resilience. The microstructure analysis exhibited an unformed continuous network formation in proso millet dough. Analyses suggested that proso millet flour combined with the fermented dietary fiber group had significantly higher total phenol content (0.46 GAE mg/g), DPPH• scavenging activity (66.84%), and ABTS•+ scavenging activity (87.01%) than did the other group. In addition, F-DF led to a significant reduction in the predicted released glucose contents of reformulated cakes. In summary, cakes prepared with the involvement of whole proso millet flour and F-DF exhibited less adverse sensory impact and possessed the potential to decrease postprandial blood glucose levels resulting purely from cake consumption.
Collapse
Affiliation(s)
- Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Ronghui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Zongbo Tong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| |
Collapse
|
12
|
de Carvalho NM, Oliveira DL, Costa CM, Pintado ME, Madureira AR. Strategies to Assess the Impact of Sustainable Functional Food Ingredients on Gut Microbiota. Foods 2023; 12:2209. [PMID: 37297454 PMCID: PMC10253045 DOI: 10.3390/foods12112209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, it is evident that food ingredients have different roles and distinct health benefits to the consumer. Over the past years, the interest in functional foods, especially those targeting gut health, has grown significantly. The use of industrial byproducts as a source of new functional and sustainable ingredients as a response to such demands has raised interest. However, the properties of these ingredients can be affected once incorporated into different food matrices. Therefore, when searching for the least costly and most suitable, beneficial, and sustainable formulations, it is necessary to understand how such ingredients perform when supplemented in different food matrices and how they impact the host's health. As proposed in this manuscript, the ingredients' properties can be first evaluated using in vitro gastrointestinal tract (GIT) simulation models prior to validation through human clinical trials. In vitro models are powerful tools that mimic the physicochemical and physiological conditions of the GIT, enabling prediction of the potentials of functional ingredients per se and when incorporated into a food matrix. Understanding how newly developed ingredients from undervalued agro-industrial sources behave as supplements supports the development of new and more sustainable functional foods while scientifically backing up health-benefits claims.
Collapse
Affiliation(s)
- Nelson Mota de Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Diana Luazi Oliveira
- Research and Innovation Unit—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
| | - Célia Maria Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Manuela Estevez Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| |
Collapse
|
13
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
14
|
Pateiro M, Domínguez R, Munekata PES, Nieto G, Bangar SP, Dhama K, Lorenzo JM. Bioactive Compounds from Leaf Vegetables as Preservatives. Foods 2023; 12:foods12030637. [PMID: 36766166 PMCID: PMC9914076 DOI: 10.3390/foods12030637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Trends toward a healthier diet are increasing attention to clean-label products. This has led to the search for new ingredients that avoid the use of chemical additives. Food industries are responding to these demands by incorporating natural preservatives into their products, which consumers perceive as healthy. Leafy vegetables would fit this strategy since they are common components of the diet and are associated with beneficial health effects. The objective of this chapter is to offer an overview of the large number of bioactive compounds (phenolic acids, flavonoids, anthocyanins, glucosinolates, and sulfur compounds) present in these plants, which would be responsible for their activity as potential preservatives. Its incorporation into food would improve the quality and extend the shelf life by reducing oxidative processes and inhibiting or retarding the microbial growth that occurs during processing and storage without reducing the organoleptic characteristics of the product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Campus Mare Nostrum, 30071 Espinardo, Spain
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly 243122, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Area de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
15
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
16
|
Nartea A, Fanesi B, Pacetti D, Lenti L, Fiorini D, Lucci P, Frega NG, Falcone PM. Cauliflower by-products as functional ingredient in bakery foods: Fortification of pizza with glucosinolates, carotenoids and phytosterols. Curr Res Food Sci 2023; 6:100437. [PMID: 36691589 PMCID: PMC9860266 DOI: 10.1016/j.crfs.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Industrial cauliflower by-products still represent a no-value food waste, even though they are rich in bioactive compounds. With the aim of valorizing them, optimized special flours rich in glucobrassicin, lutein, β-carotene, and β-sitosterol obtained from leaves, orange and violet stalks were used at 10 and 30% w/w in the formulation of functional leavened bakery. For the first time, the effect of bioactive compounds enrichment in pizza products as well as the rheological properties were evaluated. As results, pizza making process affected the recovery of the bioactive compounds. The recovery of glucobrassicin and carotenoids in pizza depended on the aerial part of cauliflower. Pizza with violet stalks was the richest in glucobrassicin, providing 8.4 mg per portion (200 g). Pizza with leaves showed the highest carotenoid content with a 90% of recovery rate while pizza with orange stalks provided up to 5.8% of the phytosterols health claim requirement. All 10% enriched pizzas revealed viscoelastic and springiness properties similar to the control, contrary to 30% fortification level. Therefore, the use of 10% special flour in pizza should meet both technological industrial processing and consumer acceptance. Orange stalks are the most promising ingredients for high levels of fortification in pizzas.
