1
|
Cortijo-Alfonso ME, Yuste S, Piñol-Felis C, Romero MP, Macià A, Rubió-Piqué L. Finger-prick blood sampling using volumetric absorptive microsampling (VAMS) method for monitoring the main (poly)phenolic metabolites in human blood after barley biscuit intake. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124527. [PMID: 40015006 DOI: 10.1016/j.jchromb.2025.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
A novel method based on volumetric absorptive micro-sampling (VAMS) combined with UPLC-MS/MS was developed and validated to determine the principal (poly)phenolic metabolites in human blood following the consumption of 140 g of purple whole-grain barley (WGB) biscuits. Finger-prick blood samples were collected from 11 healthy volunteers at multiple time points up to 48 h post-ingestion. To extract (poly)phenolic metabolites efficiently, various extraction parameters were optimized. Then, the method was successfully applied and five colonic (poly)phenolic metabolites from the main (poly)phenolic families from barley were detected: benzene-1,2-diol-O-sulphate, 3-(4'-hydroxy-3'-methoxy)propanoic acid and its sulphated form, 5'-(3',4'-dihydroxyphenyl)-γ-valerolactone-O-sulphate, and methyl luteolin-O-glucuronide. Maximum absorption occurred at 12 h for most metabolites, while luteolin-O-glucuronide showed two distinct peaks at 2 and 6 h, indicating its dual-phase absorption. Comparison with venous plasma samples collected during the 0-6 h period showed no significant differences (p > 0.05), validating the statistical reliability of VAMS as an alternative to venipuncture. Thus, VAMS emerges as a less invasive and statistically robust means for analyzing the pharmacokinetic profile of (poly)phenols, particularly those arising from colonic metabolism.
Collapse
Affiliation(s)
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida. Lleida, Spain; Institut de Recerca Biomèdica de Lleida. Fundació Dr. Pifarré IRBLleida. Lleida, Spain
| | - María-Paz Romero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
2
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Cortijo-Alfonso ME, Romero MP, Macià A, Yuste S, Moralejo M, Rubió-Piqué L, Piñol-Felis C. Effect of Barley and Oat Consumption on Immune System, Inflammation and Gut Microbiota: A Systematic Review of Randomized Controlled Trials. Curr Nutr Rep 2024; 13:582-597. [PMID: 38789888 PMCID: PMC11327181 DOI: 10.1007/s13668-024-00543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The aim of this systematic review was to investigate the effects of whole grain Avena sativa and Hordeum vulgare L., or their isolated fractions, on immune and inflammatory functions, as well as their influence on gut microbiota. A structured literature search was undertaken in line with PRISMA guidelines. Randomized controlled trials (RCTs) that investigated the effects of oats or barley consumption in adults and reported ≥ 1 of the following: C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), IL-2, IL-8, IL-18, lipopolysacharide binding protein (LBP) or gut microbiota-related outcomes, were included. RECENT FINDINGS A total of 16 RCTs were included, among which 6 studies recruited metabolically at-risk population, including individuals with overweight and obesity, metabolic syndrome or hypercholesterolemia. Additionally, 3 trials involved young healthy population, 5 trials targeted older individuals (aged over 50 years), and 2 studies encompassed populations with other disease states. A total of 1091 individuals were included in the evaluation of short-term (up to 14 days) and long-term (beyond 14 days, up to 90 days) supplementation with oats or barley-based products. 9 studies measured inflammatory biomarkers and 5 of them reported significant reductions, specifically in long-term studies. Notably, no evidence of anti-inflammatory benefits was found in healthy individuals, whereas studies involving metabolically at-risk populations showed promising reductions in inflammation. 13 studies measured the impact on gut microbiota, and collectively suggest that oats and barley food products can influence the composition of gut microbiota, associated in some cases with metabolic improvements. Oats and barley consumption may confer anti-inflammatory effects in metabolically at-risk populations and influence gut microbiota outcomes. However, no anti-inflammatory benefits were observed in healthy individuals. Results from this systematic review suggests caution in interpreting findings due to limited trials and variations in interventions and health conditions.
Collapse
Affiliation(s)
| | - María-Paz Romero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Marian Moralejo
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida, Lleida, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré IRBLleida, Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Ribeiro da Silva Lima L, Barros Santos MC, P. Gomes PW, Fernández-Ochoa Á, Simões Larraz Ferreira M. Overview of the Metabolite Composition and Antioxidant Capacity of Seven Major and Minor Cereal Crops and Their Milling Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19197-19218. [PMID: 38803291 PMCID: PMC11363145 DOI: 10.1021/acs.jafc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.