Collapse
Affiliation(s)
- Ancuta Nartea
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Benedetta Fanesi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Deborah Pacetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Corresponding author.
| | - Lucia Lenti
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Paolo Lucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Natale G. Frega
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Pasquale M. Falcone
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
17
|
HAMEED A, FATIMA N, IFTIKHAR H, MEHMOOD A, TARIQ MR, ALI SW, ALI S, SHAFIQ M, AHMAD Z, ALI U, GHAZANFAR M, IFTIKHAR M, SAFDAR W, AHMAD A, BASHARAT Z, UMER Z, KHALID M. Effect of different drying and cooking treatments on phytochemicals and antioxidant activity in broccoli: an experimental in vitro study. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Kaur S, Kumar K, Singh L, Sharanagat VS, Nema PK, Mishra V, Bhushan B. Gluten-free grains: Importance, processing and its effect on quality of gluten-free products. Crit Rev Food Sci Nutr 2022; 64:1988-2015. [PMID: 36094456 DOI: 10.1080/10408398.2022.2119933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gluten-enteropathy affects a significant number of people, making gluten a major concern in the food industry. With medical advancements, the diagnosis of allergies is becoming easier, and people who are allergic to gluten are recommended a complete gluten-free diet. Since wheat provides a major part of the energy and nutrition in the diet, its elimination affects nutrition intake of allergic population. Food scientists are working to formulate products using protein-rich gluten-free grains with quality attributes at par with gluten-containing products. Focused research has been done to provide nutrition and a variety of food to people suffering from gluten-related disorders. Efforts are being made to remove the gluten from the wheat and other gluten-containing grains, while applying different processing/treatments to enhance the properties of gluten-free grains. Hence, the present review summarizes the importance, processing, and products of different gluten-free grains. It also highlights the digestibility of gluten-free grains with clinical trials and gluten elimination strategies for gluten-containing grains.
Collapse
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Kshitiz Kumar
- Department of Food Processing Technology, A. D. Patel Institute of Technology, Anand, Gujarat, India
| | - Lochan Singh
- Contract Research Organization, NIFTEM, Sonepat, Haryana, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Vijendra Mishra
- Department of Basics and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Bharat Bhushan
- Department of Basics and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| |
Collapse
|
19
|
Drabińska N, Nogueira M, Ciska E, Jeleń H. Effect of Drying and Broccoli Leaves Incorporation on the Nutritional Quality of Durum Wheat Pasta. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
20
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
22
|
Drabińska N, Nogueira M, Szmatowicz B. Valorisation of Broccoli By-Products: Technological, Sensory and Flavour Properties of Durum Pasta Fortified with Broccoli Leaf Powder. Molecules 2022; 27:4672. [PMID: 35897847 PMCID: PMC9332216 DOI: 10.3390/molecules27154672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the effect of broccoli leaf powder (BLP) incorporation on the technological properties, sensory quality and volatile organic compounds (VOCs) of durum wheat pasta. Incorporation of BLP increased cooking loss; however, all pasta samples were found to be in the acceptable range of 8 g/100 g. The addition of BLP decreased optimal cooking time and water absorption but increased the swelling index. Firmness and total shearing force decreased with increased BLP content. The obtained pasta was greener than the control, with a higher content of minerals, and an increasing tendency with respect to protein was observed. The VOC profile of enriched pasta was richer and contained compounds typical of broccoli (e.g., dimethyl sulphide), affecting its aroma. The sensory evaluation results indicate that the addition of BLP did not affect the overall acceptance of pasta. Up to 5% BLP content afforded an interesting, more nutritious pasta without compromising its technological and sensory quality.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Mariana Nogueira
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Faculty of Biotechnology, Catholic University of Portugal, 4169-005 Porto, Portugal
| | - Beata Szmatowicz
- Sensory Laboratory, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
23
|
Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods 2022; 11:foods11131948. [PMID: 35804762 PMCID: PMC9265449 DOI: 10.3390/foods11131948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
The biological function of bioactive compounds found in plant by-products has triggered expanded interest in recent years. This study aims to produce balady bread enriched with dietary fiber, mineral, and phenolic compounds by the addition of grape seeds powder (GSP) at different levels (5%, 10%, and 15% as a partial substitute for wheat flour). The results show that balady bread (Bb) and grape seed powder have ash contents of about 1.97% and 3.04%, lipid contents of 3.22% and 17.15%, protein contents of 11.16% and 12.10%, fiber contents of 1.06% and 44.90%, and carbohydrates contents of 56.52% and 29%, respectively. Moreover, grape seed powder contains a higher level of iron and zinc about 30.02 and 9.43 mg/kg than the Bb control sample which contains about 8.19 and 7.25 mg/kg respectively. The findings revealed that balady bread fortified with grape seed powder contains a high amount of total polyphenols content (TPC), total flavonoid content (TF), and antioxidant capacity. The farinograph test results showed that increasing the GSP concentration in the flour above 10% reduced dough development, stability, and farinograph quality number. The addition of GSP to wheat flour accelerated the dough’s water absorption and mixing tolerance. Grape seed incorporation levels up to 10% (w/w) had no negative effect on dough rheological performance. The sensory evaluation of bread showed that samples that were enriched with grape seeds powder at up to 10% had good quality. Based on these findings, it is recommended to replace up to 10% GSP in the manufacturing of fortified balady bread with satisfactory physical and sensory characteristics and high TPC and antioxidant activity.
Collapse
|
24
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
25
|
Difonzo G, de Gennaro G, Pasqualone A, Caponio F. Potential use of plant-based by-products and waste to improve the quality of gluten-free foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2199-2211. [PMID: 34855216 DOI: 10.1002/jsfa.11702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 05/22/2023]
Abstract
The food industry generates a large amount of waste and by-products, the disposal of which has a negative impact on the environment and the economy. Plant-based waste and by-products are rich in bioactive compounds such as dietary fiber, proteins, essential fatty acids, antioxidant compounds, vitamin, and minerals, which can be exploited to reduce the nutritional deficiencies of gluten-free products. The latter are known to be rich in fats and carbohydrates but lacking in bioactive compounds; the absence of gluten also has a negative effect on textural and sensory properties. Several attempts have been made to improve the quality of gluten-free products using alternative flours and additives, or by adopting innovative technologies. The exploitation of plant-based by-products would represent a chance to improve both the nutritional profile and the overall quality of gluten-free foods by further enhancing the sustainability of the agri-food system. After examining in detail the composition of plant-based by-products and waste, the objective of this review was to provide an overview of the effects of their inclusion on the quality of gluten-free products (bread, pasta, cake/muffins, biscuits and snacks). The advantages and drawbacks regarding the physical, sensory, and nutritional properties were critically evaluated. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giuditta de Gennaro
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
26
|
The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. SEPARATIONS 2022. [DOI: 10.3390/separations9030081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many gluten-free products are deficient in amino acids, especially in essential amino acids (EAA). Therefore, the incorporation of additives rich in free amino acids (FAA) into gluten-free products can be a promising strategy to alleviate certain symptoms of celiac disease associated with EAA deficiencies. This study aimed to evaluate the effect of the incorporation of broccoli leaf powder (BLP) into gluten-free mini sponge cakes (GFS) on the profile of FFA. BLP replaced an equivalent amount (2.5%, 5%, 7.5%; w/w) of corn and potato starches in GFS formulation, resulting in B1-B3 formulations. The first step was the selection of the most efficient method for extraction of FAA. Extraction based on 50% methanol (method 1) was compared to extraction by 25% of acetonitrile in 0.1 M hydrochloric acid (method 2). In total, 26 and 14 FAA were found in BLP after extraction using methods 1 and 2, respectively. Moreover, considering the total content of FAA, method 1 was more efficient, reaching a 14-fold higher concentration of FFA in BLP compared to method 2. The incorporation of BLP resulted in a significant increase in FAA, irrespective of the applied extraction method. The total concentrations of NEAA and EAA increased significantly in B3 compared to control GFS. In summary, this study showed that 50% methanol was more efficient for the extraction of FFA from plant and bakery matrices. Moreover, BLP was found as a good source of FFA, including EAA, and the obtained experimental GFS could be considered a promising product for individuals on a gluten-free diet.