Collapse
Affiliation(s)
- Luciana Ribeiro da Silva Lima
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| | - Millena C. Barros Santos
- Bordeaux
Metabolome-MetaboHUB, INRAE Bordeaux Nouvelle-Aquitaine,
UMR1332 BFP, Villenave
d’Ornon 33882, France
| | - Paulo Wender P. Gomes
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy &
Pharmaceutical Sciences, University of California
San Diego, 9500 Gilman
Drive, La Jolla, San Diego, California 92093-0751, United States
| | - Álvaro Fernández-Ochoa
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Mariana Simões Larraz Ferreira
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| |
Collapse
|
5
|
Cortijo-Alfonso ME, Yuste S, Friero I, Martínez-Subirà M, Moralejo M, Piñol-Felis C, Rubió-Piqué L, Macià A. Metabolic profiling of (poly)phenolic compounds in mouse urine following consumption of hull-less and purple-grain barley. Food Funct 2024; 15:8300-8309. [PMID: 39046367 DOI: 10.1039/d4fo01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The present study attempted for the first time to investigate the metabolic fate of (poly)phenolic compounds provided by a hull-less and purple grain barley genotype biofortified in anthocyanins. Balb/c mice were supplemented either with standard purified diet (SD) or whole-grain barley supplemented diet (WGB) for six weeks. Subsequently, (poly)phenolic metabolites were determined in urine samples by UPLC-MS/MS, and the principal metabolic pathways were elucidated. Thirty-nine (poly)phenolics compounds were identified in WGB which were distributed between the free (58%) and bound (42%) fractions, encompassing anthocyanins, phenolic acids, flavan-3-ols and flavones. Upon WGB intake, forty-two (poly)phenolic metabolites were identified, predominantly comprising phase-II sulphate, glucuronide, and/or methylated conjugates, along with colonic catabolites. Noteworthy metabolites included peonidin-3-O-glucuronide, peonidin-3-O-6''-O-malonylglucoside, and peonidin-3-O-glucoside among anthocyanins; hydroxyphenylpropanoic acid-O-sulphate among phenolic acids; and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone-O-sulphate among flavan-3-ols. Metabolites like phenylpropionic, phenylacetic, hydroxybenzoic, and hippuric acids were found in both WGB and SD groups, with higher levels after barley consumption, indicating both endogenous and polyphenolic metabolism origins. Overall, this study offers valuable insights into the metabolism of (poly)phenols in purple barley, setting the stage for future investigations into the health benefits linked to the consumption of purple grain barley.
Collapse
Affiliation(s)
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Iván Friero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Mariona Martínez-Subirà
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Marian Moralejo
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr Pifarré IRBLleida, Lleida, Spain
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
6
|
Martínez-Subirà M, Meints B, Tomasino E, Hayes P. Effects of roasting and steeping on nutrients and physiochemical compounds in organically grown naked barley teas. Food Chem X 2024; 22:101385. [PMID: 38665632 PMCID: PMC11043873 DOI: 10.1016/j.fochx.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Barley tea, a popular beverage with cultural traditions in East Asia, has long been esteemed for its flavor, aroma, thirst-quenching properties and perceived health benefits attributed to bioactive compounds. This study investigated the nutritional, bioactive, and antioxidant aspects of three commercial naked barley varieties, focusing on the impact of roasting and subsequent steeping for tea. Roasting did not affect total dietary fiber or β-glucan content. The process reduced sugar content and led to the disappearance of free amino acids, contributing to high levels of acrylamide and color changes. Roasting diminished total phenolic compounds, particularly flavonoids, resulting in reduced antioxidant activity. Metabolite analysis identified compounds in roasted grains that could influence tea flavor and aroma. Roasted barley tea made from these varieties was not a source of dietary fiber or antioxidants, but also contained no acrylamide. Therefore, consumers seeking such benefits from barley are urged to consume whole grain foods.
Collapse
Affiliation(s)
| | - Brigid Meints
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Elizabeth Tomasino
- Department of Food Science &Technology, Oregon State University, Corvallis, OR, USA
| | - Patrick Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Friero I, Macià A, Romero MP, Romagosa I, Martínez-Subirà M, Moralejo M. Unlocking Phenolic Potential: Determining the Optimal Grain Development Stage in Hull-Less Barley Genotypes with Varying Grain Color. Foods 2024; 13:1841. [PMID: 38928783 PMCID: PMC11202528 DOI: 10.3390/foods13121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Barley is rich in phenolic compounds, providing health benefits and making it a valuable addition to a balanced diet. However, most studies focus on these compounds at barley's final maturity, neglecting their synthesis during grain development and its impact on barley quality for food applications. This study investigates phenolic profiles during grain development in four hull-less barley genotypes with different grain colors, specifically bred for food applications. The objectives were to determine the phenolic profile and identify the optimal maturity stage for maximum phenolic content and antioxidant capacity. Using UPLC-MS/MS and in vitro antioxidant capacity assays, results show that total phenolic compounds decrease as grain matures due to increased synthesis of reserve components. Flavan-3-ols, phenolic acids, and flavone glycosides peaked at immature stages, while anthocyanins peaked at physiological maturity. The harvest stage had the lowest phenolic content, with a gradient from black to yellow, purple, and blue genotypes. Antioxidant capacity fluctuated during maturation, correlating positively with phenolic compounds, specially bound phenolic acids and anthocyanins. These findings suggest that early harvesting of immature grain can help retain bioactive compounds, promoting the use of immature barley grains in foods. To support this market, incentives should offset costs associated with decreased grain weight.
Collapse
|
8
|
Desta KT, Choi YM, Yoon H, Lee S, Yi J, Jeon YA, Wang X, Park JC, Kim KM, Shin MJ. Comprehensive Characterization of Global Barley ( Hordeum vulgare L.) Collection Using Agronomic Traits, β-Glucan Level, Phenolic Content, and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:169. [PMID: 38256723 PMCID: PMC10818635 DOI: 10.3390/plants13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), β-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest β-glucan content. Two accessions had β-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jin-Cheon Park
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Min Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
9
|
Nemzer B, Al-Taher F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023; 12:foods12091853. [PMID: 37174393 PMCID: PMC10178583 DOI: 10.3390/foods12091853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-grain diet is associated with the prevention of metabolic syndromes, including obesity, diabetes, and cardiovascular diseases. Sprouting improves the nutritional profile and bioactive properties of grains, which are important for use as raw ingredients in the food industry. The aim of this review was to examine the lipid and fatty acid composition of germinated grains. The methods discussed include germination and analytical procedures for determining fat and fatty acid contents of grains. The effects of sprouting on the fat content and storage stability of grains were also assessed. Lipid levels ranged from 1.43% to 6.66% in the sprouted grains. The individual fatty acid content of grains changed depending on the germination conditions (17-37 °C, 1-9 days). Limited findings showed that sprouting grains at higher temperatures (20-25 °C) and longer times generated a healthy balance of omega-6 and omega-3 fatty acids, which is beneficial to humans. Future studies are needed to determine the optimum incubation and germination periods specific to each grain to improve the omega-6/omega-3 ratio. Free fatty acids were produced more slowly and levels of oxidation products were lower in sprouted grains than in the raw ingredients when stored for a year. Additional studies are required to investigate the oxidative stability and shelf life of sprouted grains.