Collapse
|
27
|
Ahmadi F, Aghajani N, Gohari Ardabili A. Response surface optimization of cupcake physicochemical and sensory attributes during storage period: Effect of apricot kernel flour addition. Food Sci Nutr 2022; 10:661-677. [PMID: 35311177 PMCID: PMC8907751 DOI: 10.1002/fsn3.2688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Today, the demand for functional products has increased. Apricot kernel is an important source of protein, oil, and fiber and has high antioxidant and antimicrobial properties. In this study, the effect of adding different levels (15% and 30%) of apricot kernel flour (AKF) to the cupcake formulation on the physicochemical, textural, and sensory attributes of the produced cupcake during 14 days of storage was investigated and optimized by the response surface methodology (RSM) to find the optimum cupcake production with respect to maintaining the quality attributes of produced cake during storage period compared with control sample. The results showed that increasing AKF significantly increased the consistency and apparent viscosity of the dough, as well as the volume, height, and percentage of cake baking loss, but the moisture content and hardness of the cake did not show a significant difference compared with the control sample. Also, the crust and crumb color of the samples containing AKF were significantly lighter than the control sample. The results of optimization process showed that addition up to 30% AKF improved the sensory properties such as the crust and crumb color, texture, porosity, aroma, taste, and overall acceptance compared with the control sample. Samples containing 30% AKF were selected as the best formulation by panelists.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Department of Food Science and TechnologyBahar Faculty of Food Science and TechnologyBu‐Ali Sina UniversityHamadanIran
| | - Narjes Aghajani
- Department of Food Science and TechnologyBahar Faculty of Food Science and TechnologyBu‐Ali Sina UniversityHamadanIran
| | - Ashraf Gohari Ardabili
- Department of Food Science and TechnologyBahar Faculty of Food Science and TechnologyBu‐Ali Sina UniversityHamadanIran
| |
Collapse
|
28
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
29
|
Martins T, Oliveira PA, Pires MJ, Neuparth MJ, Lanzarin G, Félix L, Venâncio C, Pinto MDL, Ferreira J, Gaivão I, Barros AI, Rosa E, Antunes LM. Effect of a Sub-Chronic Oral Exposure of Broccoli ( Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods 2022; 11:foods11010120. [PMID: 35010245 PMCID: PMC8750293 DOI: 10.3390/foods11010120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Brassica by-products are a source of natural bioactive molecules such as glucosinolates and isothiocyanates, with potential applications in the nutraceutical and functional food industries. However, the effects of oral sub-chronic exposure to broccoli by-product flour (BF) have not yet been evaluated. The objective of this pilot study was to analyse the effects of BF intake in the physiological parameters of FVB/N mice fed a 6.7% BF-supplemented diet for 21 days. Glucosinolates and their derivatives were also quantified in plasma and urine. BF supplementation significantly decreased (p < 0.05) the accumulation of perirenal adipose tissue. Furthermore, mice supplemented with BF showed significantly lower (p < 0.01) microhematocrit values than control animals, but no impact on the general genotoxicological status nor relevant toxic effects on the liver and kidney were observed. Concerning hepatic and renal antioxidant response, BF supplementation induced a significant increase (p < 0.05) in the liver glutathione S-transferase (GST) levels. In BF-supplemented mice, plasma analysis revealed the presence of the glucosinolates glucobrassicin and glucoerucin, and the isothiocyanates sulforaphane and indole-3-carbinol. Overall, these results show that daily intake of a high dose of BF during three weeks is safe, and enables the bioavailability of beneficial glucosinolates and isothiocyanates. These results allow further testing of the benefits of this BF in animal models of disease, knowing that exposure of up to 6.7% BF does not present relevant toxicity.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Correspondence:
| | - Paula Alexandra Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria João Neuparth
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Germano Lanzarin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade do Porto (UP), 4200-135 Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria de Lurdes Pinto
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - João Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Isabel Gaivão
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Isabel Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Miguel Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
30
|
SUBIRIA-CUETO R, CORIA-OLIVEROS AJ, WALL-MEDRANO A, RODRIGO-GARCÍA J, GONZÁLEZ-AGUILAR GA, MARTINEZ-RUIZ NDR, ALVAREZ-PARRILLA E. Antioxidant dietary fiber-based bakery products: a new alternative for using plant-by-products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
32
|
Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients 2021; 13:nu13124194. [PMID: 34959745 PMCID: PMC8708897 DOI: 10.3390/nu13124194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A large amount of waste is generated within the different steps of the food supply chain, representing a significant loss of natural resources, plant material, and economic value for producers and consumers. During harvesting and processing, many parts of edible plants are not sold for consumption and end up as massive waste, adding environmental hazards to the list of concerns regarding food wastage. Examples are Brassica oleracea var. Italica (broccoli) by-products, which represent 75% of the plant mass. A growing concern in the Western world is obesity, which results from incorrect lifestyles and comprises an extensive array of co-morbidities. Several studies have linked these co-morbidities to increased oxidative stress; thus, naturally occurring and readily available antioxidant compounds are an attractive way to mitigate metabolic diseases. The idea of by-products selected for their biomedical value is not novel. However, there is innovation underlying the use of Brassica by-products in the context of obesity. For this reason, Brassica by-products are prime candidates to be used in the treatment of obesity due to its bioactive compounds, such as sulforaphane, which possess antioxidant activity. Here, we review the economic and health potential of Brassica bioactive compounds in the context of obesity.