Collapse
Affiliation(s)
- Boris Nemzer
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
| |
Collapse
|
10
|
Eid O, Elkady WM, Ezzat S, El Sayed A, Abd Elsattar E. Comprehensive Overview: The Effect of Using Different Solvents for Barley Extraction with Its Anti-Inflammatory and Antioxidant Activity. Chem Biodivers 2023; 20:e202200935. [PMID: 36730630 DOI: 10.1002/cbdv.202200935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the world's oldest cereal crops. There is considerable interest in barley's potential usage in human diets. Barley is rich in bioactive metabolites such as high content of β-glucan, fiber, and vitamin E. It is also well-known as a rich source of phytochemical derivatives, namely, phenolic acids, flavonols, chalcones, flavones, proanthocyanidins, and flavanones. Phenolic compounds are recognized as excellent dietary materials with antioxidant and anti-inflammatory activities. This review was written to give an overview of the main components that are separated from barley using different solvents. Even though there were numerous biological activities for barely, the antioxidant, as well as the anti-inflammatory, are the main focus of this review.
Collapse
Affiliation(s)
- Omneya Eid
- Department of Pharmacognosy and medicinal plants, Faculty of Pharmacy, Future University in Egypt, 12311, Cairo, Egypt
| | - Wafaa M Elkady
- Department of Pharmacognosy and medicinal plants, Faculty of Pharmacy, Future University in Egypt, 12311, Cairo, Egypt
| | - Shahira Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), 6th October, 12451, Egypt
| | - Abeer El Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Essam Abd Elsattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
11
|
Xie J, Hong Y, Gu Z, Cheng L, Li Z, Li C, Ban X. Highland Barley Starch: Structures, Properties, and Applications. Foods 2023; 12:foods12020387. [PMID: 36673478 PMCID: PMC9857740 DOI: 10.3390/foods12020387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Highland barley (HB) is a nutritious crop with excellent health benefits, and shows promise as an economically important crop with diverse applications. Starch is the main component of HB and has great application potential owing to its unique structural and functional properties. This review details the latest status of research on the isolation, chemical composition, structure, properties, and applications of highland barley starch (HBS). Suggestions regarding how to better comprehend and utilize starches are proposed. The amylopectin content of HBS ranged from 74% to 78%, and can reach 100% in some varieties. Milling and air classification of barley, followed by wet extraction, can yield high-purity HBS. The surface of HBS granules is smooth, and most are oval and disc-shaped. Normal, waxy, and high-amylose HBS have an A-type crystalline. Due to its superb freeze-thaw stability, outstanding stability, and high solubility, HBS is widely used in the food and non-food industries. The digestibility of starch in different HB whole grain products varies widely. Therefore, the suitable HB variety can be selected to achieve the desired glycemic index. Further physicochemical modifications can be applied to expand the variability in starch structures and properties. The findings provide a thorough reference for future research on the utilization of HBS.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Correspondence: ; Tel.: +86-510-85329237
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Zhang J, Deng H, Bai J, Zhou X, Zhao Y, Zhu Y, McClements DJ, Xiao X, Sun Q. Health-promoting properties of barley: A review of nutrient and nutraceutical composition, functionality, bioprocessing, and health benefits. Crit Rev Food Sci Nutr 2023; 63:1155-1169. [PMID: 36394558 DOI: 10.1080/10408398.2021.1972926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Barley is one of the world's oldest cereal crops forming an important component of many traditional diets. Barley is rich in a variety of bioactive phytochemicals with potentially health-promoting effects. However, its beneficial nutritional attributes are not being fully realized because of the limited number of foods it is currently utilized in. It is therefore crucial for the food industry to produce novel barley-based foods that are healthy and cater to customers' tastes. This article reviews the nutritional and functional characteristics of barley, with an emphasis on its ability to improve glucose/lipid metabolism. Then, recent trends in barley product development are discussed. Finally, current limitations and future research directions in glucolipid modulation mechanisms and barley bioprocessing are discussed.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Deng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens Bioelectron 2022; 209:114253. [DOI: 10.1016/j.bios.2022.114253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022]
|
14
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|
15
|
|
16
|
Martínez-Subirà M, Romero MP, Moralejo M, Macià A, Puig E, Savin R, Romagosa I. Post-anthesis thermal stress induces differential accumulation of bioactive compounds in field-grown barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6496-6504. [PMID: 34000070 DOI: 10.1002/jsfa.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) is a healthy grain because of its high content of dietary fibre and phenolic compounds. It faces periods of high temperature during grain filling, frequently reducing grain weight. Heat stress may also affect some of the bioactive compounds present in the grain. To produce quality grains that provide nutritional and health benefits, it is important to understand the effect of environmental stresses on the quantity and quality of bioactive compounds. RESULTS We have studied the effect of post-anthesis thermal stress on barley bioactive compounds and antioxidant capacity under Mediterranean field conditions during two consecutive growing seasons in four barley genotypes. Thermal stress affected grain weight and size and changed the relative composition of bioactive compounds. The relationship between heat stress and grain β-glucans and arabinoxylans content was indirect, as the resulting increases in concentrations were due to the lower grain weight under stress. Conversely, heat stress had a significant direct impact on some phenolic compounds, increasing their concentrations differentially across genotypes, which contributed to an improvement in antioxidant capacity of up to 30%. CONCLUSION Post-anthesis thermal stress had a significant effect on β-glucans, arabinoxylans, phenolic compound concentration and antioxidant capacity of barley grains. Final grain quality could, at least partially, be controlled in order to increase the bioactive concentrations in the barley grain, by cultivation in growing areas prone to heat stress. Late sowings or late flowering genotypes could also be considered, should a premium be implemented to compensate for lower yields. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marian Moralejo
- University of Lleida - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Alba Macià
- University of Lleida - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Eva Puig
- University of Lleida - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Roxana Savin
- University of Lleida - AGROTECNIO-CERCA Center, Lleida, Spain
| | | |
Collapse
|
17
|
Ha MT, Tran PT, Tran HNK, Kim O, Kim JA, Lee JH, Min BS. Anti-osteoclastogenic Effects of Indole Alkaloids Isolated from Barley ( Hordeum vulgare Var. Hexastichon) Grass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12994-13005. [PMID: 34694780 DOI: 10.1021/acs.jafc.1c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As part of our continuous program to identify new potential candidates for controlling osteolytic bone diseases from natural products, the alkaloid fraction of barley (Hordeum vulgare var. hexastichon) grass (HVA) significantly inhibited RANKL-induced osteoclast formation and protected mice from LPS-induced bone loss. A phytochemical investigation of HVA afforded nine indole alkaloids, including one new compound [hordeumin A (1)] and eight known analogues (2-9). Of them, four (1, 2, 4, and 5) were anti-osteoclastogenic compounds. Of these four, compound 5 significantly suppressed RANKL-induced osteoclast formation, actin ring formation, and bone resorption in a concentration-dependent manner. It also suppressed the RANKL-induced NF-κB and MAPK signaling pathways and the activation of c-Fos and NFATc1. Compound 5 also reduced the expression levels of osteoclast-specific marker genes, including TRAP, CtsK, DC-STAMP, OSCAR, and MMP9. Our findings suggest that HVA and its alkaloid constituents could be valuable candidates for the prevention and treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Huynh Nguyen Khanh Tran
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Okwha Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| |
Collapse
|
18
|
Ham JR, Lee HI, Lee Y, Lee HJ, Kim HY, Son YJ, Lee MK, Lee MJ. Dual beneficial effects of naked barley “Betaone” extract on high-fat diet/streptozotocin-induced hyperglycemia and hepatosteatosis in mice. J Cereal Sci 2021; 102:103358. [DOI: 10.1016/j.jcs.2021.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Šimić G, Lalić A, Horvat D, Zdunić Z, Koceva Komlenić D, Bucić-Kojić A, Planinić M, Tišma M. Production and analysis of the flour from the hull-less barley. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00857-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Drawbridge PC, Apea-Bah F, Silveira Hornung P, Beta T. Bioaccessibility of phenolic acids in Canadian hulless barley varieties. Food Chem 2021; 358:129905. [PMID: 33940288 DOI: 10.1016/j.foodchem.2021.129905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/01/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
In order to gain understanding of bioaccessibility of phenolic acids in food-grade barley, an investigation was conducted using four cooked whole-grain, hulless, barley varieties. An in vitro digestion model was used to mimic human upper gastrointestinal digestion. Boiling enhanced the extractability of bound phenolic acids while digestion increased the level of free phenolic acids. The high bioaccessibilities observed were likely due to the release of bound phenolic acids during cooking and digestion. The major bioaccessible phenolics were ferulic and p-coumaric acids with bioaccessibility ranging from 131 to 173% and 51-135%, respectively. Peru-35 had significantly greater bioaccessibility of ferulic acid compared to other varieties. A hydroxycinnamic acid amide not reported before in boiled barley, N1, N8- dicaffeoyl spermidine, was identified in free phenolic extracts with relatively high abundance compared to the phenolic acids. It may provide additional anti-inflammatory and antioxidant functions. These cooked whole-grain, hulless barley varieties are sources of bioaccessible phenolic acids.