Collapse
|
33
|
Drabińska N, Jeż M, Nogueira M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants (Basel) 2021; 10:1597. [PMID: 34679732 PMCID: PMC8533432 DOI: 10.3390/antiox10101597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetables from the Brassicaceae family are excellent sources of bioactive phytochemicals and may reduce the risk of chronic diseases. Variation of phytochemicals in the edible part of cauliflower is known. However, information about the distribution of bioactive and nutritive compounds as well as antioxidant activity among aerial organs of cauliflower is unavailable. Therefore, this study aimed to evaluate the distribution of glucosinolates (GLS), phenolics, flavonoids, chlorophylls, nutritive compounds and antioxidant capacity between the aerial parts of the common variety of cauliflower and to evaluate whether these changes contribute to the differences in the antioxidant capacity between the plant organs. Our study showed that all the aerial organs of cauliflower are a rich source of health-promoting bioactive compounds, including GLS, phenolics and flavonoids, exhibiting antioxidant capacity. The highest contents of phytochemicals and the highest antioxidant capacity were found in leaves. Cauliflower organs were also found to be rich in nutritive compounds, including minerals, proteins and amino acids. Our study showed that the non-edible organs, such as stems and leaves, being neglected parts of cauliflower, if not consumed as the main ingredient, can be used as additives for developing new, functional foodstuff.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Maja Jeż
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mariana Nogueira
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Faculty of Biotechnology, Universidade Católica Portuguesa, 4169005 Porto, Portugal
| |
Collapse
|
34
|
Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants (Basel) 2021; 10:antiox10071136. [PMID: 34356369 PMCID: PMC8301118 DOI: 10.3390/antiox10071136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices.
Collapse
|
35
|
Konuk Takma D, Ülkeryıldız Balçık E, Sahin‐Nadeem H. Physicochemical and sensory properties of gluten‐free cupcakes added with fig seeds pomace flour. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dilara Konuk Takma
- Department of Food Engineering Faculty of Engineering Aydın Adnan Menderes University Aydın Turkey
| | - Eda Ülkeryıldız Balçık
- Department of Food Engineering Faculty of Engineering Aydın Adnan Menderes University Aydın Turkey
| | - Hilal Sahin‐Nadeem
- Department of Food Engineering Faculty of Engineering Aydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
36
|
Köten M. Influence of raw/roasted terebinth (Pistacia Terebinthus L.) on the selected quality characteristics of sponge cakes. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Krupa-Kozak U, Drabińska N, Bączek N, Šimková K, Starowicz M, Jeliński T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021; 10:819. [PMID: 33918917 PMCID: PMC8069453 DOI: 10.3390/foods10040819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
In comparison to conventional bread, gluten-free bread (GF) shows many post-baking defects and a lower nutritional and functional value. Although broccoli leaves are perceived as waste products, they are characterised by a high content of nutrients and bioactive compounds. The present study evaluated the nutritional value, technological quality, antioxidant properties, and inhibitory activity against the formation of advanced glycation end-products (AGEs) of GF enriched with broccoli leaf powder (BLP). Compared to the control, gluten-free bread with BLP (GFB) was characterised by a significantly (p < 0.05) higher content of nutrients (proteins and minerals), as well as improved specific volume and bake loss. However, what needs to be emphasised is that BLP significantly (p < 0.05) improved the antioxidant potential and anti-AGE activity of GFB. The obtained results indicate that BLP can be successfully used as a component of gluten-free baked products. In conclusion, the newly developed GFB with improved technological and functional properties is an added-value bakery product that could provide health benefits to subjects on a gluten-free diet.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (N.D.); (N.B.); (K.Š.); (M.S.); (T.J.)