Collapse
Affiliation(s)
- Pamela C Drawbridge
- University of Manitoba, Department of Food & Human Nutritional Sciences, Winnipeg, Manitoba R3T 2N2, Canada
| | - Franklin Apea-Bah
- University of Manitoba, Department of Food & Human Nutritional Sciences, Winnipeg, Manitoba R3T 2N2, Canada
| | - Polyanna Silveira Hornung
- University of Manitoba, Department of Food & Human Nutritional Sciences, Winnipeg, Manitoba R3T 2N2, Canada
| | - Trust Beta
- University of Manitoba, Department of Food & Human Nutritional Sciences, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
21
|
Martínez-Subirà M, Moralejo M, Puig E, Romero MP, Savin R, Romagosa I. Impact of Rising Temperature in the Deposition Patterns of Bioactive Compounds in Field Grown Food Barley Grains. PLANTS (BASEL, SWITZERLAND) 2021; 10:598. [PMID: 33810185 PMCID: PMC8004944 DOI: 10.3390/plants10030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
High temperatures at the end of the season are frequent under Mediterranean conditions, affecting final grain quality. This study determined the deposition patterns throughout grain filling of dry matter, dietary fiber, phenolic compounds and antioxidant capacity for four barley genotypes under two contrasting temperatures. Deposition pattern for dietary fiber followed that of grain weight. Genotypic differences for duration were more significant than for rate. Anthocyanins followed a second-degree polynomial pattern, reaching a maximum before grain maturation. Free and bound phenols decreased as grain developed, suggesting that they are synthesized in early stages. Rate of bound phenols deposition was more sensitive to genotypic changes. Overall, antioxidant capacity decreased over time; the decay being less steep under stress for all genotypes. Heat stress negatively affected grain weight. It did not alter the profile of β-glucans and arabinoxylans deposition but positively changed the accumulation of some phenolic compounds, increasing the antioxidant capacity differentially across genotypes. These results support the growing of food barley in high-temperature stress-prone areas, as some bioactive compound and antioxidant capacity will increase, regardless of the smaller grain size. Moreover, if a market develops for food-barley ingredients, early harvesting of non-mature grain to maximize antioxidant capacity should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Ignacio Romagosa
- AGROTECNIO-CERCA Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (M.M.-S.); (M.M.); (E.P.); (M.-P.R.); (R.S.)
| |
Collapse
|
22
|
Cardinali F, Osimani A, Milanović V, Garofalo C, Aquilanti L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods 2021; 10:613. [PMID: 33805698 PMCID: PMC8000499 DOI: 10.3390/foods10030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in food intolerances, allergies, and food-based lifestyle choices has dramatically increased the consumer demand for healthy foods characterized by pleasant sensory traits. In such a context, innovative cereal-based beverages are characterized by high nutritional value, pleasant palatability, and potential healthy properties. In the present study, a pool of 23 lactic acid bacteria strains was preliminary assayed as monocultures for the fermentation of three ad hoc formulated cereal- (red rice and barley) and pseudocereal (buckwheat) -based substrates. Eight strains with the best performance in terms of acidification rate were selected for the formulation of three multiple strain cultures to be further exploited for the manufacture of laboratory-scale prototypes of fermented beverages. The compositional and microbiological features of the three experimental beverages highlighted their high biological value for further exploitation.
Collapse
Affiliation(s)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (V.M.); (C.G.); (L.A.)
| | | | | | | |
Collapse
|
23
|
Bioactive Compounds and Antioxidant Capacity in Pearling Fractions of Hulled, Partially Hull-Less and Hull-Less Food Barley Genotypes. Foods 2021; 10:foods10030565. [PMID: 33803221 PMCID: PMC8001832 DOI: 10.3390/foods10030565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/19/2023] Open
Abstract
Three food barley genotypes differing in the presence or absence of husks were sequentially pearled and their fractions analyzed for ash, proteins, bioactive compounds and antioxidant capacity in order to identify potential functional food ingredients. Husks were high in ash, arabinoxylans, procyanidin B3, prodelphinidin B4 and p-coumaric, ferulic and diferulic bound acids, resulting in a high antioxidant capacity. The outermost layers provided a similar content of those bioactive compounds and antioxidant capacity that were high in husks, and also an elevated content of tocols, representing the most valuable source of bioactive compounds. Intermediate layers provided high protein content, β-glucans, tocopherols and such phenolic compounds as catechins and bound hydroxybenzoic acid. The endosperm had very high β-glucan content and relative high levels of catechins and hydroxybenzoic acid. Based on the spatial distribution of the bioactive compounds, the outermost 30% pearling fractions seem the best option to exploit the antioxidant capacity of barley to the full, whereas pearled grains supply β-glucans enriched flours. Current regulations require elimination of inedible husks from human foods. However, due to their high content in bioactive compounds and antioxidant capacity, they should be considered as a valuable material, at least for animal feeds.
Collapse
|
24
|
Nicolás-García M, Perucini-Avendaño M, Jiménez-Martínez C, Perea-Flores MDJ, Gómez-Patiño MB, Arrieta-Báez D, Dávila-Ortiz G. Bean phenolic compound changes during processing: Chemical interactions and identification. J Food Sci 2021; 86:643-655. [PMID: 33586793 DOI: 10.1111/1750-3841.15632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/08/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022]
Abstract
The common bean (Phaseolus vulgaris L.) represents one of the main crops for human consumption, due to its nutritional and functional qualities. Phenolic compounds have beneficial health effects, and beans are an essential source of these molecules, being found mainly in the seed coat and its color depends on the concentration and type of phenolic compounds present. The bean during storage and processing, such as cooking, germination, extrusion, and fermentation, undergoes physical, chemical, and structural changes that affect the bioavailability of its nutrients; these changes are related to the interactions between phenolic compounds and other components of the food matrix. This review provides information about the identification and quantification of phenolic compounds present in beans and the changes they undergo during processing. It also includes information on the interactions between the phenolic compounds and the components of the bean's cell wall and the analytical methods used to identify the interactions of phenolic compounds with macromolecules.
Collapse
Affiliation(s)
- Mayra Nicolás-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Madeleine Perucini-Avendaño
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Mayra Beatriz Gómez-Patiño
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Daniel Arrieta-Báez
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| |
Collapse
|
25
|
Abstract
Tocols are present in various foods, mostly in fruits and in plant seeds. Edible oils are the most important natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Tocopherols and tocotrienols are considered beneficial for their antioxidant effect which impacts on prevention of different health conditions. This perspective is addressed to give an updated picture of the tocol occurrence in foods. Moreover, the current state of the art of tocols in updated databases is explored and commented outlining their importance and future trends.