| | | | | | | | | | | |
Collapse
|
38
|
Saavedra-Leos MZ, Leyva-Porras C, Toxqui-Terán A, Espinosa-Solis V. Physicochemical Properties and Antioxidant Activity of Spray-Dry Broccoli ( Brassica oleracea var Italica) Stalk and Floret Juice Powders. Molecules 2021; 26:molecules26071973. [PMID: 33807418 PMCID: PMC8036675 DOI: 10.3390/molecules26071973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
This research presents the microencapsulation and conservation of antioxidants of broccoli juice processed by spray drying, and proposes the use of a by-product as a technological application. Broccoli juice (BJ) extracted from two sources, stalks and florets, was spray-dried employing maltodextrin (MX) as a carrier agent at concentrations of 5, 7.5, and 10%, and inlet temperatures of 150 and 220 °C. The total phenolic content (TPC), and antioxidant activity (AA) of the BJ-MX powders were determined together with the physicochemical characteristics, including particle morphology, microstructure, and thermal properties. Based on the TPC and AA, the optimal processing conditions found were 5% of MX and a drying temperature of 220 °C. However, the florets showed higher TPC, while stalks presented higher AA under those processing conditions. The particles exhibited micrometric sizes and a mixture of spherical-shape particles and pseudo-spherical particles. The diffractograms indicated an amorphous microstructure in all samples. The glass transition temperature (Tg) was determined in the range of 50 °C for the samples dried at 150 °C and 55 °C for those dried at 220 °C. This suggested that powders might be stored at temperatures below the Tg without presenting any loss of antioxidants.
Collapse
Affiliation(s)
- María Zenaida Saavedra-Leos
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, Carretera Cedral Km. 5+600 Ejido San José de las Trojes, Matehuala 78700, San Luis Potosí, Mexico;
| | - César Leyva-Porras
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Alberto Toxqui-Terán
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Apodaca 66600, Nuevo Leon, Mexico;
| | - Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí. Km 5, Carretera Tamazunchale-San Martin, Tamazunchale, San Luis Potosi 79960, Mexico
- Correspondence: ; Tel.: +52-4833824500
| |
Collapse
|
39
|
Pumpkin, Cauliflower and Broccoli as New Carriers of Thiamine Compounds for Food Fortification. Foods 2021; 10:foods10030578. [PMID: 33801931 PMCID: PMC7999783 DOI: 10.3390/foods10030578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to explore the possibility of vegetables being used as carriers of thiamine. The influence of carrier type (thiamine hydrochloride—TCh and thiamine pyrophosphate—TP) for the thiamine stability were investigated. Two varieties of pumpkin, Muscat and Hokkaido, as well as Cauliflower and Broccoli, were used as a matrix for the thiamine applied. The impregnated and freeze-dried vegetables were stored (230 days) with changing access to light (access to and restriction of light) and temperature (21 °C and 40 °C). The analyzed carriers were also used in the production of gnocchi dumplings. The content of thiamine was analyzed using the thiochromium method. In the study, consumer tests (n = 199) and sensory profiling were used to assess the impact of thiamine carriers on the sensory quality of gnocchi dumplings. It was found that the introduction of dried vegetables at the level of 30% allows for high sensory desirability of analyzed products, as well as suggesting the possibility of their frequent consumption. Such a product could potentially become an alternative to pork meat as a good source of thiamine. However, it should be noted that the thiamine losses may occur during the storage of dried vegetables and their culinary preparation.
Collapse
|
40
|
Boz H. Effect of Rice and Chickpea Flours on Physical, Textural, and Sensorial Properties of Pregelatinized Maize Starch Cake. STARCH-STARKE 2021. [DOI: 10.1002/star.202000239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hüseyin Boz
- Gastronomy and Culinary Arts Dept. Tourism Faculty Atatürk University Erzurum 25240 Turkey
| |
Collapse
|
41
|
Elucidating the role of amaranth flour in formulation of gluten free black rice muffins and its premix: nutritional, physico-chemical and textural characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants (Basel) 2020; 9:antiox9121216. [PMID: 33276525 PMCID: PMC7761272 DOI: 10.3390/antiox9121216] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Reducing food loss and waste is among the efforts to relieve the pressure on natural resources and move towards more sustainable food systems. Alternative pathways of food waste management include valorization of by-products as a source of phenolic compounds for formulation of functional foods. Bakery products may act as an optimal carrier of phenolic compounds upon fortification. The aim of this paper is to present and discuss the effect that the inclusion of functional ingredients from agri-food waste can have on phenolic content and bioaccessibility in bakery products. To this aim, methods for the recovery of phenolic compounds from agri-food waste are presented, and fortification of bakery products by waste from fruits, vegetables, and seed crops is discussed. Bioaccessibility studies on fortified food products are considered to identify gaps and needs in developing sustainable healthy foods. Fruit and vegetable by-products are among the food wastes mostly valorized as functional ingredients in bakery product formulation. Agri-food waste inclusion level has shown to correlate positively with the increase in phenolic content and antioxidant capacity. Nevertheless, further studies are required to assess bioaccessibility and bioavailability of phenolic compounds in enriched food products to estimate the potential of agri-food waste in promoting human health and well-being.
Collapse
|
43
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
44
|
de Evan T, Marcos CN, Ranilla MJ, Carro MD. In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants. Animals (Basel) 2020; 10:ani10111989. [PMID: 33137999 PMCID: PMC7692473 DOI: 10.3390/ani10111989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/03/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Public concern about food wastes has increased in recent years. According to the FAO (Food and Agriculture Organization), vegetable food losses happen mainly at cultivation and harvest, but losses at distribution and consumption are also important. The dry matter of some vegetable wastes is rich in protein and fiber and the wastes could be used in ruminant feeding, but information on their nutritive value is needed. Both broccoli florets and stems were studied, and the rumen degradability of diets including increasing amounts of dried broccoli was assessed. Both florets and stems had low dry matter content (<5%), but were rich in protein (>23%) and sugars (>19.9%). Both broccoli fractions were highly degradable in the rumen, with stems showing greater values than florets. In contrast, stems had lower in vitro intestinal digestibility than florets. According to in vitro results, dried broccoli could replace up to 24% of the cereals and high-protein ingredients in a high-cereal concentrate without affecting the rumen fermentation of the diet. Abstract The potential of broccoli wastes (florets and stems) as ruminant feed was analyzed using in vitro and in situ techniques. Both stems and florets had high moisture content (90.6 and 86.1%, respectively), but the stems contained (% dry matter) lower levels (p < 0.05) of crude protein (CP; 23.2 vs. 30.8%) and ether extract (2.91 vs. 6.15%) and tended to have greater sugars content (p = 0.071; 33.4 vs. 19.6%) than florets. Stems had greater in vitro dry matter rumen degradability (45.3%; 24 h incubation) and lower in vitro CP intestinal digestibility (82.7%) compared with florets (42.2 and 90.1%, respectively). Rumen degradability of protein was high (<85%) for both fractions. In a second experiment, diets including different proportions of broccoli were formulated and fermented in vitro. The replacement of 24% of conventional feeds (wheat, soybean meal and wheat bran) in a concentrate by dried broccoli increased the amount of organic matter fermented in vitro and the NH3-N concentrations of a mixed diet including 40% of the concentrate. Including dried broccoli in the diet produced only small modifications in the volatile fatty acid profile and did not affect CH4 emission.
Collapse
Affiliation(s)
- Trinidad de Evan
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (T.d.E.); (C.N.M.)
| | - Carlos N. Marcos
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (T.d.E.); (C.N.M.)
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain. IGM (CSIC-ULE), Finca Marzanas s/n. 24346 Grulleros, León, Spain;
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (T.d.E.); (C.N.M.)
- Correspondence: ; Tel.: +34-910671023
| |
Collapse
|
45
|
Thermal stability and bioavailability of bioactive compounds after baking of bread enriched with different onion by-products. Food Chem 2020; 319:126562. [DOI: 10.1016/j.foodchem.2020.126562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
|
46
|
Shi M, Ying DY, Ye JH, Sanguansri L, Augustin MA. Broccoli byproducts for protection and co-delivery of EGCG and tuna oil. Food Chem 2020; 326:126963. [PMID: 32413754 DOI: 10.1016/j.foodchem.2020.126963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Neat epigallocatechin gallate (EGCG) has low bioavailability and tuna oil (TO) is prone to oxidation. Broccoli byproducts (BBP) were used for preparing TO-BBP (25% oil, dry basis) and TO-EGCG-BBP (20% oil and 20% EGCG, dry basis) powders. The gross composition and surface fat of powders and morphology of reconstituted emulsions were characterized. Oxipres® data (80 °C, 5 bar oxygen pressure) showed that the TO-EGCG-BBP formulation was more oxidatively stable [Induction period (IP) > 100 h] than TO-BBP (IP ~ 20 h). During in vitro digestion, 90% of EGCG was recovered in the whole intestinal digesta of the TO-EGCG-BBP formulation compared to 76% for the EGCG-BBP formulation and 66% for the neat EGCG. The use of BBP for co-delivering EGCG and TO increases oxidative stability of TO and improves EGCG stability during in vitro digestion. This study highlights the potential for formulating functional ingredient with BBP and contribute to food waste reduction.