Collapse
|
26
|
Zaikina M, Chebotareva K, Gurenko A. Innovative technology of flour confectionery products for therapeutic and preventive nutrition of patients with diabetes mellitus. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213203010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, much attention has been paid to the introduction of raw materials with a low glycemic index into the food industry, among which buckwheat, oat and barley flour occupy a special place. The use of raw materials with a low glycemic index in the formulation of flour confectionery products makes it possible to improve both the organoleptic and physicochemical properties of the product. They also allow to reduce the energy value of such products by reducing the amount of wheat flour, low-calorie margarine, melange and at the same time significantly increase the biological value of the food product. With the aim of adjusting the chemical composition, three recipes for cookies have been developed wheat-oat, wheatbuckwheat and wheat-barley, with the replacement of water in the recipe with an infusion from the collection of herbs “Arfazetin-E”, replacing part of the low-calorie margarine with linseed oil, with the addition of wheat flakes and flaxseed, as well as an aqueous solution of sorbitol and stevioside, apple pectin, iodized salt and flavocene (dihydroquercetin). The introduced components will improve the structural and mechanical properties of the dough, organoleptic and physicochemical indicators of the finished product, and bring the composition closer to the formula for balanced nutrition. The use of unconventional raw materials with a low glycemic index in the food industry makes it possible to enrich the chemical composition of biscuits with dietary fiber, vitamins, and mineral components. From the results of the analysis of the nutritional value, it follows that the finished product contains vitamins B1, B2, β-carotene and E, which can be used for therapeutic and prophylactic nutrition. The use of non-traditional raw materials of vegetable origin in the recipe for cookies leads to an increase in the biological value of the product and a decrease in its calorie content.
Collapse
|
27
|
Ravisankar S, Queiroz VA, Awika JM. Rye flavonoids – Structural profile of the flavones in diverse varieties and effect of fermentation and heat on their structure and antioxidant properties. Food Chem 2020; 324:126871. [DOI: 10.1016/j.foodchem.2020.126871] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
|
28
|
Martínez-Subirà M, Romero MP, Puig E, Macià A, Romagosa I, Moralejo M. Purple, high β-glucan, hulless barley as valuable ingredient for functional food. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Song J, Chen H, Wei Y, Liu J. Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus. Carbohydr Polym 2020; 242:116418. [DOI: 10.1016/j.carbpol.2020.116418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
30
|
Tlais AZA, Fiorino GM, Polo A, Filannino P, Di Cagno R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020; 25:E2987. [PMID: 32629805 PMCID: PMC7412346 DOI: 10.3390/molecules25132987] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Food waste (FW) represents a global and ever-growing issue that is attracting more attention due to its environmental, ethical, social and economic implications. Although a valuable quantity of bioactive components is still present in the residuals, nowadays most FW is destined for animal feeding, landfill disposal, composting and incineration. Aiming to valorize and recycle food byproducts, the development of novel and sustainable strategies to reduce the annual food loss appears an urgent need. In particular, plant byproducts are a plentiful source of high-value compounds that may be exploited as natural antioxidants, preservatives and supplements in the food industry, pharmaceuticals and cosmetics. In this review, a comprehensive overview of the main bioactive compounds in fruit, vegetable and cereal byproducts is provided. Additionally, the natural and suitable application of tailored enzymatic treatments and fermentation to recover high-value compounds from plant byproducts is discussed. Based on these promising strategies, a future expansion of green biotechnologies to revalorize the high quantity of byproducts is highly encouraging to reduce the food waste/losses and promote benefits on human health.
Collapse
Affiliation(s)
- Ali Zein Alabiden Tlais
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Giuseppina Maria Fiorino
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| |
Collapse
|
31
|
Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants (Basel) 2020; 9:antiox9060527. [PMID: 32560111 PMCID: PMC7346127 DOI: 10.3390/antiox9060527] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
Phenolic acids (PAs) are a dominant group of phenolic compounds in cereals, existing mostly bound to compounds of cell wall. In this study, a total of 25 cereal grain samples, including wheat, winter and spring barley, corn, and popcorn, were evaluated for bound PAs and antioxidant activity in a two-year field trial. The PA contents, determined by HPLC, were significantly affected by cereal type. The mean total PA content was highest in popcorn and corn (3298 and 2213 μg/gdm, respectively), followed by winter and spring barley (991 and 908 μg/gdm, respectively) and wheat (604 μg/gdm). Ferulic acid was the most abundant, accounting from 62% to 83% of total PAs (in popcorn and winter and spring barley, respectively). Across cereals, p-coumaric (35-259 μg/gdm) and p-hidroxybenzoic (45-79 μg/gdm) were also dominant, while in corn and popcorn o-coumaric (71 and 89 μg/gdm, respectively) also occurred in higher content. The mean total phenol content ranged from 853 μg GAE/gdm (wheat) to 1403 μg GAE/gdm (winter barley) with DPPH scavenging activity from 14% to 67%, respectively. A significant influence of crop years on the ferulic acid and total PA content was found, while the variability of other PAs was dependent on the cereal type. The results indicated a high health benefit potential of selected cereals.
Collapse
|
32
|
Yang Q, Zhong X, Li Q, Lan J, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Lan X, Deng M, Harwood W, Li Z, Wei Y, Zheng Y, Jiang Q. Mutation of the d-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley. Food Chem 2020; 311:125892. [PMID: 31791724 DOI: 10.1016/j.foodchem.2019.125892] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
In this study, we successfully knock-out the d-hordein component of barley storage protein using RNA-guided Cas9. Mutation frequencies of 25% and 14% at two different target sites were obtained. Homozygous mutant plants that were T-DNA free were identified in the T1 generation. Barley grains without d-hordein proteins from T2 seeds showed a significantly reduced grain size compared to the parent plant and control non-edited line. The protein matrix surrounding the starch granules was increased, whereas the starch granules themselves were decreased in size in the mutant plants compared to controls. The main effect of a lack of d-hordein was a considerable decrease in the prolamines and an increase in the glutenins. The changes of other grain composition included the increased starch content, amylose content, and β-glucan content. The roles of d-hordein mutation on barley grain size and grain composition remain to be studied.
Collapse
Affiliation(s)
- Qiang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaojuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhien Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhongyi Li
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT 2601, Australia
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
33
|
A Review of the Potential Health Benefits of Low Alcohol and Alcohol-Free Beer: Effects of Ingredients and Craft Brewing Processes on Potentially Bioactive Metabolites. BEVERAGES 2020. [DOI: 10.3390/beverages6020025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Beer is a beverage of significant historical and cultural importance. Interest in the potential health effects of alcoholic beverages has largely focused on wine; however, there are a number of potentially beneficial bioactives that beer may contain that warrant further investigation. The challenge of considering any potential health benefits of beer are restricted by the negative consequences of its alcohol and energy content. There is potential to enhance the bioactive qualities of beer whilst reducing the alcohol and energy content through novel brewing approaches often used in craft brewing, in terms of ingredients, brewing methods and type of fermentation. Consumer demand to produce a greater variety of beer types, including alcohol-free beers, may also help to increase the number of beers which may have greater potential to improve health, with lower levels of alcohol, while still being tasty products. As low alcohol, prebiotic and bioactive containing beers are developed, it is important that their potential health benefits and risks are fully assessed.
Collapse
|
34
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
35
|
Rico D, Peñas E, García MDC, Martínez-Villaluenga C, Rai DK, Birsan RI, Frias J, Martín-Diana AB. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020; 9:E296. [PMID: 32150936 PMCID: PMC7142429 DOI: 10.3390/foods9030296] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing demand for healthy food products has promoted the use of germinated seeds to produce functional flours. In this study, germination conditions were optimized in barley grains with the aim to produce flours with high nutritional and biofunctional potential using response surface methodology (RSM). The impact of germination time (0.8-6 days) and temperature (12-20 °C) on barley quality was studied. Non-germinated barley was used as the control. The content of vitamins B1, B2 and C, and proteins increased notably after germination, especially at longer times, while levels of fat, carbohydrates, fibre, and b-glucan were reduced. Total phenolic compounds, g-aminobutyric acid and antioxidant activity determined by Oxygen Radical Absorbance Capacity increased between 2-fold and 4-fold during sprouting, depending on germination conditions and this increase was more pronounced at higher temperatures (16-20 °C) and longer times (5-6 days). Procyanidin B and ferulic acid were the main phenolics in the soluble and insoluble fraction, respectively. Procyanidin B levels decreased while bound ferulic acid content increased during germination. Germinated barley flours exhibited lower brightness and a higher glycemic index than the control ones. This study shows that germination at 16 °C for 3.5 days was the optimum process to obtain nutritious and functional barley flours. Under these conditions, sprouts retained 87% of the initial b-glucan content, and exhibited levels of ascorbic acid, riboflavin, phenolic compounds and GABA between 1.4-fold and 2.5-fold higher than the non-sprouted grain.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| |
Collapse
|
36
|
Distribution of β-Glucan, Phenolic Acids, and Proteins as Functional Phytonutrients of Hull-Less Barley Grain. Foods 2019; 8:foods8120680. [PMID: 31847194 PMCID: PMC6963557 DOI: 10.3390/foods8120680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Two hull-less barley varieties were roller-milled, and breaks (B) and reduction flours (C), shorts, and bran were collected. Shorts, which mainly originate from endosperm cells with a smaller amount of the outer layers, had the largest yield (48.87–51.54%). Ash (0.82–3.10%) and protein (9.95–14.8%) increased from flours toward shorts and bran, while starch decreased (82.31–48.69%). In contrast to clear distribution differences in protein content (bran > shorts > C > B), albumins/globulins content was lowest in bran (0.78–0.90 g/100 gdw), and their distribution between fractions was uneven and genotype dependent. Distribution of hordeins (6.69–10.49 g/100 gdw) was more distinct and generally decreased in order from bran > B > shorts > C. The proportion of nutritionally poor C-hordeins in total hordeins varied from 28.33% to 30.24%, without significant differences between fractions. The β-glucan content varied from 0.80% to 7.49% with decreasing content in the order bran, shorts > C > B. Shorts and bran could be classified as moderate and high β-glucan flour (5.70–7.22%). The total phenolic and antioxidant activities ranged from 0.91 to 2.21 mg GAE/gdw and 28.81–72.06%, respectively. Ferulic and sinapic acids determined by high-performance liquid chromatography (HPLC) were major contributors to the antioxidant activity (45.16–1026.91 ug/gdw and 18.93–206.52 ug/gdw), respectively. The yield and high content of phytonutrients make hull-less barley shorts suitable for the production of health-promoting food and food supplements.