Collapse
Affiliation(s)
- Meng Shi
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| | - Dan-Yang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou 310058, China.
| | - Luz Sanguansri
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Mary Ann Augustin
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| |
Collapse
|
47
|
Le TN, Sakulsataporn N, Chiu CH, Hsieh PC. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharmaceuticals (Basel) 2020; 13:ph13050082. [PMID: 32354112 PMCID: PMC7280965 DOI: 10.3390/ph13050082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Broccoli contains a substantial amount of bioactive compounds such as glucosinolates, phenolics, and essential nutrients, which are positively linked to health-promoting effects. This work aimed to evaluate whether both edible and non-edible parts of broccoli could be effective by examining in vitro antioxidant, cytotoxic, apoptotic, and antibacterial properties of its floret, leaf, and seed extracts (FE, LE, and SE, correspondingly). High-performance liquid chromatography (HPLC) and various assays exhibited strong antioxidant activities of all samples. LE obtained the highest capacity, correlated to its polyphenolic contents. SE exerted significant cytotoxicity against A549, Caco-2, and HepG2 cancer cell lines at low inhibitory concentration (IC)50 values (0.134, 0.209, and 0.238 mg/mL, respectively), as tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry confirmed apoptosis induction of extracts in Caco-2 cells by revealing an increased subG1 population and a decreased mitochondrial membrane potential. The considerable antibacterial efficacy was observed in either LE and SE against Bacillus subtilis and Salmonella typhimurium (0.39-0.78 mg/mL) using well-agar diffusion and minimum inhibitory concentration (MIC) techniques, along with the weak activity against Staphylococcus aureus and Escherichia coli (1.56-3.13 mg/mL). The findings suggest that broccoli and its byproducts might serve as a promising source for further development of food or pharmaceutical products.
Collapse
|
48
|
Berndtsson E, Andersson R, Johansson E, Olsson ME. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2406. [PMID: 32244813 PMCID: PMC7178181 DOI: 10.3390/ijerph17072406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
Human consumption of fruits and vegetables are generally below recommended levels. Waste from the production, e.g., of un-used parts such as broccoli leaves and stem when producing broccoli florets for food, is a sustainability issue. In this study, broccoli leaves were analyzed for the content of various dietary fibre and phenolics, applying the Uppsala method and HPLC analyses, respectively. The results showed that broccoli leaves had comparable levels of dietary fibre (26%-32% of dry weight (DW)) and phenolic compounds (6.3-15.2 mg/g DW) to many other food and vegetables considered valuable in the human diet from a health perspective. A significant positive correlation was found among soluble dietary fibre and phenolic acids indicating possible bindings between these components. Seasonal variations affected mainly the content of conjugated phenolics, and the content of insoluble dietary fibre. This study verified the importance of the use of broccoli production side streams (leaves) as they may contribute with health promoting components to the human diet and also socio-economic and environmental benefits to the bioeconomic development in the society.
Collapse
Affiliation(s)
- Emilia Berndtsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE- 750 07 Uppsala, Sweden;
| | - Eva Johansson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Marie E. Olsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| |
Collapse
|
49
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|
50
|
García‐Saldaña JS, Parra‐Delgado J, Campas‐Baypoli ON, Sánchez‐Machado DI, Cantú‐Soto EU, López‐Cervantes J. Changes in growth kinetics and motility characteristics of
Escherichia coli
in the presence of sulphoraphane isolated from broccoli seed meal. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jesús Santos García‐Saldaña
- Doctorado en Ciencias en Especialidad en Biotecnología Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000 Cd. Obregón Sonora México
| | - Julián Parra‐Delgado
- Maestría en Ciencias en Recursos Naturales Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000 Cd. Obregón Sonora México
| | - Olga Nydia Campas‐Baypoli
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Dalia Isabel Sánchez‐Machado
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Ernesto Uriel Cantú‐Soto
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| | - Jaime López‐Cervantes
- Departamento de Biotecnología y Ciencias Alimentarias Instituto Tecnológico de Sonora 5 de Febrero 818 Sur CP 85000, Cd. Obregón Sonora México
| |
Collapse
|