Collapse
|
37
|
Tomasi I, Sileoni V, Marconi O, Bonciarelli U, Guiducci M, Maranghi S, Perretti G. Effect of Growth Conditions and Genotype on Barley Yield and β-Glucan Content of Kernels and Malt. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6324-6335. [PMID: 31083935 DOI: 10.1021/acs.jafc.9b00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was conducted to evaluate the effect of growth conditions and genotype on the barley yield and β-glucan content of grain and malt. Total and water-extractable (W-E) β-glucans and their molecular and structural properties were analyzed in nine 2-row barley varieties and corresponding malts. The total β-glucan content of barley is not influenced by year or by the cultivar, while the grain yield and W-E β-glucan content are significantly influenced by the year. Barley W-E β-glucans have a molecular weight between 1.0 × 105 and 4.0 × 105 Da and a random coil conformation. β-Glucan levels in malt are significantly lower than in barley, and neither the total nor the W-E β-glucans are influenced by environmental factors or genetic aspects. W-E β-glucans are mainly composed of fractions with Mw values below 1.0 × 105 Da. In conclusion, the molecular characterization of β-glucans could represent a powerful tool to understand their role in the brewing process.
Collapse
Affiliation(s)
- Ivan Tomasi
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
| | - Valeria Sileoni
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
- University of Perugia , Italian Brewing Research Centre , via San Costanzo s.n.c. , 06126 Perugia , Italy
| | - Ombretta Marconi
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
- University of Perugia , Italian Brewing Research Centre , via San Costanzo s.n.c. , 06126 Perugia , Italy
| | - Umberto Bonciarelli
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
| | - Marcello Guiducci
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
| | - Stefano Maranghi
- University of Perugia , Italian Brewing Research Centre , via San Costanzo s.n.c. , 06126 Perugia , Italy
| | - Giuseppe Perretti
- University of Perugia , Department of Agricultural, Food and Environmental Science , Borgo XX Giugno , 06121 Perugia , Italy
- University of Perugia , Italian Brewing Research Centre , via San Costanzo s.n.c. , 06126 Perugia , Italy
| |
Collapse
|
38
|
Liu R, Zhao J, Guo J, Liu X, Yu J, Wang H, Li Y, Sun C, Liu L. Postprandial metabolomics: GC-MS analysis reveals differences in organic acid profiles of impaired fasting glucose individuals in response to highland barley loads. Food Funct 2019; 10:1552-1562. [PMID: 30801091 DOI: 10.1039/c8fo02321b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
Abstract
The aim of our work was to use a targeted GC-MS approach to investigate the difference in organic acid profiles between individuals with impaired fasting glucose (IFG) and healthy controls and then to investigate the alterations in postprandial organic acid profiles after a meal of highland barley (HB) in IFG individuals. Firstly, 30 IFG and 30 healthy individuals were recruited and 26 organic acids were detected to characterize the organic acid profiles in the fasting serum metabolome. Secondly, 15 participants of the IFG group received three different loads: glucose (GL), white rice (WR) and HB. Serum was collected at time zero, 30, 60, 90 and 120 min after the test load. The results showed fasting organic acid profiles were different between the IFG group and the controls. For the postprandial changes in organic acids after the three test loads, six organic acids related to the tricarboxylic acid (TCA) cycle, namely citrate, cis-aconitic acid, fumarate, succinate, pyruvate and malate, had a significant test load effect (p < 0.01) and a significant time × test load interaction effect (p < 0.01). The AUC0-120 min values for citrate, fumarate and malate after WR and HB loads were significantly lower (p < 0.05) compared to the GL load. In addition, the AUC0-120 min value for pyroglutamic acid after WR and HB loads was significantly higher (p < 0.05) compared to the GL load, whereas the AUC0-120 min for malonic acid after WR and HB loads was significantly lower (p < 0.05) compared to the GL load. Altogether, these findings suggest that the HB load producing low postprandial glucose and insulin responses brings about several alterations in organic acids.
Collapse
Affiliation(s)
- Rui Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Girard AL, Awika JM. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Awika JM, Rose DJ, Simsek S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 2018. [PMID: 29532826 DOI: 10.1039/c7fo02011b] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cereal grains and grain pulses are primary staples often consumed together, and contribute a major portion of daily human calorie and protein intake globally. Protective effects of consuming whole grain cereals and grain pulses against various inflammation-related chronic diseases are well documented. However, potential benefits of combined intake of whole cereals and pulses beyond their complementary amino acid nutrition is rarely considered in literature. There is ample evidence that key bioactive components of whole grain cereals and pulses are structurally different and thus may be optimized to provide synergistic/complementary health benefits. Among the most important whole grain bioactive components are polyphenols and dietary fiber, not only because of their demonstrated biological function, but also their major impact on consumer choice of whole grain/pulse products. This review highlights the distinct structural differences between key cereal grain and pulse polyphenols and non-starch polysaccharides (dietary fiber), and the evidence on specific synergistic/complementary benefits of combining the bioactive components from the two commodities. Interactive effects of the polyphenols and fiber on gut microbiota and associated benefits to colon health, and against systemic inflammation, are discussed. Processing technologies that can be used to further enhance the interactive benefits of combined cereal-pulse bioactive compounds are highlighted.
Collapse
Affiliation(s)
- Joseph M Awika
- Cereal Quality Laboratory, Soil & Crop Science Department, Texas A&M University, College Station, Texas, USA. and Nutrition and Food Science Department, Texas A&M University, College Station, Texas, USA
| | - Devin J Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Fargo, ND 58105, USA
| |
Collapse
|